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Anonymization and de-
anonymization of graphs

• Reference: 
• Towards identity anonymization in social networks 

(by Kun Liu and Evimaria Terzi, SIGMOD 2008)
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Growing Privacy Concerns

“Detailed information on an individual’s credit, health, and 
financial status, on characteristic purchasing patterns, 
and on other personal preferences is routinely recorded 
and analyzed by a variety of governmental and 
commercial organizations.”  

- M. J. Cronin, “e-Privacy?” Hoover Digest, 2000.

 Person specific information is being 
routinely collected. 
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Proliferation of Graph Data

http://www.touchgraph.com/
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Privacy breaches on graph data

• Identity disclosure
• Identity of individuals associated with nodes is disclosed

• Link disclosure
• Relationships between individuals are disclosed

• Content disclosure
• Attribute data associated with a node is disclosed
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Identity anonymization on graphs
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Identity anonymization on graphs
• Question

• How to share a network in a manner that permits useful analysis 
without disclosing the identity of the individuals involved?
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Identity anonymization on graphs
• Question

• How to share a network in a manner that permits useful analysis 
without disclosing the identity of the individuals involved?

• Observations
• Simply removing the identifying information of the nodes before 

publishing the actual graph does not guarantee identity 
anonymization. 

 
 L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579X?: Anonymized social 

netwoks, hidden patterns, and structural steganography,” In WWW 2007.
     
 J. Kleinberg, “Challenges in Social Network Data: Processes, Privacy and Paradoxes, ” KDD 

2007 Keynote Talk.
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Identity anonymization on graphs
• Question

• How to share a network in a manner that permits useful analysis 
without disclosing the identity of the individuals involved?

• Observations
• Simply removing the identifying information of the nodes before 

publishing the actual graph does not guarantee identity 
anonymization. 

 
 L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579X?: Anonymized social 

netwoks, hidden patterns, and structural steganography,” In WWW 2007.
     
 J. Kleinberg, “Challenges in Social Network Data: Processes, Privacy and Paradoxes, ” KDD 

2007 Keynote Talk.

• Can we borrow ideas from k-anonymity?
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What if you want to prevent the following 
from happening

• Assume that adversary A knows that B has 327 
connections in a social network! 

• If the graph is released by removing the identity of the 
nodes
• A can find all nodes that have degree 327
• If there is only one node with degree 327, A can identify this node as being 

B.
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Privacy model

[k-degree anonymity] A graph G(V, E) is k-degree 
anonymous if every node in V has the same degree as 
k-1 other nodes in V.

A (2)

B (1) E (1)

C (1) D (1)
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Privacy model

[k-degree anonymity] A graph G(V, E) is k-degree 
anonymous if every node in V has the same degree as 
k-1 other nodes in V.

[Properties] It prevents the re-identification of individuals 
by adversaries with a priori knowledge of the degree of 
certain nodes. 

A (2)

B (1) E (1)

C (1) D (1)

A (2)

B (2) E (2)

C (1) D (1)

anonymization
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Outline

• Problem definition

• Algorithms

• Experimental results
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Problem Definition

• Symmetric difference between graphs G(V,E) and G’(V,E’) :

Given a graph G(V, E) and an integer k, modify G via a minimal set of edge 
addition or deletion operations to construct a new graph G’(V’, E’) such that 

	
 1) G’ is k-degree anonymous; 

	
 2) V’ = V;

	
 3) The symmetric difference of G and G’ is as small as possible
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Outline

• Problem definition

• Algorithms

• Experimental results
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GraphAnonymization algorithm
Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’ 

[Degree Sequence Anonymization]: 
• Contruct an anonymized degree sequence d’ from the 

original degree sequence d 

[Graph Construction]: 
     [Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0  is d‘
     [Transform]: Transform G0(V, E0)  to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 
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Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if 
every distinct element value in d appears at least k times.     
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Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if 
every distinct element value in d appears at least k times.     

[100,100, 100, 98, 98,15,15,15]
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Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if 
every distinct element value in d appears at least k times.     

