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ABSTRACT 
One of the major applications of da ta  mining is in helping 
companies determine which potential  customers to market  
to. If the expected profit from a customer is greater than the 
cost of marketing to her, the marketing action for tha t  cus- 
tomer is executed. So far, work in this area has considered 
only the intrinsic value of the customer (i.e, the expected 
profit from sales to her). We propose to model also the 
customer's network value: the expected profit from sales to 
other customers she may influence to buy, the customers 
those may influence, and so on reeursively. Instead of view- 
ing a market  as a set of independent entities, we view it as a 
social network and model it  as a Markov random field. We 
show the advantages of this approach using a social network 
mined from a collaborative filtering database. Marketing 
tha t  exploits the network value of customers--also known 
as viral marke t ing- -can  be extremely effective, but  is still a 
black art.  Our work can be viewed as a step towards pro- 
viding a more solid foundation for it, taking advantage of 
the availability of large relevant databases. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications-- 
data mining; 1.2.6 [Artificial Intelligence]: Learning-- in-  
duction; 1.5.1 [ P a t t e r n  Recogn i t i on ] :  Models--statistical; 
J.4 [Computer Applications]: Social and Behavioral Sci- 
ences 

General Terms 
Markov random fields, dependency networks, direct market- 
ing, viral marketing, social networks, collaborative filtering 

1. INTRODUCTION 
Direct marketing is one of the major applications of KDD. 

In contrast to mass marketing, where a product  is promoted 
indiscriminately to all potential  customers, direct marketing 
a t tempts  to first select the customers likely to be profitable, 
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and market  only to those [19]. Da ta  mining plays a key role 
in this process, by allowing the construction of models that  
predict a customer's response given her past  buying behavior 
and any available demographic information [29]. When suc- 
cessful, this approach can significantly increase profits [34]. 
One basic l imitat ion of it  is that  it  t reats  each customer 
as making a buying decision independently of all other cus- 
tomers. In reality, a person's decision to buy a product  is 
often strongly influenced by her friends, acquaintances, busi- 
ness partners,  etc. Marketing based on such word-of-mouth 
networks can be much more cost-effective than  the more con- 
ventional variety, because it leverages the customers them- 
selves to carry out most of the promotional  effort. A classic 
example of this is the Hotmail  free email service, which grew 
from zero to 12 million users in 18 months on a minuscule 
advertising budget,  thanks to the inclusion of a promotional 
message with the service's URL in every email sent using 
it [23]. Competi tors using conventional marketing fared far 
less well. This type of marketing, dubbed viral marketing 
because of its similarity to the spread of an epidemic, is now 
used by a growing number of companies, part icularly in the 
Internet sector. More generally, network effects (known in 
the economics l i terature as network externalities) are of crit- 
ical importance in many industries, including notably those 
associated with information goods (e.g., software, media, 
telecommunications, etc.) [38]. A technically inferior prod- 
uct can often prevail in the marketplace if it bet ter  leverages 
the network of users (for example, VHS prevailed over Beta 
in the VCR market).  

Ignoring network effects when deciding which customers 
to market  to can lead to severely suboptimal  decisions. In 
addition to the intrinsic value tha t  derives from the pur- 
chases she will make, a customer effectively has a network 
value that  derives from her influence on other customers. A 
customer whose intrinsic value is lower than the cost of mar- 
keting may in fact be worth marketing to when her network 
value is considered. Conversely, marketing to a profitable 
customer may be redundant  if network effects already make 
her very likely to buy. However, quantifying the network 
value of a customer is at  first sight an extremely difficult un- 
dertaking, and to our knowledge has never been at tempted.  
A customer's network value depends not only on herself, 
but  potentially on the configuration and state of the entire 
network. As a result, marketing in the presence of strong 
network effects is often a hit-and-miss affair. Many s tar tup 
companies invest heavily in customer acquisition, on the ba- 
sis tha t  this is necessary to "seed" the network, only to face 
bankruptcy when the desired network effects fail to materi-  
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alize. On the other hand, some companies (like Hotmail and 
the ICQ instant messenger service) are much more successful 
than expected. A sounder basis for action in network-driven 
markets would thus have the potential to greatly reduce the 
risk of companies operating in them. 

We believe that, for many of these markets, the growth 
of the Internet has led to the availability of a wealth of 
data from which the necessary network information can be 
mined. In this paper we propose a general framework for 
doing this, and for using the results to optimize the choice 
of which customers to market to, as well as estimating what 
customer acquisition cost is justified for each. Our solu- 
tion is based on modeling social networks as Markov ran- 
dom fields, where each customer's probability of buying is a 
function of both the intrinsic desirability of the product for 
the customer and the influence of other customers. We then 
focus on collaborative filtering databases as an instance of a 
data source for mining networks of influence from. We apply 
our framework to the domain of marketing motion pictures, 
using the publicly-available EachMovie database of 2.8 mil- 
lion movie ratings, and demonstrate its advantages" relative 
to traditional direct marketing. The paper concludes with a 
discussion of related work and a summary of contributions 
and future research directions. 

2. MODELING MARKETS AS SOCIAL 
NETWORKS 

Consider a set of n potential customers, and let Xi be a 
Boolean variable that  takes the value i if customer i buys the 
product being marketed, and 0 otherwise. In what follows 
we will often slightly abuse language by taking Xi to "be" 
the ith customer. Let the neighbors of Xi be the customers 
which directly influence Xi: Ni = {Xi,1,... ,Xi,,~i} C_ X - 
{Xi}, where X = {X1, . . .  ,X ,} .  In other words, Xi is in- 
dependent of X - Ni - {Xi} given Ni. Let X k (X ~) be 
the customers whose value (i.e., whether they have bought 
the product) is known (unknown), and let N~' = Ni f3 X ~. 
Assume the product is described by a set of attributes Y = 
{YI,... ,Ym}. Let Mi be a variable representing the mar- 
keting action that  is taken for customer i. For example, Mi 
could be a Boolean variable, with Mi = 1 if the customer is 
offered a given discount, and Mi = 0 otherwise. Alternately, 
Mi could be a continuous variable indicating the size of the 
discount offered, or a nominal variable indicating which of 
several possible actions is taken. Let M = {M1,. . .  ,M,} .  
Then, for all Xi f[X k, 

P(Xi [X k, Y, M) 

= E P(X,, N~' IX k, Y, M) 
C(N~') 

= E P(XdN~'XI"Y'M)P(N'~IXk'Y'M) 
O(N'~) 

= E P(X~IN~'Y'M)P(N~'IXk'Y'M) 
C(N?) 

