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Abstract
In this paper, we study the problem of how to generate synthetic
graphs matching various properties of a real social network with
two applications, privacy preserving social network publishing and
significance testing of network analysis results. We present a sim-
ple switching based graph generation approach to generate graphs
preserving features of a real graph. We then investigate potential
disclosures of sensitive links due to the preserved features. Our al-
gorithms on graph generation with feature range and feature distri-
bution constraints are based on the Metropolis-Hastings sampling.
This is of importance for significance testing of network analysis
results.

1 Introduction
The management and analysis of social networks has at-
tracted increasing interest in the sociology, database, data
mining and theory communities. Most previous studies are
focused on revealing interesting properties of networks and
discovering efficient and effective analysis methods [6, 14].

Many applications of networks such as anonymous Web
browsing require relationship anonymity due to the sensitive,
stigmatizing, or confidential nature of relationship. It has
been shown in [1,12] that the simple technique of anonymiz-
ing graphs by replacing the identifying information of the
nodes with random ids before publishing the actual graph
does not guarantee privacy since the identification of the
vertices can be seriously jeopardized by applying subgraph
queries. As a result, link randomization was suggested.
However, link randomization may significantly affect the
utility of the released randomized graph. To preserve utility,
we expect certain aggregate characteristics (a.k.a., feature)
of the original graph should remain basically unchanged.

In the first part of this paper, we study the problem of
how to generate a synthetic graph matching various prop-
erties of a real social network. Previous work, which ap-
plied switching algorithms [22, 23] or matching algorithms
[2, 15, 24, 29] to generate graphs satisfying only a given de-
gree sequence, cannot guarantee that the generated graphs
preserve various topological features of the real graph since
many structural properties are not purely determined by the
degree sequence. We present a switching based algorithm
for generating synthetic graphs to preserve various features
of the original graph. We then formally study how various
features preserved in the released graph can be exploited by

attackers to breach link privacy.
In the second part of this paper, we study the problem of

how to generate a group of graphs for the purpose of signif-
icance testing of network analysis results. When assessing
the significance of graph analysis results, we need the ran-
domization to be controlled in such a way that some feature
of the generated graphs follow a certain prescribed distribu-
tion, which may be quite different from the natural distri-
bution of all graphs in the ensemble. We present our algo-
rithm to serve this purpose. Our algorithms on uniform graph
generation with feature range constraints or feature distribu-
tion constraints are based on the Metropolis-Hastings sam-
pling [11].

The rest of this paper is organized as follows. In
Section 2 we discuss the notations used in this paper and
present preliminaries of Markov chain. In Section 3 we
focus on generating a graph for privacy preserving social
network publishing and in Section 4 we investigate potential
disclosures of sensitive links due to preserved features. In
Section 5 we further investigate how to generate graphs for
the task of significance testing of network analysis results.
We discuss related work in Section 6. Finally we offer our
concluding remarks and discuss future work in Section 7.

2 Preliminaries
A network or graph G is a set of n nodes connected by
a set of m links. The network considered here is binary,
symmetric, and without self-loops. Let A = (aij)n×n be
its adjacency matrix, aij = 1 if node i and j are connected
and aij = 0 otherwise. Associated with A is the degree
distribution Dn×n, a diagonal matrix with row-sums of A
along the diagonal, and 0’s elsewhere. Table 1 summarizes
the notation used in this paper.

To understand and utilize the information in a network,
researches have developed various measures to indicate the
structure and characteristics of the network from different
perspectives [6]. In this paper, we consider the following
two real space features and two spectrum features.

• λ1, the eigenvalues of the adjacency matrix A.

• µ2, the second eigenvalue of the Laplacian matrix
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Table 1: Notation

Symbol Definition
G(n, m) a graph with n nodes and m edges

G̃ the released graph by the data owner
G̃s the graph samples generated by the attacker
Gt the graph at time t in a Markov chain
Gddd set of the graphs with degree sequence ddd

Gddd,SSS set of the graphs satisfying constraint SSS in Gddd

q(G) Gddd → [0, 1], the target stationary probability
of graph G in a graph generator

ψ(x) R→ R, a function used in relaxed generator
S, S(G) Gddd → R, a feature of graph G

f(x) R→ R, the natural distribution of S over Gddd

g(x) R → R, the target stationary distribution of S
in the graph generator

d(G̃s, G) the proportion of different edges in G̃s

defined as L = D −A.