[degree-sequence anonymization] Given degree sequence d, and 
integer k, construct k-anonymous sequence d’ such that ||d’-d|| 
is minimized

[100,100, 100, 98, 98,15,15,15]
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Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if 
every distinct element value in d appears at least k times.     

[degree-sequence anonymization] Given degree sequence d, and 
integer k, construct k-anonymous sequence d’ such that ||d’-d|| 
is minimized

[100,100, 100, 98, 98,15,15,15]

Increase/decrease of degrees correspond to additions/deletions of edges
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Algorithm for degree-sequence anonymization

Original degree sequence
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Algorithm for degree-sequence anonymization

k=2
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Algorithm for degree-sequence anonymization

k=4
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DP for degree-sequence anonymization

 Dynamic Programming with O(nk)

 DA(1, n) : the optimal degree-sequence anonymization cost 
 Dynamic Programming with O(n2)

 C(i, j) : anonymization cost when all nodes i, i+1, …, j are put in the 
same anonymized group, i.e., 

 d (1) ≥ d (2) ≥… ≥ d (i) ≥… ≥ d (n) : original degree sequence.
 d’ (1) ≥ d’ (2) ≥…≥ d’ (i) ≥…≥ d’ (n) : k-anonymized degree sequence.

 Dynamic Programming can be done in O(n) with some additional 
bookkeeping
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GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’ 

[Degree Sequence Anonymization]: 
• Contruct an anonymized degree sequence d’ from the 

original degree sequence d 

[Graph Construction]: 
     [Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0  is d‘
     [Transform]: Transform G0(V, E0)  to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 
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Are all degree sequences realizable?

• A degree sequence d is realizable if there exists a 
simple undirected graph with nodes having degree 
sequence d.

• Not all vectors of integers are realizable degree 
sequences
• d = {4,2,2,2,1} ?

• How can we decide?
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Realizability of degree sequences

[Erdös and Gallai] A degree sequence d with d(1) ≥ d(2) ≥… ≥ d(i) ≥… ≥ 
d(n) and Σd(i) even, is realizable if and only if 
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Realizability of degree sequences

[Erdös and Gallai] A degree sequence d with d(1) ≥ d(2) ≥… ≥ d(i) ≥… ≥ 
d(n) and Σd(i) even, is realizable if and only if 

Input: Degree sequence d’
Output: Graph G0(V, E0) with degree sequence d’ or NO! 

If the degree sequence d’ is NOT realizable?

•Convert it into a realizable and k-anonymous degree sequence
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GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’ 

[Degree Sequence Anonymization]: 
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     [Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0  is d‘
     [Transform]: Transform G0(V, E0)  to G’(V, E’) so that 
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Graph-transformation algorithm 

 GreedySwap transforms G0 = (V, E0) into G’(V, E’) with the same degree 
sequence d’, and min symmetric difference SymDiff(G’,G) .

 GreedySwap is a greedy heuristic with several iterations.

 At each step, GreedySwap swaps a pair of edges to make the graph more 
similar to the original graph G, while leaving the nodes’ degrees intact.
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Valid swappable pairs of edges
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Valid swappable pairs of edges

A swap is valid if the resulting graph is simple
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GreedySwap algorithm

Input: A pliable graph G0(V, E0) , fixed graph G(V,E)
Output: Graph G’(V, E’) with the same degree sequence as G0(V,E0) 

i=0
Repeat 
    find the valid swap in Gi that most reduces its symmetric difference 

with G , and form graph Gi+1

    i++
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Outline

• Problem definition

• Algorithms

• Experimental results
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Experiments 

• Datasets: Co-authors, Enron emails, powergrid, Erdos-
Renyi, small-world and power-law graphs

•Goal: degree-anonymization does not destroy the 
structure of the graph
• Average path length
• Clustering coefficient
• Exponent of power-law distribution  
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Experiments: Clustering coefficient and 
Avg Path Length
 Co-author dataset
 APL and CC do not change dramatically even for large values of k
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Experiments: Edge intersections

Synthetic datasets

Small world graphs* 0.99 (0.01)

Random graphs 0.99 (0.01)

Power law graphs** 0.93 (0.04)

Real datasetsReal datasets
Enron 0.95 (0.16)
Powergrid 0.97 (0.01)
Co-authors 0.91(0.01)

(*) L. Barabasi and R. Albert: Emergence of  scaling in random networks. Science 1999.
(**) Watts, D. J. Networks, dynamics, and the small-world phenomenon. American Journal of Sociology 
1999

Edge intersection achieved by 
the GreedySwap algorithm for 
different datasets.