(i) 

where C(N]')  is the set of all possible configurations of the 
unknown neighbors of Xi (i.e., the set of all possible 2 [N?[ 
assignments of 0 and 1 to them). Following Pelkowitz [33], 
we approximate P(N~'[X k, Y,  M)  by its maximum entropy 
estimate given the marginals P ( X j [ X  k, Y, M),  for Xj E N]'. 

This yields 1 

P(X, IX ~, Y, M)  

= E P(Xi[Ni ,  Y,  M)  r I  P ( X j [ x k , Y , M )  
C(N~ ) x~ CN l' 

(2) 
The set of variables X u, with joint probability conditioned 
on X k, Y and M described by Equation 2, is an instance 
of a Markov random field [2, 25, 7]. Because Equation 2 
expresses the probabilities P(Xi IX k, Y,  M) as a function of 
themselves, it can be applied iteratively to find them, start- 
ing from a suitable initial assignment. This procedure is 
known as relaxation labeling, and is guaranteed to converge 
to locally consistent values as long as the initial assignment 
is sufficiently close to them [33 I. A natural choice for initial- 
ization is to use the network-less probabilities P(XilY, M). 
Notice that  the number of terms in Equation 2 is expo- 
nential in the number of unknown neighbors of )/7/. If this 
number is small (e.g., 5), this should not be a problem; oth- 
erwise, an approximate solution is necessary. A standard 
method for this purpose is Gibbs sampling [16]. An alterna- 
tive based on an efficient k-shortest-path algorithm is pro- 
posed in Chakrabarti et al. [6]. 

Given N~ and Y, Xi should be independent of the mar- 
keting actions for other customers. Assuming a naive Bayes 
model for Xi as a function of Ni, Y1 . . . .  ,Ym and Mi [11], 

P(Xi[Ni, Y,M) 
= P(Xi[Ni,Y, Mi) 

P(Xi)P(Ni, Y, Mi[Xi) 
P(Ni ,  Y,  Mi) 

= P(X')P(Ni[X')P(MdX')p(Ni,Y,M) H P(YkIX,) 
k----1 

?yt 

P(Xi[N,)P(Mi[XI) H P(Yk[X,) (3) 
= P(Y, Mi [Ni) k---1 

where P (Y,  Mi[NI) = P(Y, Mi[Xi = 1)P(Xi = l I N i ) +  
P (Y,  Mi[Xi = O)P(gi = O[Ni). The corresponding net- 
work-less probabilities are P(Xi[Y,  M)  = P(Xi)P(Mi[Xi) 
I'I~'n=l P(Y~[Xi)/P(Y, Mi). Given Equation 3, in order to 
compute Equation 2 we need to know only the following 
probabilities, since all terms reduce to them: P(Xi[Ni) ,  
P(X~), P(MdXD, and P(Y~IX~) for all k. With the excep- 
tion of P(Xi[Ni), all of these are easily obtained in one pass 
through the data by counting (assuming the Yk are discrete 
or have been pre-discretized; otherwise a univariate model 
can be fit for each numeric Yk). The form of P(XI[Ni)  de- 
pends on the mechanism by which customers influence each 
other, and will vary from application to application. In the 
next section we focus on the particular case where X is the 
set of users of a collaborative filtering system. 

For simplicity, assume that  M is a Boolean vector (i.e., 
only one type of marketing action is being considered, such 
as offering the customer a given discount). Let c be the 
cost of marketing to a customer (assumed constant), r0 be 
the revenue from selling the product to the customer if no 
marketing action is performed, and r ,  be the revenue if mar- 
keting is performed, ro and rl will be the same unless the 

1 The same result can be obtained by assuming that  the Xj 
are independent given X k, Y and M. 
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marketing action includes offering a discount. Let f~ (M) be 
the result of setting M~ to 1 and leaving the rest of M un- 
changed, and similarly for f°(M). The expected lift in profit 
from marketing to customer i in isolation (i.e., ignoring her 
effect on other customers) is then [8] 

ELP/(X ~, Y,  M)  = 

r i P ( X / =  1IX k, Y, f :  (M)) 

- r o P ( X i  = l lX k, Y,  f ° (M))  - c (4) 

Let Mo be the null vector (all zeros). The global lift in 
profit that  results from a particular choice M of customers 
to market to is then 

ELP(Xk,Y,M) = 
n 

E riP(X~ = 1IX k, Y, M) 
/-----1 

n 

-ro E P(X/ = llXk, Y, Uo) -IMIc (5) 
i = 1  

where ri = rl if M~ = 1, r~ = ro if M/ = 0, and [M[ is 
the number of l ' s  in M. Our goal is to find the assignment 
of values to M that maximizes ELP. In general, finding the 
optimal M requires trying all possible combinations of as- 
signments to its components. Because this is intractable, we 
propose using one of the following approximate procedures 
instead: 

Single pass  For each i, set M / =  1 if ELP(X k, Y, f~ (M0)) 
> 0, and set M / =  0 otherwise. 