• h, the harmonic mean of the shortest distance [17].

• C, the transitivity measure [6]. The transitivity measure
is one type of clustering coefficient which measure and
characterizes the presence of local loops near a vertex.

It has been shown that the spectrum have close relation
with the many graph characteristics and can provide global
measures for many network properties [25]. For example,
the maximum degree, chromatic number, clique number, and
extend of branching in a connected graph are all related to
λ1. µ2 is an important eigenvalue of the Laplacian matrix
and can be used to show how good the communities sepa-
rate, with smaller values corresponding to better community
structures. It is important to point out that our algorithms we
present in this paper are general enough to work with any
other chosen features defined on graphs.

Throughout this paper, we conduct our empirical evalu-
ation on four real networks: dolphins, Karate, polbooks, and
Enron. The first three networks are from network bench-
mark datasets (http://www-personal.umich.edu/
˜mejn/netdata/). The Enron network was built from
email corpus of a real organization over the course cover-
ing a 3 years period. We used a pre-processed version of
the dataset provided by [26]. This dataset contains 252,759
emails from 151 Enron employees, mainly senior managers,
and we regard there is an edge between node i and j if there
is at least 5 emails between them.

Markov chain Suppose we have a finite Markov chain on
the random variable X , X has finite states {x1, x2, . . . , xM},
and Xt is the random variable at time t. Denote

pij = P (Xt+1 = xj |Xt = xi),

as the probability that a process at state space xi moves to
state xj in a single step and naturally

∑
j pij = 1. P =

{pij}M×M is the transition matrix of the Markov chain with
row sums equal to 1.

LEMMA 2.1. [21] Suppose that a finite Markov chain on
random variable X has M states x1, x2, . . . , xM , and it
satisfies: 1) any two of its states are accessible from each
other, and 2) any state has a positive probability to stay in
itself. Then, the Markov chain has the unique stationary
distribution πππ = (π1, π2, . . . , πM )T regardless of the initial
state, where:

πi = lim
t→∞

P (Xt = xi).

Moreover, πππ satisfies πππ = PTπππ, i.e., πππ is the eigenvector of
PT with eigenvalue 1.

3 Graph generation for privacy preserving social
network publishing

In this section, we first revisit previous switching based
method (shown in Algorithm 1) on generating graphs with-
out feature constraints. We then extend this method to gen-
erate graphs with feature range constraints.

Algorithm 1 Uniform graph generator [27]
Input: initial graph G0

Output: Gk as one sample
1: for t ← 1 to a large number k do
2: Gt ← SingleSwitch(Gt−1);
3: end for
4: return Gk;

Procedure 1 Single switch
Gt+1 ← SingleSwitch(Gt)

1: r ← a random number from (0, 1);
2: if r ≥ 1/2 then
3: Randomly pick up two edges (a, b) and (c, d) in Gt;
4: if edge (a, b) and (c, d) are switchable then
5: Gt+1 ←switch (a, b) and (c, d) in Gt;
6: end if
7: end if

3.1 Graph generation without feature constraints It has
been well studied on how to generate graphs uniformly
from the ensemble of all graphs that have the given degree
sequence from the original graph. We show it in Algorithm
1. The algorithm uses a Markov chain to generate a random
graph. The method starts from the original graph and
involves carrying out a series of Monte Carlo switching steps
whereby a pair of edges (a-b, c-d) is selected at random and
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is exchanged to give (a-d, b-c) or (a-c, b-d), illustrated in
Figure 1. The switches preserve the degree sequence for all
the graphs along the chain. The exchange is only performed
if it generates no multiple edges or self-edges (we call this
switchable in Procedure 1. The entire process is repeated
k times. In the following, we explain that Algorithm 1 can
generate graphs uniformly from the ensemble of all graphs
that have the given degree sequence from the original graph.

ca

b d

(a)

ca

b d

(b)

ca

b d

(c)

Figure 1: Switch edges

THEOREM 1. Let Gddd be the set of all the graphs with degree
sequence ddd = {d1, d2, . . . , dn}. Given the starting point
G0 ∈ Gddd, the stationary distribution of the Markov Chain in
Algorithm 1 is the uniform distribution over Gddd.

