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Are randomly grown graphs really random?
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We analyze a minimal model of a growing network. At each time step, a new vertex is added;
then, with probability δ, two vertices are chosen uniformly at random and joined by an undirected
edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays
surprisingly rich characteristics. In particular, a giant component emerges in an infinite–order
phase transition at δ = 1/8. At the transition, the average component size jumps discontinuously
but remains finite. In contrast, a static random graph with the same degree distribution exhibits
a second–order phase transition at δ = 1/4, and the average component size diverges there. These
dramatic differences between grown and static random graphs stem from a positive correlation
between the degrees of connected vertices in the grown graph—older vertices tend to have higher
degree, and to link with other high–degree vertices, merely by virtue of their age. We conclude that
grown graphs, however randomly they are constructed, are fundamentally different from their static
random graph counterparts.

I. INTRODUCTION

Many networks grow over time. New pages and links
are added to the World Wide Web every day, while net-
works like the power grid, the Internet backbone, and
social networks change on slower time-scales. Even natu-
rally occurring networks such as food webs and biochem-
ical networks evolve.

In the last few years, physicists, mathematicians, and
computer scientists have begun to explore the structural
implications of network growth, using techniques from
statistical mechanics, graph theory, and computer sim-
ulation [1–12]. Much of this research has been stimu-
lated by recent discoveries about the structure of the
World Wide Web, metabolic networks, collaboration net-
works, the Internet, food webs, and other complex net-
works [4,13–18].

Among the many properties of these networks that
have been studied, one that has assumed particular im-
portance is the degree distribution. The degree of a ver-
tex in a network is the number of other vertices to which
it is connected. Many real-world networks are found to
have highly skewed degree distributions, such that most
vertices have only a small number of connections to oth-
ers, but there are a few, like Yahoo and CNN in the
Web, or ATP and carbon dioxide in biochemical reac-
tion networks, which are very highly connected. If we
define pk to be the probability that a randomly cho-
sen vertex has k neighbors, it turns out that pk often
has either a power-law tail as a function of k (indicat-
ing that there is no characteristic scale for the degree),
or a power-law tail truncated by an exponential cut-
off [4,13–17,19]. These distributions are quite different
from the single-scale Poisson distribution seen in tradi-
tional random graph models of networks [20,21].

One theoretical challenge has been to explain the ori-

gin of these observed degree distributions. Barabási and
co-workers [1,2] have emphasized the key role played by
network growth. They showed that a power-law degree
distribution emerges naturally from a stochastic growth
process in which new vertices link to existing ones with a
probability proportional to the degree of the target ver-
tex. More refined variants of this preferential attachment
process allow for aging of vertices, rewiring of edges,
and nonlinear attachment probability, with power laws
or truncated power laws emerging for a wide range of
assumptions [5–10]. Kumar et al. [11] have concurrently
proposed a model in which a local copying process for
edges leads to a type of preferential attachment phe-
nomenon as well.

As in these studies, we consider the role of system
growth on network structure. However, our purpose is
somewhat different. Rather than seeking to explain an
observed feature of real-world networks, such as the de-
gree distribution, we focus on a minimal model of net-
work growth and compare its properties to those of the
familiar random graph. We do not claim that our model
is an accurate reflection of any particular real-world sys-
tem, but we find that studying a model that exhibits
network growth in the absence of other complicating fea-
tures leads to several useful insights. In addition, the
model turns out to have some interesting mathematical
properties, as we will show.

Among other things, we solve for the distribution of the
sizes of components (connected sets of vertices), a distri-
bution that has not been studied in previous growth mod-
els, largely because most of them produce only one huge,
connected component. We find that the model exhibits
a phase transition at which a giant component forms—a
component whose size scales linearly with system size.
In this respect our networks resemble traditional random
graphs [20,21], but they differ from random graphs in
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many other ways. For example, the mean component
size is different both quantitatively and also qualitatively,
having no divergence at the phase transition. The posi-
tion of the phase transition is different as well, and the
transition itself appears to be infinite order rather than
second order. There are thus a number of features, both
local and global, by which the grown graph can be dis-
tinguished from a static one.

In a certain sense, therefore, it seems that a randomly
grown network is not really random.