G r e e d y  search  Set M = M0. Loop through the Mi's, set- 
ting each M~ to 1 if ELP(X k, Y, f~ (M)) > ELP(X k, 
Y, M). Continue looping until there are no changes 
in a complete scan of the M/'s. The key difference be- 
tween this method and the previous one is that  here 
later changes to the M/'s are evaluated with earlier 
changes to the Mi's already in place, while in the pre- 
vious method all changes axe evaluated with respect 
to M0. 

Hi l l -c l imbing search  Set M = Mo. Set M/~ = 1, where 
il = argmax/{ELP(X k, Y, f~(M))}. Now set M/2 = 
1, where is = argmaxi{ ELP(X k, Y, f~ (f~l (M)))}. Re- 
peat until there is no i for which setting M/ = 1 in- 
creases ELP. 

Each method is computationally more expensive than the 
previous one, but potentially leads to a better solution for 
M (i.e., produces a higher ELP). 

The intrinsic value of a customer is given by Equation 4. 
The total value of a customer (intrinsic plus network) is the 
ELP obtained by marketing to her: ELP(X k, Y, f~ (M)) - 
ELP(Xk,Y,  f° (M)) .  The customer's network value is the 
difference between her total and intrinsic values. Notice 
that, in general, this value will depend on which other cus- 
tomers are being marketed to, and which others have already 
bought the product. 

Suppose now that M/ is a continuous variable, that  we 
can choose to incur different marketing costs for different 
customers, and that  there is a known relationship between 
c~ and P(X~[M~). In other words, suppose that we can in- 
crease a customer's probability of buying by increasing the 

amount spent in marketing to her, and that  we can estimate 
how much needs to be spent to produce a given increase in 
buying probability. The optimal customer acquisition cost 
for customer i is then the value of c / t h a t  maximizes her to- 
tal value ELP(X k, Y,  f~ (M)) - ELP(X k, Y, f° (M)) ,  with 
IMIc replaced by ~"]~=1 c/ in Equation 5. 

3. M I N I N G  S O C I A L  N E T W O R K S  F R O M  
C O L L A B O R A T I V E  F I L T E R I N G  
D A T A B A S E S  

Arguably, a decade ago it would have been difficult to 
make practical use of a model like Equation 2, because 
of the lack of data to estimate the influence probabilities" 
P(Xi[NI).  Fortunately, the explosion of the Internet has 
drastically changed this. People influence each other online 
(and leave a record of it) through postings and responses to 
newsgroups, review and knowledge-sharing sites like epin- 
ions.corn, chat rooms and IRC, online game playing and 
MUDs, peer-to-peer networks, email, interlinking of Web 
pages, etc. In general, any form of online community is a 
potentially rich source of data for mining social networks 
from. (Of course, mining these sources is subject to the 
usual privacy concerns; but many sources are public infor- 
mation.) In this paper we will concentrate on a particularly 
simple and potentially very effective data source: the col- 
laborative filtering systems widely used by e-commerce sites 
(e.g., amazon.corn) to recommend products to consumers. 

In a collaborative filtering system, users rate a set of items 
(e.g., movies, books, newsgroup postings, Web pages), and 
these ratings are then used to recommend other items the 
user might be interested in. The ratings may be implicit 
(e.g., the user did or did not buy the book) or explicit (e.g., 
the user gives a rating of zero to five stars to the book, 
depending on how much she liked it). Many algorithms have 
been proposed for choosing which items to recommend given 
the incomplete matrix of ratings (see, for example, Breese 
et al. [3]). The most widely used method, and the one that  
we will assume here, is the one proposed in GroupLens, the 
project that  originally introduced quantitative collaborative 
filtering [35]. The basic idea in this method is to predict a 
user's rating of an item as a weighted average of the ratings 
given by similar users, and then recommend items with high 
predicted ratings. The similarity of a pair of users (i , j)  is 
measured using the Pearson correlation coefficient: 

w/~ = EkCP~k - ~)(R,k -- ~ )  (6) 
C E k  (/7~k _ ~.)2 EkCRjk - -~)2 

where Rak is user i 's rating of item k, R~ is the mean of user 
i 's ratings, likewise for j ,  and the summations and means 
are computed over the items k that  both i and j have rated. 
Given an item k that user i has not rated, her rating of it is 
then predicted as 

~ = ~ + p ~_, wj/CRjk - - ~ )  (7) 
X j e N i  

where p = 1/~,X~eNi ]W/j[ is a normalization factor, and 
N/ is the set of n/ users most similar to i according to 
Equation 6 (her neighbors). In the limit, N/ can be the 
entire database of users, but for reasons of noise robustness 
and computational efficiency it is usually much smaller (e.g., 
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ni = 5). For neighbors that  did not rate the item, Rj~ is set 
to Rj. 

The key advantage of a collaborative filtering database 
as a source for mining a social network for viral marketing 
is that  the mechanism by which individuals influence each 
other is known and well understood: it is the collaborative 
filtering algorithm itself. User i influences user j when j 
sees a recommendation that  is partly the result of i 's rating. 
Assuming i and j do not know each other in real life (which, 
given that  they can be anywhere in the world, is likely to 
be true), there is no other way they can substantially in- 
fluence each other. Obviously, a user is subject to many 
influences besides that  of the collaborative filtering system 
(including the influence of people not on the system), but 
the uncertainty caused by those influences is encapsulated 
to a first degree of approximation in P(XilP~'k), the proba- 
bility that  a user will purchase an item given the rating the 
system predicts for her. It is also reasonable to assume that 
an individual would not continue to use a collaborative fil- 
tering system if she did not find its recommendations useful, 
and therefore that  there is a causal connection (rather than 
simply a correlation) between the recommendations received 
and the purchases made. 

