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Online-Review Portals

User-generated content

Help customers make informed decisions



The Ecosystem of Review-
Management Systems

Users-Customers:
– Read reviews to form opinions

Users-Reviewers:
– Write reviews to express opinions

Users-Merchants
– Receive reviews about their products and 

services



Problems

Customers
Information Overload

Reviewers
Motivation and Utilization

Merchants
Merchant Feedback
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Information Overload

405 Reviews
2,018 Reviews

28,816 Reviews



Review Helpfulness

8



Rank by helpfulness

Democratic
– Users vote for ranking 

Biased
– Early reviews
– Mainstream reviews
– Lacking aspect and viewpoint coverage





Talk outline

Information Overload -- Coverage
Motivation > Model > Algorithms > Results

Information Overload – Summarization
Motivation > Model >  Algorithms > Results

Conclusions



Our goal

Select a small (size k) set of comprehensive 
reviews of 

High quality 

High attribute coverage

High viewpoint coverage
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Our goal

Select a small (size k) set of comprehensive 
reviews of 

High quality 

High attribute coverage

High viewpoint coverage



General Coverage Problem

How good is a subset of reviews S?

For attribute a:
 c(S,a) quantifies how well S covers a

Coverage Function: 



General Coverage Problem

Given a collection of reviews select a set of k 
reviews S such that F(S) is maximized

Need to define function c(S,a)



Unit Coverage Problem

cu(S,a)=1 if S covers a

Given a collection of reviews select a set of k 
reviews S such that UCOV(S) is maximized



Unit Coverage
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Quality Coverage Problem

cq(S,a):max quality among reviews in S that cover a

Given a collection of reviews select a set of k reviews 
S such that QCOV(S) is maximized



Quality Coverage
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Our goal

Select a small (size k) set of comprehensive 
reviews of 

High quality 

High attribute coverage

High viewpoint coverage



Group Coverage
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Group Coverage Problem

cg(S,a)=min{c(S+,a),c(S-,a)}

Given a collection of reviews select a set of k 
reviews S such that GCOV(S) is maximized



Group Unit Coverage Problem

cgu(S,a)=min{cu(S+,a),cu(S-,a)}

Given a collection of reviews select a set of k 
reviews S such that GUCOV(S) is maximized



Group Unit Coverage
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Group Quality Coverage Problem

cgq(S,a)=min{cq(S+,a),cq(S-,a)}

Given a collection of reviews select a set of k 
reviews S such that GQCOV(S) is maximized
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Soft Quality Coverage Problem

csq(S,a)=cq(S+,a) + cq(S-,a)

Given a collection of reviews select a set of k 
reviews S such that SQCOV(S) is maximized
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Analysis

All versions of the General Coverage problem are 
NP-hard 

The UCOV, QCOV, SQCOV functions are 
submodular

A simple Greedy algorithm is an (1-1/e) 
approximation to the optimal



The Greedy algorithm

S = Ø
While |S|<k

 for each review r compute

 
 
 gain(r ) = F(S U {r})-F(S)

 r* = argmaxr gain(r) 

 S = S U {r*}



Group Coverage

Greedy algorithm does not work
An attribute cannot be covered with one review

Bad News: The GUCOV, GQCOV functions are 
not submodular

GreedyPairs: Greedy algorithm on pairs of reviews



The GreedyPairs algorithm

Compute the set P of all pairs of reviews from 
positive and negative groups

S = Ø
While |S|<k

 for each pair p compute

 
 
 gain(p) = F(S U {p})-F(S)

 
 
 cost(p) = reviews in p not in S

 p* = argmaxp gain(p)/cost(p) 

 S = S U {p*}
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Data: Bing reviews for Cameras, MP3 Players, Cell Phones

Attributes: Aspect rater tool of Bing

Quality: Helpfulness votes of the corresponding site

Viewpoints: Positive if rating 4 or 5, Negative otherwise

Algorithms: Greedy for UCOV, QCOV, GQCOV, SQCOV

Baselines: Top-Quality, Top-Length

k=5

Dataset



Quantitative Analysis



Null-hypothesis ratio: fraction of items for which the results of the 
algorithm on the measure are close to random (empirical p-value 
> 0.05 over 1000 random samples)
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UCOV QCOV GQCOV SQCOV Quality
Greedy-UCOV 0.98% 3.43% 70.49% 9.02% 88.24%
Greedy-QCov 6.37% 0.49% 77.87% 11.48% 40.20%
Greedy-GQCOV 61.27% 54.90% 0.00% 50.82% 60.78%

Greedy-SQCov 17.65% 3.43% 9.84% 0.00% 53.43%
Top-Quality 83.33% 51.96% 86.89% 59.02% 1.47%
Top-Length 48.53% 34.80% 61.48% 35.25% 67.65%
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Coverage-based review selection

Holistic
– Provides all aspects of users’ opinions

Not statistical
– Ratio of positive and negative reviews (per 

attribute) is lost 

Need for Statistical Summaries 



Statistical Summaries



Statistical Summaries

Accurate statistics
– Estimate of the representation of every opinion in 

the reviewers population

Not narrative
– Users like to read the narrative of reviews

Statistical Review Selection
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The Model
Item attributes
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Opinion Vectors



Our goal

Select a small (size k) set of reviews that 
approximate the opinion vector as well as 

possible 



Statistical Selection

How good is a subset of reviews S given original 
review collection R?

For opinionated attribute a:
 sc(S,a) quantifies whether S and R  cover a similarly

Statistical Coverage Function: 



Statistical Selection Problem

Given a collection of reviews R select a set of k 
reviews S such that F(S) is minimized

Where: sc(S,a) = (mean(R,a)-mean(S,a))2

sc(S,a) = (target-vector(a)-mean(S,a))2
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Analysis

The Statistical Selection problem is NP-hard to 
approximate for arbitrary target vectors

Several heuristic algorithms:  Greedy, Random, 
Integer-Regression   



The Integer-Regression algorithm

For i=1…ℓ

1. [Regression step:] Form a nonnegative real-valued vector x: F(Rx) is 
small, and the number of nonzero elements of x is not larger than ℓ

    

      Rx ~ target-vector 

2. [Integer-transformation step:] Form a nonnegative integer-valued 
vector s representing k reviews that together approximate x in 
distribution:  

   

   

 is minimized.

L1

✓
s

||s||1
� x

||x||1

◆
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Data: Amazon reviews for Cameras, MP3 Players, Coffee 
Makers, Printers, Books, Vacuum Cleaners

Attributes: Extracted automatically using attribute extractor

Viewpoints: Extracted automatically using attribute extractor

Baselines: Helpfulness, GCoverage

k=5

Dataset



User Study



Abundance of Algorithmic Problems

Customers
Information Overload

Discovery of hidden gems

Reviewers
Motivation and Utilization

Merchants
Merchant Feedback