II. THE MODEL

Our model is very simple. At each time step, a new
vertex is added. Then, with probability δ, two vertices
are chosen uniformly at random and joined by an undi-
rected edge. Our goal is to understand the statistical
properties of the network in the limit of large time t.

This model differs from preferential attachment mod-
els in two important ways. First, new edges are intro-
duced between randomly chosen pairs of vertices, with
no preference given to high degree vertices. Second, new
vertices do not necessarily attach to a pre-existing vertex
when they enter the network. In other words, there is
no guarantee that a new vertex will have an edge em-
anating from it. As a result the graphs generated by
our model usually contain isolated vertices, along with
components of various sizes, whereas the preferential at-
tachment models typically generate graphs in which all
vertices are connected in a single component.

III. DEGREE DISTRIBUTION

We begin by calculating the distribution of vertex de-
grees in our model. For concreteness, we choose an initial
condition for the graph in which there is a single isolated
vertex and no edges, although the asymptotic behavior
at long times does not depend on this initial condition.

At time t there will be t vertices and on average δt
edges. Let dk(t) be the expected number of vertices with
degree k at time t. The number of isolated vertices, d0(t),
will increase by one at each time step, but decrease on
average by 2δd0(t)/t, the probability that a degree zero
vertex is randomly chosen as one of the ends of a new
edge. Thus

d0(t + 1) = d0(t) + 1 − 2δ
d0(t)

t
. (1)

Similarly, the expected number of degree k vertices (k >
0) will increase on average by an amount proportional to
the probability that a degree k − 1 vertex is chosen for
attachment by a new edge, and decrease by an amount
proportional to the probability that a degree k vertex is
chosen. This gives
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FIG. 1. Giant component size S in the randomly grown
graph, as a function of δ. Here S is defined as the number
of vertices in the largest component, divided by the system
size t. Results are obtained by simulating the growing graph
for 1.6 × 107 time steps, with the number of edges assigned
by a Bernoulli distribution of mean δ, i.e., one edge is intro-
duced per time step with probability δ; otherwise no edges are
introduced. Component sizes were calculated by depth-first
search. The results shown are an average over 25 repetitions
of the calculation.

dk(t + 1) = dk(t) + 2δ
dk−1(t)

t
− 2δ

dk(t)

t
. (2)

Note that these equations neglect the possibility that an
edge links a vertex to itself. This means the equations
are only approximate at short times, but they become
exact in the limit t → ∞ because the probability that
any vertex is chosen twice decreases like t−2.

For large t, numerical simulations show that solutions
of these equations grow linearly in time: dk(t) ∼ pkt.
Seeking solutions of this form, we find that p0 = 1/(1 +
2δ), and pk = (2δ/(1 + 2δ))kp0 for k > 0. Thus, in gen-
eral, the probability of a randomly chosen vertex having
degree k is

pk =
(2δ)k

(1 + 2δ)k+1
. (3)

In other words, the randomly grown network has an
exponential degree distribution. This result will become
important shortly.

IV. CRITICAL BEHAVIOR

In this section we establish that the grown graph dis-
plays a phase transition for finite δ at which a giant com-
ponent forms, and study the critical behavior of the sys-
tem in the vicinity of this transition.
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A. Size of the giant component

Fig. 1 shows the average size S of the largest com-
ponent in simulations of our model for a range of val-
ues of the parameter δ, as a fraction of the total system
size. From the figure, it appears that a giant component
forms somewhere between δ = 0.1 and δ = 0.2, although
no discontinuity is apparent in S(δ) or in its derivative.
The smoothness of this transition sets the growing graph
apart from random graphs, for which there is known to
be a discontinuity in the first derivative of the giant com-
ponent size at the transition.

To address the difference between static and growing
graphs analytically, let Nk(t) be the expected number of
components of size k. At each time step, one isolated
vertex (i.e., a component of size one) is added to the
graph. At the same time, 2δN1(t)/t vertices will on av-
erage be chosen for attachment and thereby leave the set
of isolated vertices. Thus N1(t) obeys

N1(t + 1) = N1(t) + 1 − 2δ
N1(t)

t
. (4)

Components of size k > 1 are gained when vertices
belonging to separate components whose size sums to k
are connected by a new edge. Components of size k > 1
are lost when a vertex within a k-sized component is
chosen for attachment. Thus the number of components
of size k > 1 satisfies