To extract a social network model from a collaborative fil- 
tering database, we view an item as a random sample from 
the space (X, Y),  where Y is a set of properties of the item 
(assumed available), and Xi represents whether or not user 
i rated the item. For simplicity, we assume that  if a user 
rates an item then she bought it, and vice-versa; removing 
this assumption would be straightforward, given the relevant 
data. The prior P(Xi) can then be estimated simply as the 
fraction of items rated by user i. The conditional proba- 
bilities P(Y~IXi) can be obtained by counting the number 
of occurrences of each value of Yk (assumed discrete or pre- 
discretized) with each value of Xi. Estimating P(MiIXi ) 
requires a data collection phase in which users to market 
to are selected at random and their responses are recorded 
(both when being marketed to and not). P(MilXi ) can be 
estimated individually for each user, or (requiring far less 
data) as the same for all users, as done in Chickering and 
Heckerman [8]. If the necessary data is not available, we 
propose setting P(MilXi ) using prior knowledge about the 
effectiveness of the type of marketing being considered, given 
any demographic information available about the users. (It 
is also advisable to test the sensitivity of the outcome to 
P(Mi[Xi) by trying a range of values.) 

The set of neighbors Ni for each i is the set of neighbors 
of the corresponding user in the collaborative filtering sys- 
tem. If the ratings are implicit (i.e., yes/no), a model for 
P(Xi[Ni) (e.g., a naive Bayes model, as we have assumed 
for P(YklXi)) can be fit directly to the observed X vectors. 
If explicit ratings axe given (e.g., zero to five stars), then 
we know that  Xi depends on N~ solely through [ti, Xi's 
predicted rating according to Equation 7 (for readability, 
we will omit the item indexes k). In other words, Xi is 
conditionally independent of Ni given/~i. If the neighbors' 
ratings are known,/~, is a deterministic function of Ni given 
by Equation 7, with Xj E Ni determining whether the con- 
tribution of the j t h  neighbor is Rj - Rj or 0 (see discussion 
following Equation 7). If the ratings of some or all neigh- 
bors are unknown (i.e., the ratings that  they would give if 
they were to rate the item), we can estimate them as their 
expected values given the item's attributes. In other words, 

the contribution of a neighbor with unknown rating will be 
E[Rj lY ] --Rj. P(Rj [Y) can be estimated using a naive 
Bayes model (assuming Rj only takes on a small number of 
different values, which is usually the case). Let /~'(Ni) be 
the value of/~. obtained in this way. Then, treating this as 
a deterministic value, 

P(XilNi) = /rt,~a, P(XilP~', Ni) dP(P~'[Ni) 
J R m i  n 

--- P(Xi l /~i (Ni) ,Ni)  = P(Xi[/~i(Ni)) (8) 

All that  remains is to estimate P(Xi[/~').  This can be 
viewed as a univariate regression problem, with /~. as the 
input and P(XiI~') as the output. The most appropriate 
functional form for this regression will depend on the ob- 
served data. In the experiments described below, we used 
a piecewise-linear model for P(Xi[/~'), obtained by dividing 
/~i's range into bins, computing the mean/~, and P(XiI~. ) 
for each bin, and then estimating P(X~[/~.) for an arbitrary 
/~" by interpolating linearly between the two nearest means. 
Given a small number of bins, this approach can fit a wide 
variety of observations relatively well, with little danger of 
over fitting. 

Notice that the technical definition of a Markov random 
field requires that  the neighborhood relation be symmetric 
(i.e., if i is a neighbor of j ,  then j is also a neighbor of i), 
but in a collaborative filtering system this may not be the 
case. The probabilistic model obtained from it in the way 
described will then be an instance of a dependency network, 
a generalization of Markov random fields recently proposed 
by Heckerman et al. [17]. Heckerman et al. show that  Gibbs 
sampling applied to such a network defines a joint distribu- 
tion from which all probabilities of interest can be computed. 
While in our experimental studies Gibbs sampling and re- 
laxation labeling produced very similar results, the formal 
derivation of the properties of dependency networks under 
relaxation labeling is a matter for future research. 

4. EMPIRICAL STUDY 
We have applied the methodology described in the previ- 

ous sections to the problem of marketing motion pictures, 
using the EachMovie collaborative filtering database (www.- 
research, compaq.com/src/eachmovie/). EachMovie contains 
2.8 million ratings of 1628 movies by 72916 users, gath- 
ered between January 29, 1996 and September 15, 1997 by 
the eponymous recommendation site, which was run by the 
DEC (now Compaq) Systems Research Center. EachMovie 
is publicly available, and has become a standard database 
for evaluating collaborative filtering systems (e.g., Breese at 
al. [3]). Motion picture marketing is an interesting applica- 
tion for the techniques we propose because the success of a 
movie is known to be strongly driven by word of mouth [12]. 

EachMovie is composed of three databases: one contain- 
ing the ratings, one containing demographic information 
about the users (which we did not use), and one contain- 
ing information about the movies. The latter includes the 
movie's title, studio, theater and video status (old or cur- 
rent), theater and video release dates, and ten Boolean at- 
tributes describing the movie's genre (action, animation, 
art/foreign, classic, comedy, drama, family, horror, romance, 
and thriller; a movie can have more than one genre). The 
movie's URL in the Internet Movie Database (www.imdb.. 
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corn) is also included. This could be used to augment the 
movie description with a t t r ibutes  extracted from the IMDB; 
we plan to do so in the future. The ratings database contains 
an entry for each movie tha t  each user rated, on a scale of 
zero to five stars, and the t ime and date on which the rating 
was generated. 

The collaborative filtering algorithm used in EachMovie 
has not been published, but  we will assume that  the al- 
gori thm described in the previous section is a reasonable 
approximation to it. This assumption is supported by the 
observation that ,  despite their variety in form, all the many 
collaborative filtering algorithms proposed a t tempt  to cap- 
ture essentially the same information (namely, correlations 
between users). 