Each graph in Gddd corresponds to a state in the Markov
chain. Line 1 and 2 in Procedure 1 makes all states have
positive probabilities to remain in itself. Also, any two
graphs in Gddd are accessible from each other by switchings
[27], and with Lemma 2.1, the Markov chain has the unique
stationary distribution πππ satisfying πππ = PTπππ. For two
graphs Gi and Gj in Gddd, pij := P [Gt+1 = Gj |Gt = Gi] =

1
2m(m−1) if the two graphs can be reached from each other by
a single switch, and pij = 0 otherwise. Naturally pij = pji,
i.e., PT = P , and hence π is the eigenvector of P with
eigenvalue 1. Since P has its row sums equal to 1, P has the
uniform stationary distribution.

Discussion It is worth pointing out that not all transition ma-
trices can generate uniformly sampled graphs. For example,
to generate a random graph, one might apply the naive ap-
proach: start with G0, for Gt, find all switchable edge pairs,
randomly pick up one pair, switch them and get Gt+1; re-
peat the above steps. However, this naive approach cannot
produce the uniform distribution because it actually finds all
the neighbors of Gt and those graphs with more neighbors
have higher probability to be generated.

One open theoretical question is how to determine the
number of steps k or provide bounds for the mixing of the
Markov chain so that the chain can approach stationarity.
Theoretical bounds on the mixing time exist only for specific
near-regular sequences. However, it has been shown that for
many networks, k = 10m appear to be adequate [22], and
in [28] the author studied how to accelerate the chain. In our
empirical evaluation, we simply set k = 20m to ensure sta-
tionarity. Another problem of applying Markov chain is that

there may exist dependence among the generated samples.
There are various methods to reduce the dependence [9].

Estimate the feature distribution over Gddd Since graphs
obtained by Algorithm 1 are from the uniform stationary
distribution. One immediate application of the uniform
graph generator is to estimate statistic of features of graphs
in Gddd or approximately construct feature distributions. Let
S(·) be a graph feature, and G1, G2, . . . , GN are N samples
obtained by Algorithm 1, then the unbiased estimator of
E[S(G)] and V ar[S(G)] over Gddd are given by:

µ̂ =
1
N

N∑

i=1

S(Gi), σ̂2 =
1

N − 1

N∑

i=1

[S(Gi)− µ̂]2.

Furthermore, we can use the sample distribution to
approximate the population distribution. Let f(x) be the
p.d.f. of S over Gddd. One method to estimate f(x) using the
generated samples is the kernel density estimator:

(3.1) f̂h(x) =
1

Nh

N∑

i=1

K

[
x− S(Gi)

h

]

where K(·) denotes the p.d.f. of the standard normal distri-
bution and bandwidth h is the smoothing parameter.

3.2 Graph generation with feature range constraints In
this section, we study the problem of generating a synthetic
graph whose feature S value is within a precise range of that
of the original graph1. This is of great importance for privacy
preserving social network analysis where we aim to preserve
both utility and link privacy in the released perturbed graph.

We would emphasize that graphs generated by Algo-
rithm 1 cannot preserve the utility of the original graph in
general. Table 2 shows our empirical evaluation on four real-
world social networks. We generate 3000 samples in Gddd for
each graph data using our uniform graph generator . For each
feature (λ1, µ2, harmonic mean of geodesic path h, transitiv-
ity C), we calculate its sample mean µ̂ and standard devi-
ation σ̂. We also include the feature values of the original
graphs. We can observe that there are usually large vari-
ations (in terms of feature standard deviation) in generated
graphs. So how to generate graphs satisfying feature con-
straints is of great importance.

For those samples generated from polbooks, Figure 2
plots the sample distribution of four features over Gddd. We
can observe that all features except µ2 approximately follow
normal distributions while µ2 has a skewed distribution. This
observation matches previous theoretical studies [8].