Nk(t + 1) = Nk(t) + δ

k−1
∑

j=1

jNj(t)

t

(k − j)Nk−j(t)

t

− 2δ
kNk(t)

t
. (5)

As with Eqs. (1) and (2) for the degree distribution,
these equations are approximate for small system sizes
because we have neglected the possibility that both ends
of an edge fall within the same component. This prob-
ability tends to zero as system size becomes large, and
hence the equations become exact in the limit t → ∞.
Equivalently, there is a negligible probability of closed
loops within any component of fixed size k, as t → ∞.
Of course, there can be closed loops in the giant com-
ponent, if one exists. Thus, Eqs. (4) and (5) hold only
for the finite components in the graph, a fact which we
exploit below.

Seeking solutions to Eqs. (4) and (5) of the form
Nk(t) = akt, where ak is the steady-state solution of
the component size distribution, we find that

a1 =
1

1 + 2δ
(6)

ak =
δ

1 + 2kδ

k−1
∑

j=1

j(k − j)ajak−j . (7)

For any given k, the coefficient ak can be calculated from
these equations by explicit iteration. We however will

take a different approach here and derive closed-form re-
sults by defining a generating function g(x) for the dis-
tribution of component sizes:

g(x) =
∞
∑

k=1

bkxk, (8)

where

bk = kak. (9)

The coefficient bk has a simple interpretation: it is the
probability that a randomly chosen vertex belongs to a
finite component containing exactly k vertices.

If we multiply both sides of Eqs. (6) and (7) by kxk

and sum over k, we find that g(x) satisfies the differential
equation

g = −2δxg′ + 2δxgg′ + x, (10)

where g′ = dg/dx. Rearranging for g′ then yields

g′ =
1

2δ

[

1 − g/x

1 − g

]

. (11)

The generating function g(x) provides a convenient
way to determine the size S of the giant component. We
observe that g(1) =

∑∞
k=1 bk, and hence that g(1) is the

probability that a randomly chosen vertex will belong
to some component of finite size (since, as we mentioned
above, the quantities Nk and hence also bk represent only
the finite-sized components). When no giant component
exists, this probability is exactly 1, but if there is a gi-
ant component, then g(1) < 1 and the size of the giant
component is

S = 1 − g(1). (12)

In the absence of an analytic solution for Eq. (11) we
evaluate S numerically by integrating (11) using the ini-
tial condition (x, g(x)) = (x0, x0/(1 + 2δ)) for small x0.
(We find that x0 = 10−6 gives sufficient accuracy.) The
resulting value of S is shown as a solid line in Fig. 2, and
is in good agreement with the data from the direct sim-
ulations of the model (circles), suggesting, among other
things, that it was a reasonable approximation to neglect
closed loops in finite-sized components, as we claimed
above.

B. Comparison with a static random graph

We now compare our results for the grown network
with the properties of an ordinary static random graph,
in which edges are added to a pre-existing complete set
of vertices and no new vertices are ever added. The stan-
dard example of such a static graph is the so-called Gn,p

model of Erdős and Rényi [20]. This model however does

3



0.0 0.2 0.4 0.6 0.8 1.0
edges per vertex, δ

0.1

0.2

0.3

0.4

0.5

0.6
gi

an
t c

om
po

ne
nt

 s
iz

e

FIG. 2. Size S of the largest component for the randomly
grown network (circles), and for a static random graph with
same degree distribution (squares). Points are results from
numerical simulations and the solid lines are theoretical re-
sults from Eq. (12) and Ref. [24]. The grown graph was sim-
ulated for 1.6×107 time steps, starting from a single site.

not provide an ideal benchmark, since the degree distri-
bution for Gn,p is Poisson whereas the distribution for
our networks is exponential, as we showed in Section III.
Fortunately, it is possible to construct a random graph
that has an exponential degree distribution (or any other
distribution we desire) using the construction given by
Molloy and Reed [22,23], which works as follows.

1. Create a set of N vertices, indexed by i =
1, 2, . . .N , whose degree ki is assigned from the dis-
tribution of interest.