The meaning of the variables in the EachMovie domain 
is as follows: Xi is whether person i saw the movie being 
considered. Y contains the movie at tr ibutes.  R~ is the rat- 
ing (zero to five stars) given to the movie by person i. For 
simplicity, throughout this section we assume the /~ i ' s  are 
centered at zero (i.e., R/ has been subtracted from P~; see 
Equation 7). 

4.1 The Model 
We used Y = {Y1,Y2,... ,Ylo}, the ten Boolean movie 

genre at tr ibutes.  Thus P (YIXi )  was in essence a model of 
a user's genre preferences, and during inference two movies 
with the same genre at t r ibutes  were indistinguishable. The 
network consisted of all people who had rated at least ten 
movies, and whose ratings had non-zero s tandard deviation 
(otherwise they contained no useful information). Neigh- 
bor weights Wij were determined using a modified Pear- 
son correlation coefficient, which penalized the correlation 
by 0.05 for each movie less than ten tha t  both X~ and Xj 
had rated. This correction is commonly used in collabo- 
rative filtering systems to avoid concluding that  two users 
are very highly correlated simply because they rated very 
few movies in common, and by chance rated them similarly 
[18]. The neighbors of Xi were the Xj ' s  for which W~i was 
highest. Wi th  n~=5, a number we believe provides a reason- 
able tradeoff between model accuracy and speed, the aver- 
age Wii of neighbors was 0.91. Repeating the experiments 
described below with ni = 10 and ni = 20 produced no sig- 
nificant change in model accuracy, and small improvements 
in profit. Interestingly, the network obtained in each case 
was completely connected (i.e., it  contained no isolated sub- 
graphs). 

As discussed above, the calculation of P(XdX k, Y, M) 
requires estimating P(XdR~), P(Xi ) ,  P(MilXi), P(YkIXi), 
and P(R~[Y). P (Xi )  is simply the fraction of movies Xi 
rated. We used a naive Bayes model for P(R~ [Y). P(Y~[Xi), 
P ( R j  [Y), and P(Xi) were all smoothed using an m-est imate 
[5] with m=l and the population average as the prior. We 
did not know the true values of P(MdXi ). We expected 
marketing to have a larger effect on a customer who was 
already inclined to see the movie, and thus we set the prob- 
abilities P(MdXi) so as to obtain 

P(Xi = llMi = 1) = min{aP(Xi = IlM, = 0), 1} (9) 

where a > 1 is a parameter  tha t  we varied in the experi- 
ments described below. 2 As described in the previous sec- 

2To fully specify P(MiIXd) we used the additional constraint 
tha t  P ( Y ,  Mi = 1) = P ( Y ,  Mi = 0). With  the values of a 
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F i g u r e  1: Empirical distribution of/~" a n d  Xi given 
/~. 

tion, P(XiI~') was modeled using a piecewise linear func- 
tion. We measured P(XiI~') for each of nine bins, whose 
boundaries were -5 .0 ,  -2 .0 ,  -1 .0 ,  -0 .5 ,  -0 .1 ,  0.1, 0.5, 1.0, 
2.0, and 5.0. Note tha t  w h i l e / ~  must  be between 0 and 5, 
/~i is a weighted sum of the  neighbors'  difference from their 
average, and thus may range from - 5  to 5. We also had a 
zero-width bin located a t / ~  = 0. Movies were seen with low 
probabili ty (1-5%), and thus there was a high probabili ty 
that  a movie had not been rated by any of Xi's neighbors. In 
the absence of a rating, a neighbor's contribution to P~ was 
zero. 84% of the samples fell into this zero bin. Bin bound- 
aries were chosen by examination of the distribution of da ta  
in the training set, shown in Figure 1. /~' was unlikely to 
deviate far from 0~ for the reasons given above. We used 
narrow bins n e a r / ~  = 0 to obtain higher accuracy in this 
area, which contained a major i ty  of the da ta  (96.4% of the 
da ta  fell between - 0 . 5  and 0.5). To combat da ta  sparseness, 
both P(XiI~') and the per-bin mean/~ ,  were smoothed for 
each bin using an m-est imate  with m = l  and the population 
average as the prior. 

Initially, we expected P(Xi IRi) to increase monotonically 
with /~.. The actual  shape, shown in Figure 1, shows in- 
creasing P(Xi[~) as Ri moves significantly away from 0 
in either direction. This shape is due to a correlation be- 
tween [/~i[ and the popular i ty  of a movie: for a popular 
movie, /~. is more likely to deviate further from zero and 
Xi is more likely to be 1. Note, however, that  P(Xi[~') 
is indeed monotonically increasing in the [-0.1,0.1] inter- 
val, where the highest density of ratings is. Furthermore, 
E[P(X~I~" > 0)] = 0.203 > 0.176 = E[P(Xil~ < 0)]. 

4.2 The Data 
While the EachMovie database  is large, it has problems 

which had to be overcome. The movies in the database 
which were in theaters before January 1996 were drawn 
from a long t ime period, and so tended to be very well 
known movies. Over 75% (2.2 million) of the ratings were 
on these movies. In general, the later a movie was released, 
the fewer ratings and thus the less information we had for 
it. We divided the database into a training set consisting 
of all ratings received through September 1, 1996, and a 
test set consisting of all movies released between September 
1, 1996 and December 31, 1996, with the ratings received 

we used it was always possible to satisfy Equation 9 and this 
constraint simultaneously. 
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for those movies any t ime between September 1, 1996 and 
the end of the database.  Because there was such a large 
difference in average movie popular i ty  between the early 
movies and the later ones, we further divided the training 
set into two subsets: Sotd, containing movies released before 
January 1996 (1.06 million votes), and Srece~t, containing 
movies released between January and September 1996 (90k 
votes). The average movie viewership of Sold was 5.6%, ver- 
sus 1.4% for Srece~e. Since 92% of the training da ta  was in 
Sotd, we could not afford to ignore it. However, in terms of 
the probabili ty tha t  someone rates a movie, the test period 
could be expected to be much more similar to S,.~ce,~. Thus, 
we trained using all training data,  then rescaled P(Xi) and 
P(XiI~') using S~ce~t, and smoothed these values using 
an m-est imate  with m=l and the distr ibution on the full 
training set as the prior. 