1In many practical situations, it is infeasible to require that the features
(such as the harmonic mean of the shortest distance or the transitivity
measure) are maintained exactly.
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Table 2: Features of 4 graphs, including the graph value and
the sample mean and standard deviation

Graphs: dolphins Karate Enron polbooks
n 62 34 151 105
m 159 78 869 441

µ̂ 6.90 7.08 17.54 11.90
λ1 σ̂ 0.09 0.13 0.14 0.15

G 7.19 6.73 17.83 11.93
µ̂ 0.45 0.71 0.91 1.62

µ2 σ̂ 0.19 0.17 0.08 0.17
G 0.17 0.47 0.81 0.32
µ̂ 2.26 1.86 2.05 2.11

h σ̂ 0.03 0.02 0.01 0.01
G 2.53 1.91 2.18 2.46
µ̂ 0.11 0.22 0.15 0.13

C σ̂ 0.02 0.03 0.01 0.01
G 0.31 0.26 0.34 0.35

Formally, let Gddd,SSS denote the ensemble of graphs with
the given degree sequence ddd and the prescribed feature
constraint SSS. Given an initial graph G0 with its S feature
value s0 and a constraint range [s−, s+], we expect to
generate a random graph G ∈ Gddd that satisfies S(G) ∈
[s−, s+]. One simple method is to check S(Gt) value at
every switch step. Algorithm 2 outlines this algorithm2.

Algorithm 2 Graph generator with feature range constraint
Input: G0, [s−, s+], S(G0) ∈ [s−, s+]
Output: Gk as one sample

1: for t ← 1 to a large number k do
2: Gt ← SingleSwitch(Gt−1);
3: if S(Gt) 6∈ [s−, s+] then
4: Gt ← Gt−1;
5: end if
6: end for
7: return Gk;

One interesting question is that when we preserve one
feature of the graph, whether other features can also be pre-
served. We conduct some empirical evaluations to address
this problem. We generate N = 500 synthetic graphs by
Algorithm 2 for each of four feature range constraints, SSSλ1 ,
SSSµ2 , SSSh and SSSC . The range is S(G)± 0.5σ̂, where S(G) is
the feature of the true graph and σ̂ is the standard deviation
of feature S in Gddd (shown in Table 2).

For those synthetic graphs, we also compute the means
and standard deviations of other three uncontrolled features.
Table 3 shows the means and standard deviations of the

2Note that when s0 6∈ [s−, s+], we can simply call uniform generator
to reach a graph where s0 ∈ [s−, s+] and then run Algorithm 2
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Figure 2: Feature Distributions over Gddd for U.S. politics
books network

feature values of the generated graphs for four networks.
By comparing with Table 2, we can see that when λ1 is
constrained (the SSSλ1 column) for polbooks, the µ2, h or C
of the generated graphs is not close to the original graph’s.
Instead, their distributions are similar to that of the synthetic
graphs generated with no constraints. However, when µ2 or
h is constrained for polbooks, other three features are also
well preserved.

We also observe that preserving µ2 or h does not always
preserve other features. For Enron data set, when µ2 or
h is confined within the range, other three features can be
very different from the original graph’s. This phenomenon
indicates that constraining different features has different
strength in preserving data utility, and this effect changes on
different data sets.

Another question regarding preserving graph features
is that whether attackers can exploit the feature constraint
information to breach the individual privacy. We examine
this problem in the next section.

4 Link privacy analysis
We are interested in how well graph generation can preserve
the link privacy. Specifically we investigate how attackers
exploit the released graph as well as feature constraints 3 to
breach link privacy. In Section 4.1, we present one attacking
method and empirically show its effectiveness in breaching
link privacy. In Section 4.2, we conduct theoretical analysis.

3We assume data owners need to release the switch strategy and the
feature constraints SSS for data mining purposes.
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Table 3: Feature means and standard deviations of synthetic graphs with feature constraints

dolpins Karate polbooks Enron
SSSλ1 SSSµ2 SSSh SSSC SSSλ1 SSSµ2 SSSh SSSC SSSλ1 SSSµ2 SSSh SSSC SSSλ1 SSSµ2 SSSh SSSC

E(λ1) – 6.96 7.20 7.74 – 7.16 7.35 7.21 – 11.6 11.9 14.9 – 17.6 18.4 21.3
σ(λ1) – 0.09 0.09 0.23 – 0.13 0.09 0.09 – 0.11 0.14 0.50 – 0.16 0.17 0.14
E(µ2) 0.34 – 0.01 0.27 0.84 – 0.40 0.64 1.62 – 0.19 1.36 0.91 – 0.10 0.84
σ(µ2) 0.20 – 0.03 0.18 0.12 – 0.13 0.17 0.18 – 0.04 0.16 0.10 – 0.10 0.12
E(h) 2.32 2.28 – 2.41 1.83 1.88 – 1.88 2.11 2.29 – 2.23 2.07 2.06 – 2.16
σ(h) 0.05 0.02 – 0.06 0.01 0.02 – 0.02 0.01 0.02 – 0.02 0.01 0.01 – 0.02
E(C) 0.14 0.12 0.15 – 0.18 0.24 0.27 – 0.14 0.24 0.27 – 0.16 0.16 0.18 –
σ(C) 0.02 0.02 0.03 – 0.02 0.03 0.03 – 0.01 0.01 0.02 – 0.01 0.01 0.01 –

