Dimensionality reduction

Outline

- Dimensionality Reductions or data projections
- Random projections
- Singular Value Decomposition and Principal Component Analysis (PCA)

The curse of dimensionality

- The efficiency of many algorithms depends on the number of dimensions d
- Distance/similarity computations are at least linear to the number of dimensions
- Index structures fail as the dimensionality of the data increases

Goals

- Reduce dimensionality of the data
- Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$ (d-dimensional real vector):
$x_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i d}\right]$
- Dimensionality reduction methods:
- Feature selection: choose a subset of the features
- Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
- Feature selection: choose a subset of the features
- Feature extraction: create new features by combining new ones
- Both methods map vector $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, to vector $y_{i} \in \mathbb{R}^{k},(k \ll d)$
- $F: R^{d} \rightarrow R^{k}$

Linear dimensionality reduction

- Function F is a linear projection
- $y_{i}=x_{i} A$
- $\mathrm{Y}=\mathrm{X}$ A
- Goal: Y is as close to X as possible

Closeness: Pairwise distances

- Johnson-Lindenstrauss lemma: Given $\varepsilon>0$, and an integer n, let k be a positive integer such that $\mathrm{k} \geq \mathrm{k}_{0}=\mathrm{O}\left(\varepsilon^{-2} \log n\right)$. For every set X of n points in R^{d} there exists $F: R^{d} \rightarrow R^{k}$ such that for all $X_{i}, x_{j} \in X$
$(1-\varepsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|F\left(x_{i}\right)-F\left(x_{j}\right)\right\|^{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|^{2}$

What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors $x_{i} \in R^{d}$, are projected onto a $k-$ dimensional space $(k \ll d)$: $y_{i}=x_{i} A$
- If $\left|\left|x_{i}\right|\right|=1$ for all i, then,
$\left\|x_{i}-x_{j}\right\|^{2}$ is approximated by $(d / k)\left\|y_{i}-y_{j}\right\|^{2}$
- Intuition:
- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k / d
- The probability that it deviates from expectation is very small

Finding random projections

- Vectors $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a k dimensional space ($k \ll d$)
- Random projections can be represented by linear transformation matrix A
- $y_{i}=x_{i} A$
- What is the matrix A ?

Finding random projections

- Vectors $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a k dimensional space ($k \ll d$)
- Random projections can be represented by linear transformation matrix A
- $y_{i}=x_{i} A$
- What is the matrix A ?

Finding matrix A

- Elements $A(i, j)$ can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$
A(i, j)=\left\{\begin{array}{l}
+1 \text { with prob } \frac{1}{6} \\
0 \text { with prob } \frac{2}{3} \\
-1 \text { with prob } \frac{1}{6}
\end{array}\right.
$$

- All zero mean, unit variance distributions for A(i,j) would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

Datasets in the form of matrices

Given n objects and dl features describing the objects. (Each object has dl numeric values describing it.)

Dataset

An n -by-d matrix $\mathrm{A}, \mathrm{A}_{\mathrm{ij}}$ shows the "importance" of feature j for object i.
Every row of A represents an object.

Goal

1. Understand the structure of the data, e.g., the underlying process generating the data.
2. Reduce the number of features representing the data

Market basket matrices

d products
(e.g., milk, bread, wine, etc.)
n
customers

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{ij}}=\text { quantity of } \mathrm{j} \text {-th product } \\
& \text { purchased by the } \mathrm{i} \text {-th } \\
& \text { customer }
\end{aligned}
$$

A

Find a subset of the products that characterize customer behavior

Social-network matrices

n users $\left(\begin{array}{c}\text { d groups } \\ \text { (e.g., BU group, opera, etc.) } \\ A \\ \begin{array}{l}\mathrm{A}_{\mathrm{ij}}=\text { partiticipation of } \\ \text { the } \mathrm{i}-\mathrm{th} \text { user in the } \mathrm{j}-\mathrm{th} \\ \text { group }\end{array}\end{array}\right)$

Find a subset of the groups that accurately clusters social-network users

Document matrices

d terms
(e.g., theorem, proof, etc.)
documents $\left(\begin{array}{l} \\ \\ \mathrm{A}_{\mathrm{ij}}=\text { frequency of the } \mathrm{j}-\mathrm{th} \\ \text { term in the } \mathrm{i}-\mathrm{th} \text { document }\end{array}\right)$
Find a subset of the terms that accurately clusters the documents

Recommendation systems

d products

Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

Data matrices have n rows (one for each object) and d columns (one for each feature).

Rows: vectors in a Euclidean space,
Two objects are "close" if the angle between their corresponding vectors is small.

SVD: Example

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,
2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ_{1} : measures how much of the data variance is explained by the first singular vector.
σ_{2} : measures how much of the data variance is explained by the second singular vector.