Many movies in the test set had very low probabil i ty (36% 
were viewed by 10 people or less, and 48% were viewed by 
20 people or less, out of over 20748 people3). Since it is not 
possible to model such low probabil i ty events with any reli- 
ability, we removed all movies which were viewed by fewer 
than 1% of the people. This left 737,579 votes over 462 
movies for training, and 3912 votes over 12 movies for test- 
ing. P(Y]X~), P(R/]Y) ,  P(Xi), and P(X~]~.) were learned 
using only these movies. However, because the EachMovie 
collaborative filtering system presumably used all movies, 
we used all movies when simulating it (i.e., when computing 
similarities (Equation 6), selecting neighbors, and predicting 
ratings (Equation 7)). 

A major i ty  of the people in the EachMovie database pro- 
vided ratings once, and never returned. These people af- 
fected the predicted ra t ings/~,  seen by users of EachMovie, 
but  because they never returned to the system for queries, 
their movie viewing choices were not affected by their neigh- 
bors. We call these people inactive. A person was marked as 
inactive if there were more than ~- days between her last rat-  
ing and the end of the  training period. In our tests, we used 
a r of 60, which resulted in 11163 inactive people. Inactive 
people could be marketed to, since they were presumably 
still watching movies; they were just  not reporting ratings 
to EachMovie. If an inactive person was marketed to, she 
was assumed to have no effect on the rest of the network. 

4.3 Inference and Search 
Inference was performed by relaxation labeling, as de- 

scribed in Section 2. This involved iteratively re-estimating 
probabilities until they all converged to within a threshold 7. 
(We used 7 = 10-5.) We maintained a queue of nodes whose 
probabilities needed to be re-estimated, which initially con- 
tained all nodes in the network. Each Xi was removed from 
the queue in turn, and its probabil i ty was re-estimated using 
Equation 2. If P(X~tX ~, Y,  M )  had changed by more than 
% all nodes that  Xi was a neighbor of that  were not already 
in the queue were added to it. Note tha t  the probabilities 
of nodes corresponding to inactive people only needed to be 
computed once, since they are independent of the rest of the 
network. 

The computat ion of Equation 2 can be sped up by noting 
that ,  after factoring, all terms involving the Yk's are con- 
stant  throughout a run, and so these terms and their com- 

3This is the number of people left after we removed anyone 
who rated fewer than ten movies, ra ted movies only after 
September 1996, or gave the same rating to all movies. 

binations only need to be computed once. Further,  since in 
a single search step only one Mi changes, most of the re- 
sults of one step can be reused in the next,  greatly speeding 
up the search process. Wi th  these optimizations, we were 
able to measure the effect of over 10,000 single changes in 
M per second, on a 1 GHz Pent ium III  machine. In pre- 
l iminary experiments,  we found relaxation labeling carried 
out this way to be several orders of magni tude faster than 
Gibbs sampling; we expect tha t  it  would also be much faster 
than the more efficient version of Gibbs sampling proposed 
in Heckerman e t a l .  [17]. 4 The relaxation labeling process 
typically converged quite quickly; few nodes ever required 
more than a few updates.  

4.4 Model Accuracy 
To test the accuracy of our model, we computed the esti- 

mated probabil i ty  P(X~IX k, Y,  M )  for each person Xi with 
M = M0 and X k = $. We measured the correlation between 
this and the actual  value of Xi in the test set, over all movies, 
over all people. 5 (Note that ,  since the comparison is with 
test set values, we did not expect to receive ratings from 
inactive people, and therefore P ( X i l Y )  = 0 for them.) The 
resulting correlation was 0.18. Although smaller than desir- 
able, this correlation is remarkably high considering tha t  the 
only input  to the model was the movie's genre. We expect 
the correlation would increase if a more informative set of 
movie a t t r ibutes  Y were used. 

4.5 Network Values 
For the first movie in the  test set ("Space Jam") ,  we mea- 

sured the network value for all 9585 active people e in the 
following scenario (see Equations 4 and 9): r0 = 1, r l  = 0.5, 
c = 0.1, ~ = 1.5, and M = Mo. Figure 2 shows the 500 
highest network values (out of 9585) in decreasing order. 
The unit  of value in this graph is the average revenue tha t  
would be obtained by market ing to a customer in isolation, 
without costs or discounts. Thus, a network value of 20 for 
a given customer implies tha t  by market ing to her we es- 
sentially get free market ing to an addit ional  20 customers. 
The scale of the graph depends on the marketing scenario 
(e.g., network values increase with ~), but  the shape gen- 
erally remains the same. The figure shows tha t  a few users 
have very high network value. This is the ideal si tuation for 
the type of targeted viral market ing we propose, since we 
can effectively market  to many people while incurring only 
the expense of marketing to those few. A good customer 
to market  to is one who: (1) is likely to give the product  
a high rating, (2) has a strong weight in determining the 
rating prediction for many of her neighbors, (3) has many 
neighbors who are easily influenced by the rat ing prediction 
they receive, (4) will have a high probabil i ty  of purchasing 
the product ,  and thus will be likely to actually submit  a rat- 
ing tha t  will affect her neighbors, and finally (5) has many 
neighbors with the same four characteristics outlined above, 

4In our experiments,  one Gibbs cycle of sampling all the 
nodes in the network took on the order of a fiftieth of a 
second. The to ta l  runtime would be this value multiplied 
by the number of sampling i terat ions desired and by the 
number of search steps. 
5Simply measuring the predictive error rate would not be 
very useful, because a very low error rate  could be obtained 
simply by predicting tha t  no one sees the movie. 
eInactive people always have a network value of zero. 
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Figure 2: Typical  d is tr ibut ion o f  ne twork  values.  

and so on recursively. In the movie domain, these corre- 
spond to finding a person who (1) will enjoy the movie, (2) 
has many close friends, who are (3) easily swayed, (4) will 
very likely see the movie if marketed to, and (5) has friends 
whose friends also have these properties. 