4.1 Attacking method Let G and G̃ denote the original
graph and the released graph respectively. To simplify the
notation, we also use G and G̃ to denote their corresponding
adjacency matrices.

The attacker can calculate the posterior probability of
existence of a link by exploiting the Gddd,SSS (or Gddd when there
is no feature constraints). Naturally, if many graphs in Gddd,SSS

have an edge at (i, j), the original graph is also very likely to
have the edge (i, j), and hence

(4.2) P [G(i, j) = 1|Gddd,SSS ] =
1

|Gddd,SSS |
∑

Gs∈Gddd,SSS

Gs(i, j).

Data owner Public

true graph G
Markov chain−−−−−−−→

with SSS

G̃ & SSS

p̂ij
estimate←−−−− G̃1, . . . , G̃N

Markov chain←−−−−−−−
know SSS

Attacker

Figure 3: Graph publishing and attacking process

The attacking method works as follows. Starting with
the released graph G̃, attackers apply the same randomiza-
tion strategy to generate N samples G̃s (s = 1, 2, . . . , N ).
Then attackers calculate the posterior probability of exis-
tence of a link for all node pairs as p̂ij = 1

N

∑N
s=1 G̃s(i, j)

and choose top t as predicted links. Figure 3 illustrates this
attacking methods.

The attacking method works because the convergence
of the Markov chain to the stationary distribution does not
depend on the initial point. In other words, starting with the
released graph G̃, attackers can also explore the graph space
Gddd,SSS similarly as starting from the original graph. Since the
single switch procedure can uniformly generate graphs in Gddd,
for those graphs accessible by the Algorithm 2, they are also
equally likely to be generated. Due to this property, p̂ij is an
unbiased estimator of the posterior probability.

Intuitively, the more strict the constraint is, the closer
graphs in Gddd,SSS is to the original graph. Figure 4 shows
the attacker’s precisions when the range constraint on µ2

for polbooks varies from S(G) ± 0.5σ̂ to S(G) ± 2σ̂. We
compute the precisions of top t predictions, where t varies
from 0.1m to m. We can see that the precision decreases
as the range increases. When the range is S(G) ± 2σ̂,
the precision approaches that without constraints. This is
obvious, for as the constraints becomes wider, the graph
space Gddd,SSS grows larger and eventually equal to Gddd.
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Figure 4: Precision of Top t predictions with µ2 confined
within different ranges for polbooks.

Figure 5 shows the precisions of top t predictions using
four different features. We can see that for all the cases, the
attacker can achieve high accuracy, especially for those top
0.2m candidate links. Even when t is increased to m, the
precision is much higher than random guess (with random
guess the accuracy should be equal to the sparse ratio 0.08
for polbooks). Moreover, when µ2 or h is confined within
the range, the attacker can achieve even higher accuracy,
and is almost sure that the top 0.2m candidate links are
true links in the original graph. These results indicate that,
by exploiting the graph space, the attacker can effectively
breach the individual privacy.

We can also observe in Figure 5 that, when λ1 or transi-
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Figure 5: Precision of top t predictions for polbooks

tivity (C) are confined within the range, the attacker does not
achieve accuracy higher than the case with no constraints,
indicating that preserving features does not always jeopar-
dize private information. We will discuss this phenomenon
in Section 4.2.

4.2 Features vs. privacy From Figure 5, we observe that
preserving some feature in the released graph can signifi-
cantly violate the privacy, while preserving others may not.
We should also point out that, one feature that jeopardizes
privacy in one graph does not necessarily jeopardize privacy
in another. We evaluate the attacking method on other three
networks. We can observe from Figure 6(c) that, for the En-
ron network, unlike the polbook, the attacker can not achieve
higher precision when µ2 or h are preserved. In this section,
we discuss about what causes this phenomenon.