2. Form a list L that contains ki distinct copies of each
vertex i.

3. Choose a random matching of pairs of elements of
L to create an edge list.

As with the model of Erdős and Rényi, this model
exhibits a distribution of component sizes and a phase
transition at which a giant component of size O(N) ap-
pears [22,24]. In Fig. 2 (squares) we show numerical re-
sults for the size of this giant component for a static ran-
dom graph with degree distribution identical to that of
our grown graph, i.e., conforming to Eq. (3). The size of
the giant component can also be calculated exactly in the
limit of large graph size using results due to Molloy and
Reed [23], or equivalently using the generating function
formalism of Newman et al. [24]. The result is

Sstatic =

{

0, δ ≤ 1
4

1 − 1/(δ +
√

δ2 + 2δ), δ > 1
4 ,

(13)

which is shown as a solid line in Fig. 2.
Figure 2 shows that there is a marked discrepancy be-

tween the size of the giant component in the static and

grown cases. In the following sections we show analyti-
cally that this is indeed the case by locating critical values
of δ at which the giant components form.

C. Average component size and position of the

phase transition

For the static graph with the same exponential degree
distribution as our grown graph, Eq. (13) shows that the
size Sstatic of the giant component tends to zero contin-
uously and vanishes at δc = 1

4 . For the grown model,
we do not have an analogous closed-form result for S(δ).
However, we can still find the value of δc by considering
the average size 〈s〉 of the finite components, which is
given in terms of the generating function g(x) by

〈s〉 =
g′(1)

g(1)
. (14)

To locate the transition, we examine the behavior of
g′(1), using Eq. (11).

For values of δ where the giant component exists, we
have g(1) 6= 1 and, setting x = 1 in Eq. (11), we find that

g′(1) =
1

2δ
, when g(1) 6= 1. (15)

This equation holds for all δ > δc, where δc still remains
to be determined. Conversely, if δ < δc, the giant compo-
nent does not exist and g(1) = 1, in which case both the
numerator and denominator of Eq. (11) approach zero
as x → 1. Applying L’Hopital’s rule we then derive a
quadratic equation for g′(1), whose solution is

g′(1) =
1 ±

√
1 − 8δ

4δ
, when g(1) = 1. (16)

This solution is only valid for 0 ≤ δ ≤ 1
8 .

Thus for all δ > 1
8 we have only a single solution (15)

for g′(1), which necessarily means that a giant compo-
nent exists. For δ ≤ 1

8 , we have three solutions, one of
which (15) implies the existence of a giant component
while the other two (16) do not. Thus the phase transi-
tion, if there is one, must occur at δc ≤ 1

8 .
If we make the further observation that in the limit

δ → 0 all components have size 1, it is clear that the
correct solution for g′(1) in this limit is Eq. (16) with
the negative sign. In the absence of any non-analytic
behavior in the solution of Eq. (11) other than at δ = 1

8 ,
we then conclude that in fact this branch is the correct
solution for all 0 ≤ δ ≤ 1

8 , and hence that

δc = 1
8 . (17)

This is clearly different from the δc = 1
4 of the static

model, and agrees qualitatively with what we observe in
Fig. 2.

In summary,
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FIG. 3. Discontinuous behavior of g′(1) for the growing
graph. The solid line is the theoretical prediction from
Eq. (18) and the open circles are data from simulations of
the growing network for 1.6×107 time steps (averaged over
many runs).

g′(1) =

{

(1 −
√

1 − 8δ)/4δ, δ ≤ 1
8

1/2δ, δ > 1
8 ,

(18)

which implies that g′(1) jumps discontinuously from 2
to 4 as δ passes through δ = 1

8 and hence that the av-
erage component size 〈s〉 also jumps from 2 to 4 at the
transition.

In Fig. 3 we compare our analytic results for g′(1) with
direct simulations of the model. The predicted disconti-
nuity is clearly visible, although, as is typical with simu-
lations near critical points, the numerical errors are large
in the region of the transition.

D. Infinite-order transition

The phase transitions of grown and static random net-
works differ in more than just their location. The random
graph undergoes a second-order phase transition (Sstatic

is continuous but its first derivative with respect to δ is
discontinuous at δ = 1

4 ), whereas the transition for the
growing graph is of at least third order (S and its first
derivative appear continuous at δ = 1

8 from inspection of
Fig. 1).