4.6 Marketing Experiments 
We compared three marketing strategies: mass marketing, 

traditional direct marketing, and the network-based market- 
ing method we proposed in Section 2. In mass marketing, 
all customers were marketed to (Mi = 1 for all i). In di- 
rect marketing, a customer Xi was marketed to (Mi = 1) if 
and only if ELPi(Xk,Y,  Mo) > 0 (see Equation 4) ignor- 
ing network effects (i.e., using the network-less probabilities 
P(Xi lY,  M)). For our approach, we compared the three 
approximation methods proposed in Section 2: single pass, 
greedy search and hill-climbing. Figure 3 compares these 
three search types and direct marketing on three different 
marketing scenarios. For all scenarios, r0 = 1, which means 
profit numbers are in units of number of movies seen. In 
the free movie scenario rl = 0, and in the discounted movie 
scenario rl = 0.5. In both of these scenarios we assumed a 
cost of marketing of 10% of the revenue from a single sale: 
c = 0.1. In the advertising scenario no discount was of- 
fered (r] = 1), and a lower cost of marketing was assumed 
(corresponding, for example, to online marketing instead of 
physical mailings): e = 0.02. Notice that all the marketing 
actions considered were effectively in addition to the (pre- 
sumably mass) marketing that  was actually carried out for 
the movie. The average number of people who saw a movie 
given only this marketing (i.e., with M = Mo) was 311. 
The baseline profit would be obtained by subtracting from 
this the (unknown) original costs. The correct c~ for each 
marketing scenario was unknown, so we present the results 
for a range of values. We believe we have chosen plausible 
ranges, with a free movie providing more incentive than a 
discount, which in turn provides more incentive than simply 
advertising. X k = 0 in all experiments. 

In all scenarios, mass marketing resulted in negative prof- 
its. Not surprisingly, it fared particularly poorly in the 
free and discounted movie scenarios, producing profits which 
ranged from -2057 to -2712. In the advertising scenario, 
mass marketing resulted in profits ranging from -143  to 
-381 (depending on the choice of c~). In the case of a free 

movie offer, the profit from direct marketing could not be 
positive, since without network effects we were guaranteed 
to lose money on anyone who saw a movie for free. Figure 3 
shows that  our method was able to find profitable market- 
ing opportunities that  were missed by direct marketing. For 
the discounted movie, direct marketing actually resulted in 
a loss of profit. A customer that  looked profitable on her 
own may actually have had a negative overall value. This 
situation demonstrates that  not only can ignoring network 
effects cause missed marketing opportunities, but it can also 
make an unprofitable marketing action look profitable. In 
the advertising scenario, for small c~ our method increased 
profits only slightly, while direct marketing again reduced 
them. Both methods improved with increasing c~, but our 
method consistently outperformed direct marketing. 

As can be seen in Figure 3, greedy search produced re- 
sults that  were quite close to those of hill climbing. The 
average difference between greedy and hill-climbing profits 
(as a percentage of the latter) in the three marketing sce- 
narios was 9.6%, 4.0%, and 0.0% respectively. However, as 
seen in Figure 3, the runtimes differed significantly, with 
hill-climbing time ranging from 4.6 minutes to 42.1 minutes 
while greedy-search time ranged from 3.8 to 5.5 minutes. 
The contrast was even more pronounced in the advertising 
scenario, where the profits found by the two methods were 
nearly identical, but hill climbing took 14 hours to com- 
plete, compared to greedy search's 6.7 minutes. Single-pass 
was the fastest method and was comparable in speed to di- 
rect marketing, but led to significantly lower profits in the 
free and discounted movie scenarios. 

The lift in profit was considerably higher if all users were 
assumed to be active. In the free movie scenario, the lift in 
profit using greedy search was 4.7 times greater than when 
the network had inactive nodes. In the discount and adver- 
tising scenarios the ratio was 4.1 and 1.8, respectively. This 
was attributable to the fact that  the more inactive neighbors 
a node had, the less responsive it could be to the network. 
From the point of view of an e-merchant applying our ap- 
proach, this suggests modifying the collaborative filtering 
system to only assign active users as neighbors. 

5. RELATED WORK 
Social networks have been an object of study for some 

time, but previous work within sociology and statistics has 
suffered from a lack of data and focused almost exclusively 
on very small networks, typically in the low tens of indi- 
viduals [41]. Interestingly, the Google search engine [4] and 
Kleinberg's (1998) HITS algorithm for finding hubs and au- 
thorities on the Web are based on social network ideas. The 
success of these approaches, and the discovery of widespread 
network topologies with nontrivial properties [42], has led to 
a flurry of research on modeling the Web as a semi-random 
graph (e.g., Kumar et al. [28], Barab~si et al. [1]). Some of 
this work might be applicable in our context. 

In retrospect, the earliest sign of the potential of viral 
marketing was perhaps the classic paper by Milgram [31] 
estimating that  every person in the world is only six edges 
away from every other, if an edge between i and j means "i 
knows j." Schwartz and Wood [37] mined social relation- 
ships from email logs. The ReferralWeb project mined a so- 
cial network from a wide variety of publicly-available online 
information [24], and used it to help individuals find experts 
who could answer their questions. The COBOT project 
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gathered social statistics from participant interactions in the 
LambdaMoo MUD, but did not explicitly construct a social 
network from them [21]. A Maxkov random field formulation 
similar to Equation 2 was used by Chakrabarti et al. [6] for 
classification of Web pages, with pages corresponding to cus- 
tomers, hyperlinks between pages corresponding to influence 
between customers, and the bag of words in the page corre- 
sponding to properties of the product. Neville and Jensen 
[32] proposed a simple iterative algorithm for labeling nodes 
in social networks, based on the naive Bayes classifier. Cook 
and Holder [9] developed a system for mining graph-based 
data. Flake et al. [13l used graph algorithms to mine com- 
munities from the Web (defined as sets of sites that  have 
more links to each other than to non-members). 