Intuitively, we can measure the distance between two
graphs in the graph space by the number of different edges
they have. Then, two graphs that have approximately equal
feature values are very likely to have shorter distance to each
other.

One measure to denote the distance of two graphs is
‖G1 − G2‖2F , where ‖ · ‖F is the Frobenius norm. Since
G̃s and G have the same number of edges, it is easy to check
that 1

4‖G̃s − G‖2F is the number of different edges, and we
can then define the relative distance measure between the
original graph and the synthetic graph:

(4.3) d(G̃s, G) =
‖G̃s −G‖2F

2‖G‖2F
=
‖G̃s −G‖2F

4m
.

We can see that d(G̃s, G) is the proportion of different edges.
Table 4 lists the means and standard deviations of

d(G̃s, G) of the attacker’s N samples for different graphs.
We can see that, for polbooks, when λ1 or C is confined
within the range, the mean of d(G̃s, G) is not much different
from the case without constraints. However, when µ2 or h is
preserved, the mean of d(G̃s, G) is significantly smaller than
the case without constraints, indicating that graphs whose µ2

or h is constrained have less edges different from the origi-
nal graph, and thus release more private information. This
is consistent with our previous result that the attacker can
achieve higher attacking precision when these two features
are preserved for polbooks. However, for Enron network,
the means of d(G̃s, G) are approximately equal in all cases,
indicating that preserving any of the features does not pro-
duce graphs closer to the original one.

Actually, as shown in our next result, the average dis-
tance of the graph space to the true graph directly affects the
attacker’s precision:

RESULT 1. Let d̄ denote the expectation of d(G̃s, G) over
Gddd,SSS:

d̄ = E[d(G̃s, G)] =
1

|Gddd,SSS |
∑

G̃s∈Gddd,SSS

d(G̃s, G).

When the sample size is large (N → ∞), for the true edges
(ij ∈ G), we have

(4.4)
∑

i<j,ij∈G

p̂ij → m(1− d̄).

Please refer to appendix for the proof.
From Equation (4.4), we can see that if the constraint SSS

specifies a graph space which has smaller average distance
to the true graph (smaller d̄), the true edges must have higher
estimated posterior probability p̂ij . On the other hand, since

∑

i<j,ij 6∈G

p̂ij +
∑

i<j,ij∈G

p̂ij =
∑

i<j

p̂ij = m,

higher p̂ij for true edges implies that the missing edges
in G must have lower p̂ij . Therefore, when the attacker
sorts the node pairs (i, j) by p̂ij in descending order, the
top t candidates contain more true edges and are thus more
accurate.

5 Graph generation for significance testing of graph
analysis results

In the following, we present two graph generation algorithms
for the purpose of statistical testing. In the statistical test-
ing, the graph generation has stricter requirements. For ex-
ample, the generator should be able to access all potential
graphs so that the testing result is not biased. In some other
cases, the feature values of the generated graphs should fol-
low some prescribed distribution. All these problems involve
constructing a Markov chain with a required stationary dis-
tribution. The Metropolis-Hastings method [11] is one of the
standard methods of converting a Markov chain with one sta-
tionary distribution to another Markov chain with a different
stationary distribution.
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Figure 6: Precisions of top t predictions for different networks

Table 4: Means and standard deviations of d(G̃s, G) over
different spaces with and without range constraints

constraint no SSS SSSλ1 SSSµ2 SSSh SSSC

dolphins
E(d) .852 .848 .850 .844 .849
σ(d) .025 .024 .025 .030 .025

Karate
E(d) .655 .650 .654 .651 .656
σ(d) .038 .042 .037 .036 .038

polbooks
E(d) .843 .844 .736 .700 .824
σ(d) .015 .015 .017 .018 .033

Enron
E(d) .825 .823 .824 .821 .812
σ(d) .011 .009 .011 .010 .023

Metropolis-Hastings method Suppose on the random vari-
able X we have a Markov chain M with transition matrix
P and the stationary distribution πππ, and we want to con-
struct a Markov chain M∗ whose stationary distribution is
qqq = {q1, q2, . . . , qM}. The Metropolis-Hastings method
works as follows: suppose at time t, Xt = xi, run Markov
chain M and Xt+1 = xj , then move to xj with probability

(5.5) αij = min
(

1,
qjpji

qipij

)
,

and stay in xi otherwise. Particularly, if P is symmetric,

(5.6) αij = min (1, qj/qi) .