To investigate the order of the transition in our model,
we numerically integrated Eq. (11) near δ = 1

8 . The
log-log plot in Fig. 4a suggests that the size of the giant
component approaches zero faster than a power law as
δ approaches δc. In Fig. 4b, we take an additional log-
arithm and plot log(− log(S)) against log(δ − δc). The
resulting points now appear to fall on a straight line as
we approach the transition, indicating that the size of
the giant component is well approximated by a function
of the form

S(δ) ∼ eα(δ−δc)
−β

as δ → δc, (19)

−10 −8 −6 −4 −2 0
ln(δ−δc)

−2

0

2

4

6

ln
(−

ln
(S

))

0.0001 0.001 0.01 0.1 1
δ−δc

10
−40

10
−30

10
−20

10
−10

10
0

S
(δ

)

a

b

FIG. 4. Giant component size S(δ) near the phase transi-
tion, from numerical integration of Eq. (11). The straight-line

form implies that S(δ) ∼ eα(δ−δc)−β

. A least-squares fit (solid
line) gives β = 0.499±0.001, and we conjecture that the exact
result is β = 1

2
.

where the straight line in the figure implies that the lead-
ing constant is unity. The form of Eq. (19) suggests that
the phase transition is in fact of infinite order, since all
derivatives vanish at δc. If true, this would be an inter-
esting result. Most known phase transitions of infinite or-
der are of the Kosterlitz–Thouless type [25–27], i.e., they
arise in models that can be mapped to a two-dimensional
Coulomb gas, such as the two-dimensional classical XY
model or the nonlinear σ-model. Because there is no
obvious mapping from our system to a two-dimensional
one, it seems likely that the transition here is produced
by another mechanism.

A least-squares fit to the data in Fig. 4 gives α =
−1.132 ± 0.008 and β = 0.499 ± 0.001. We conjecture
that in fact β is exactly equal to 1

2 , and hence that the

appropriate asymptotic form for S is S(δ) ∼ eα/
√

δ−δc .

V. DEGREE CORRELATIONS

The results of the previous sections indicate that the
behavior of grown random graphs is distinctly different
from that of static random graphs. Why should this be?
What is it about a grown graph that makes the giant
component form at a lower density of edges than in the
corresponding static graph? The crucial difference seems
to be that in the grown graph some vertices are older than
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others, having been added to the graph earlier, whereas
in the static graph, all vertices are added at the same
time. The older vertices in the grown graph have a higher
probability of being connected to one another, since they
co-existed earlier, and hence had the opportunity of de-
veloping connections at a time when the graph was rela-
tively small. Thus the graph has a “core” of old vertices
in which there is a higher than average density of edges.
Because of this core, the giant component forms more
readily than in a graph whose edges are uniformly dis-
tributed. On the other hand, as δ increases, the size of
the giant component in the growing graph increases more
slowly than in the static graph, since low-degree vertices
remain connected only to one another, rather than join-
ing the giant component.

To demonstrate the effect of the differing ages of ver-
tices, we now examine correlations between the degrees of
connected vertices in the growing graph. Since older ver-
tices tend also to be vertices of higher degree, we can test
our hypothesis about the existence of a core by determin-
ing whether vertices of high degree tend to be connected
to one another more often than one would expect in a
static random graph.

We define Ekl(t) to be the number of edges with a ver-
tex of degree k at one end and a vertex of degree l at
the other, at time t. This is the discrete-time version of
a quantity recently introduced by Krapivsky et al. [9] in
the study of preferential attachment models. There are
three possible processes that increase the value of Ekl as
our network grows: (1) a vertex of degree k − 1, already
connected to a vertex of degree l, is chosen for attachment
to third vertex of any degree; (2) the same process with
k and l reversed; (3) two vertices with degrees k − 1 and
l − 1 vertices are chosen for connection to one another.
Similarly there are two possible processes that decrease
Ekl: (1) a vertex of degree k that is attached to a vertex
of degree l gains an additional edge; (2) the same process
with k and l reversed. As in the derivation of the compo-
nent size distribution, we are interested in the behavior
of the graph only in the large system size limit, and thus
we can safely neglect higher-order processes such as an
edge connecting two previously connected vertices.