Several researchers have studied the problem of estimating 
a customer's lifetime value from data [22]. This line of re- 
search generally focuses on variables like an individual's ex- 
pected tenure as a customer [30] and future frequency of pur- 
chases [15]. Customer networks have received some atten- 
tion in the marketing literature [20]. Most of these studies 
are purely qualitative; where data sets appear, they are very 
small, and used only for descriptive purposes. Krackhardt 
[27] proposes a very simple model for optimizing which cus- 
tomers to offer a free sample of a product to. The model only 
considers the impact on the customer's immediate friends, 
ignores the effect of product characteristics, assumes the tel- 

evant probabilities are the same for all customers, and is only 
applied to a made-up network with seven nodes. 

Collaborative filtering systems proposed in the literature 
include GroupLens [35], PHOAKS [40], Siteseer [36], and 
others. A list of collaborative filtering systems, projects 
and related resources can be found at www.sims.berkeley.- 
edu/resources /collab /. 

6. FUTURE W O R K  
The type of data mining proposed here opens up a rich 

field of directions for future research. In this section we 
briefly mention some of the main ones. 

Although the network we have mined is large by the staa- 
daxds of previous research, much larger ones can be en- 
visioned. Scaling up may be helped by developing search 
methods specific to the problem, to replace the generic ones 
we used here. Segmenting a network into more tractable 
parts with minimal loss of profit may also be important. 
Flake et al. [13] provide a potential way of doing this. A 
related approach would be to mine subnetworks with high 
profit potential embedded in larger ones. Recent work on 
mining significant Web subgraphs such as bipartite cores, 
cliques and webrings (e.g., [28]) provides a starting point. 
More generally, we would llke to develop a characterization 
of network types with respect to the profit that  can be ob- 
tained in them using an optimal marketing strategy. This 
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would, for example, help a company to better gauge the 
profit potential of a market before entering (or attempting 
to create) it. 

In this paper we mined a network from a single source 
(a collaborative filtering database). In general, multiple 
sources of relevant information will be available; the Re- 
ferralWeb project [24] exemplified their use. Methods for 
combining diverse information into a sound representation of 
the underlying influence patterns are thus an important area 
for research. In particular, detecting the presence of causal 
relations between individuals (as opposed to purely corre- 
lational ones) is key. While mining causal knowledge from 
observational databases is difficult, there has been much re- 
cent progress [10, 39]. 

We have also assumed so far that the relevant social net- 
work is completely known. In many (or most) applications 
this will not be the case. For example, a long-distance tele- 
phone company may know the pattern of telephone calls 
among its customers, but not among its non-customers. How- 
ever, it may be able to make good use of connections be- 
tween customers and non-customers, or to take advantage 
of information about former customers. A relevant ques- 
tion is thus: what can be inferred from a (possibly biased) 
sample of nodes and their neighbors in a network? At the 
extreme where no detailed information about individual in- 
teractions is available, our method could be extended to 
apply to networks where nodes are groups of similar or re- 
lated customers, and edges correspond to influence among 
groups. 

Another promising research direction is towards more de- 
tailed node models and multiple types of relations between 
nodes. A theoretical framework for this could be provided 
by the probabilistic relational models of Friedman et al. [14]. 
We would also like to extend our approach to consider multi- 
ple types of marketing actions and product-design decisions, 
and to multi-player markets (i.e., markets where the actions 
of competitors must also be taken into account, leading to 
a game-like search process). 

This paper considered making marketing decisions at a 
specific point in time. A more sophisticated alternative 
would be to plan a marketing strategy by explicitly sim- 
ulating the sequential adoption of a product by customers 
given different interventions at different times, and adapting 
the strategy as new data on customer response arrives. A 
further time-dependent aspect of the problem is that social 
networks are not static objects; they evolve, and particularly 
on the Internet can do so quite rapidly. Some of the largest 
opportunities may lie in modeling and taking advantage of 
this evolution. 

Once markets are viewed as social networks, the inade- 
quacy of random sampling for pilot tests of products sub- 
ject to strong network effects (e.g., smart cards, video on 
demand) becomes clear. Developing a better methodology 
for studies of this type could help avoid some expensive fail- 
ures. 

Many e-commerce sites already routinely use collabora- 
tive filtering. Given that the infrastructure for data gather- 
ing and for inexpensive execution of marketing actions (e.g., 
making specific offers to specific customers when they visit 
the site) is already in place, these would appear to be good 
candidates for a real-world test of our method. The greatest 
potential, however, may lie in knowledge-sharing and cus- 
tomer review sites like epinions.com, because the interaction 

between users is richer and stronger there. For example, it 
may be profitable for a company to offer its products at a 
loss to influential contributors to such sites. Our method 
is also potentially applicable beyond marketing, to promot- 
ing any type of social change for which the relevant network 
of influence can be mined from available data. The spread 
of online interaction creates unprecedented opportunities for 
the study of social information processing; our work is a step 
towards better exploiting this new wealth of information. 

7. CONCLUSION 
This paper proposed the application of data mining to vi- 

ral marketing. Viewing customers as nodes in a social net- 
work, we modeled their influence on each other as a Markov 
random field. We developed methods for mining social net- 
work models from collaborative filtering databases, and for 
using these models to optimize marketing decisions. An 
empirical study using the EachMovie collaborative filtering 
database confirmed the promise of this approach. 
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