SVD decomposition

$$
\begin{aligned}
& \binom{A}{\mathbf{n x d}}=\left(\mathbf{v}_{0} \quad\left(\begin{array}{l}
\\
0
\end{array}\right)^{T}\right. \\
& \mathbf{n} \mathbf{x} \boldsymbol{\ell} \quad \boldsymbol{\ell} \mathbf{x} \boldsymbol{\ell} \quad \boldsymbol{\ell} \mathbf{x d}
\end{aligned}
$$

$\mathrm{U}(\mathrm{V})$: orthogonal matrix containing the left (right) singular vectors of A.
Σ : diagonal matrix containing the singular values of A : ($\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\ell}$)

Exact computation of the SVD takes $O\left(m i n\left\{m n^{2}, m^{2} n\right\}\right)$ time.
The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

SVD and Rank-k approximations

Rank-k approximations (A_{k})

$\mathrm{U}_{\mathrm{k}}\left(\mathrm{V}_{\mathrm{k}}\right)$: orthogonal matrix containing the top k left (right) singular vectors of A.
$\Sigma_{\mathrm{k}^{\prime}}$ diagonal matrix containing the top k singular values of A
A_{k} is an approximation of A

Rank-k approximations (A_{k})

A_{k} is an approximation of A

SVD as an optimization problem

Find C to minimize:

$$
\begin{aligned}
& \min _{C}\| \|_{n \times d}^{A}-\underset{n \times k}{C} \underset{k \times d}{X} \|_{F \text { Frobenius norm: }}^{2} \\
& \|A\|_{F}^{2}=\sum_{i, j} A_{i j}^{2}
\end{aligned}
$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinatinq!

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."* *Dianne O'Leary, MMDS '06

Reference

Simple and Deterministic Matrix Sketching

Author: Edo Liberty, Yahoo! Labs
KDD 2013, Best paper award

Thanks Edo Liberty for the slides

Sketches of streaming matrices

- A nxd matrix
- Rows of A arrive in a stream
- Task: compute

$$
A A^{T}=\sum_{i=1}^{n} A_{i} A_{i}^{t}
$$

Sketches of streaming matrices

- A dxn matrix
- Rows of A arrive in a stream
- Task: compute

$$
A A^{T}=\sum_{i=1}^{n} A_{i} A_{i}^{t}
$$

- Naive solution: Compute $A A^{T}$ in time $O\left(n d^{2}\right)$ and space $O\left(d^{2}\right)$
- Think of $d=10 \wedge 6, n=10^{\wedge} 6$

Goal

- Efficiently compute a concisely representable matrix B such that

$$
B \approx A \text { or } B B^{T} \approx A A^{T}
$$

woking with B is good enough for many tasks

- Efficiently maintain matrix B with only $\ell=2 / \epsilon$ such that

$$
\left\|A A^{T}-B B^{T}\right\|_{2} \leq \epsilon\|A\|_{f}^{2}
$$

Frequent items

- obtain the frequency $f(i)$ of each item in a stream of items

Frequent items

- With d counters it's easy but not good enough

Frequent Items

- Lets keep less than a fixed number of counters

Frequent items

- If an item has a counter we add 1 to that counter

Frequent items

- Otherwise, we create a new counter for it and set it to 1

Frequent items

- But now we do not have less than ℓ counters

Frequent items

- Let δ be the median counter value at time t

Frequent items

- Decrease all counters by δ (or set to zero if less than δ)

Frequent items

- And continue....

Frequent items

- The approximated counts are f'

Frequent items

- We increase the count by only 1 for each item appearance

$$
f^{\prime}(i) \leq f(i)
$$

- Because we decrease each counter by at most δ_{t} at time t

$$
f^{\prime}(i) \geq f(i)-\sum_{t} \delta_{t}
$$

- Calculating the total approximated frequencies:

$$
\begin{gathered}
0 \leq \sum_{i} f^{\prime}(i) \leq \sum_{t}\left(1-(\ell / 2) \delta_{t}\right)=n-(\ell / 2) \sum_{t} \delta_{t} \\
\sum_{t} \delta_{t} \leq 2 n / \ell
\end{gathered}
$$

- Setting $\ell=2 / \epsilon$

$$
\left|f(i)-f^{\prime}(i)\right| \leq \epsilon n
$$

Frequent directions

- We keep a sketch of at most ℓ columns

Frequent directions

- Maintain the invariant that some of the columns are empty (zero-valued)

Frequent directions

- Input vectors are simply stored in empty columns

Frequent directions

- Input vectors are simply stored in empty columns

Frequent directions

- When the sketch is ``full" we need to zero out some columns

Frequent directions

- Using SVD we compute $B=U S V^{T}$ and set $B_{n e w}=U S$

Frequent directions

- Note that $B B^{T}=B_{\text {new }} B_{\text {new }}^{T}$ so we don't '`lose" anything

Frequent directions

- The columns of B are now orthogonal and in decreasing magnitude order

Frequent directions

- Let $\delta=\left\|B_{\ell / 2}\right\|^{2}$

Frequent directions

- Reduce column $\ell_{2}^{2}-$ norms by δ (or nullify if less)

Frequent directions

- Start aggregating columns again

Frequent directions

Input: $\ell, A \in \mathbb{R}^{d \times n}$
$B \leftarrow$ all zeros matrix $\in \mathbb{R}^{d \times \ell}$
for $i \in[n]$ do
Insert A_{i} into a zero valued column of B
if B has no zero valued colums then
$[U, \Sigma, V] \leftarrow S V D(B)$
$\delta \leftarrow \sigma_{\ell / 2}^{2}$
$\check{\Sigma} \leftarrow \sqrt{\max \left(\Sigma^{2}-I_{\ell} \delta, 0\right)}$
$B \leftarrow U \check{\Sigma} \quad$ \# At least half the columns of B are zero.
Return: B

Frequent directions: proof

- Step 1:

$$
\left\|A A^{T}-B B^{T}\right\| \leq \sum_{t=1}^{n} \delta_{t}
$$

- Step 2:

$$
\sum_{t=1}^{n} \delta_{t} \leq 2\|A\|_{f}^{2} / \ell
$$

- Setting $\ell=2 / \epsilon$ yields

$$
\left\|A A^{T}-B B^{T}\right\| \leq \epsilon\|A\|_{f}^{2}
$$

Error as a function of ℓ