Given the processes described above, the difference
equations governing the time evolution of Ekl are:

Ekl(t + 1) = Ekl(t)

+2δ

(

pk−1
Ek−1,l(t)

dk−1(t)
+ pl−1

Ek,l−1(t)

dl−1(t)

)

+2δpk−1pl−1

−2δ

(

pk
Ekl(t)

dk(t)
+ pl

Ekl(t)

dl(t)

)

(20)

where the second and third lines correspond to the three
processes above by which Ekl is increased, and the fourth
to the processes by which it is decreased. As before, pk is
the probability that a randomly chosen vertex has degree
k, and dk is the expected number of degree-k vertices.

0.0 0.2 0.4 0.6 0.8 1.0
edges per vertex, δ
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0.4

ρ

FIG. 5. The correlation coefficient for the degrees of con-
nected vertices in a randomly grown graph. The solid line is
the analytic result, Eq. (26), and the open circles are numeri-
cal results from simulations of the growth model for 106 time
steps, averaged over 25 realizations for each value of δ.

Note that Ekl(t) satisfies
∑

kl Ekl(t) = 2δt, which
suggests that the large-t solution will have the form
Ekl(t) = 2δtek,l, where ekl is asymptotically indepen-
dent of time. Making this substitution and solving for
ekl yields

ekl =
2δ

1 + 4δ
(ek−1,l + ek,l−1) +

pk−1pl−1

1 + 4δ
. (21)

To quantify the tendency for edges to connect vertices
of like degree, we compute the degree correlation coeffi-
cient:

ρ =
c

σ2
. (22)

where

σ2 =

∑

k(k − µ)2kpk
∑

l lpl
(23)

is the variance of the distribution of vertex degree at
either end of a randomly chosen edge, and

c =
∑

kl

(k − µ)(l − µ)ekl (24)

is the covariance between vertex degrees at both ends. In
these expressions

µ =

∑

k k2pk
∑

k kpk
(25)

is the average degree of a vertex at the end of a randomly
chosen edge.

Substituting Eqs. (3), (21) and (23–25) into Eq. (22),
we find
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ρ =

∑

kl[k − (1 + 4δ)][l − (1 + 4δ)]ekl

4δ(1 + 2δ)
. (26)

In Fig 5 (solid line) we show this value for ρ as a func-
tion of δ, where the values of the quantities ekl are de-
rived from numerical iteration of Eq. (21). On the same
figure we show results for the same quantity from direct
simulations of the growth model (circles), and the two
calculations are clearly in good agreement.

The analogous correlation coefficient in the static
graph is identically zero—the two ends of any given edge
are placed independently of one another. So the positive
value of ρ in the grown graph indicates that high-degree
vertices attach to other high-degree vertices more often
than they would in a static random graph with the same
degree distribution, and suggests that our supposition
about the observed differences between grown and static
graphs was in fact correct.

VI. CONCLUSIONS

We have introduced and analyzed a model of a grow-
ing network. The model is simple enough that many of
its properties are exactly solvable, yet it shows a number
of non-trivial behaviors. The model demonstrates that
even in the absence of preferential attachment, the fact
that a network is grown, rather than created as a com-
plete entity, leaves an easily identifiable signature in the
network topology.

The size of the giant component in a graph has been
likened to the strongly connected component of the
World Wide Web (another growing network) [4,28–31].
In this context it is interesting to note that it takes only
half as many edges to produce a giant component in the
grown graph than in the corresponding static one. Put
another way, the giant component in the grown graph
is more robust to random edge deletion; twice as many
edges would have to be removed from it to destroy its gi-
ant component. It is possible that a similar process helps
large growing graphs like the Web achieve and maintain
a high level of overall connectivity even for low edge den-
sities.

We have also shown that there is a positive correlation
between the degrees of connected vertices in our model,
or equivalently that highly connected vertices are pref-
erentially connected to one another. Similar correlations
have been observed previously in preferential attachment
models [9]. However, our results can be interpreted in a
new way—in our case the degree correlation appears to
force the early emergence of the giant component, and
thus alters the component size distribution in a graph
that is otherwise random.

A number of interesting questions remain to be an-
swered about the model described here. In particular,
although we have an exact differential equation for the
generating function of component sizes, we have no ex-
act solution for this equation, and hence no closed form

result for the distribution of component sizes. We also
have at present only numerical evidence that the phase
transition is of infinite order. Further work on these and
other questions would help to shed light on the unusual
behavior of this model.
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