Parenthesis value indicates 
the original value of edge 
intersection
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Experiments: Exponent of power law 
distributions

Original 2.07
k=10 2.45
k=15 2.33
k=20 2.28
k=25 2.25
k=50 2.05
k=100 1.92

Co-author dataset

Exponent of the power-
law distribution as a 
function of k
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Conclusions

• Problem and algorithmic aspects of degree-
anonymization on graphs.

• Degree-anonymity does not destroy the graph structure 
in practice
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Inverse anonymization problems

• Given two social networks that share a large portion of their nodes, can you map 
the nodes of the one network to the other?

• Examples: Twitter and FB. LinkedIn and FB etc.
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Questions?
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k-anonymity on tabular data 
(in brief)

 [k-Anonymity*] A dataset is k-anonymous if every record is 
indistinguishable from at least (k-1) other records. 

 [Algorithms]  Replace specific values with more general, but 

* P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when disclosing information,” PODS 1998.
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k-anonymity on tabular data 
(in brief)

 [k-Anonymity*] A dataset is k-anonymous if every record is 
indistinguishable from at least (k-1) other records. 

 [Algorithms]  Replace specific values with more general, but 

A1 A2 A3 A4 A5 A6 A7 A8

t1 1 0 0 0 1 1 1 0
t2 1 1 0 0 1 0 1 0
t3 1 0 1 0 1 1 1 0
t4 0 1 1 1 0 0 0 1
t5 1 1 1 1 1 0 0 1
t6 1 1 1 1 1 0 0 0

* P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when disclosing information,” PODS 1998.
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k-anonymity on tabular data 
(in brief)

 [k-Anonymity*] A dataset is k-anonymous if every record is 
indistinguishable from at least (k-1) other records. 

 [Algorithms]  Replace specific values with more general, but 

A1 A2 A3 A4 A5 A6 A7 A8

t1 1 * * 0 1 * 1 0
t2 1 * * 0 1 * 1 0
t3 1 * * 0 1 * 1 0
t4 * 1 1 1 * 0 0 *
t5 * 1 1 1 * 0 0 *
t6 * 1 1 1 * 0 0 *

* P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when disclosing information,” PODS 1998.



Boston University Slideshow Title Goes Here

evimaria@cs.bu.edu

Anonymizing adjacency matrices
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Anonymizing adjacency matrices
All graphs are 
unweighted 
and 
undirected



Boston University Slideshow Title Goes Here

evimaria@cs.bu.edu

Anonymizing adjacency matrices
A B C D E

A 0 1 0 0 1

B 1 0 0 0 0

C 0 0 0 1 0

D 0 0 1 0 0

E 1 0 0 0 0

A (2)

B (1) E (1)

C (1) D (1)

Original 
Graph

All graphs are 
unweighted 
and 
undirected
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Anonymizing adjacency matrices
A B C D E

A 0 1 0 0 1

B 1 0 0 0 0

C 0 0 0 1 0

D 0 0 1 0 0

E 1 0 0 0 0

A B C D E

A 0 1 1 0 1

B 1 0 0 1 0

C 1 0 0 1 0

D 0 1 1 0 1

E 1 0 0 1 0

A (2)

B (1) E (1)

C (1) D (1)

A (3)

B (2) E (2)

C (2) D (3)

Original 
Graph

2-anonymous 
graph based on k-
anonymity 
model.

1. Changes to one entry leads to 
changes to another. 

2. k-anonymity could result in 
significant changes of the graph and 
would make the graph useless.

All graphs are 
unweighted 
and 
undirected
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Experiments: Degree-sequence 
anonymization• Co-author dataset

• Degree sequences do not 
change dramatically even for 
large values of k