5.1 Relaxed graph generation with feature range con-
straints Generally speaking, the graph generator with fea-
ture range constraint shown in Algorithm 2 may not access
all the graphs that satisfies the constraint. To overcome this
problem, we propose a relaxed algorithm in this section. The
relaxed algorithm, shown in Algorithm 3, can access all the
graphs in Gddd,SSS and achieve approximate uniformity.

Algorithm 3 Relaxed graph generator with feature range
constraint
Input: G0, [s−, s+], q(·) = ψ[S(·)]
Output: Gk as one sample

1: for t ← 1 to k do
2: Gt ← SingleSwitch(Gt−1);
3: if rand() ≥ min

(
1, q(Gt)

q(Gt−1)

)
then

4: Gt ← Gt−1

5: end if
6: end for
7: return Gk;

We modify Algorithm 1 into a Markov chain with q(·)
as its stationary distribution. In generating graphs, q(G) is
the probability that a graph G is produced by the relaxed
generator, and q(G) should be high for those graphs in Gddd,SSS

and should be low for those graphs not in Gddd,SSS . Generally
speaking, we can choose

(5.7) q(G) =
ψ[S(G)]

K
,

where ψ(·) is a positive function over the real axis such that
it decreases on [s0,+∞) and increases on (−∞, s0] and K
is a normalizer to ensure

∑
G∈Gddd

q(G) = 1. Notice that
Line 3 indicates Algorithm 3 only depends on the ratio of
two probabilities, we can simply set

(5.8) q(G) ← ψ[S(G)].

The transition matrix in Algorithm 1 is symmetric, and
we can thus set the acceptance ratio q(Gt)/q(Gt−1) as
Equation (5.6). The connectivity of the Markov chain in
Algorithm 3 is guaranteed for the acceptance ratio must be
positive. Hence the chain can reach any graph in Gddd,SSS .

One way of choosing ψ(·) is to choose the p.d.f. of a
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normal distribution with mean equal to s0:

(5.9) ψ(s) =





1
σ1
√

2π
exp

[
− (s−s0)

2

2σ2
1

]
, if s ≥ s0

1
σ2
√

2π
exp

[
− (s−s0)

2

2σ2
2

]
, if s < s0

where σ1 = s0−s−
2 and σ1 = s+−s0

2 . When s0 6∈ [s−, s+],
we can simply substitute s0 with s−+s+

2 in Equation (5.9).
When we set ψ(·) as

(5.10) ψ(s) =

{
1 if s ∈ [s−, s+]
0 otherwise

we get Algorithm 2. We can see that Algorithm 2 is a special
case of the relaxed generator.

Theoretical discussion One theoretical question regarding
to our relaxed generator is what are the feature distributions
of the generated graphs. Actually, for the relaxed generator,
the distribution of S(G)depends on both our choice of ψ(·)
and the natural distribution f(x) of feature S.

PROPERTY 1. Suppose that graph G is generated by the re-
laxed graph generator with feature range constraint (Algo-
rithm 3) whose q(·) is set as Equation (5.7), then S(G) has
the distribution with p.d.f. 1

Ef [ψ(s)]ψ(s)f(s) where Ef [ψ(s)]
denote the expectation of ψ(s) under p.d.f. f(·).

See appendix for the proof.
From Property 1, we can know that for any two graphs

G1, G2 ∈ Gddd satisfying ψ[S(G1)] = ψ[S(G2)], they have
the same probability to be generated by Algorithm 3. If ψ(·)
is a continuous function, q(G1) ≈ q(G2) when S(G1) ≈
S(G2).

We also know that not all graphs generated by the
relaxed generator have their S values within the range.
According to Property 1, if graph G is from the relaxed
generator, we have

(5.11) P (G ∈ Gddd,SSS) =
1

Ef [ψ(s)]

∫ s+

s−
ψ(s)f(s)ds.

We can see that low value of f(x) over [s−, s+] reduces the
probability in Equation (5.11). Given the graph space Gddd

and the range [s−, s+], f(x) over the range is determined,
and we can then increase ψ(·) over the range to improve
the probability in Equation (5.11). When we choose ψ(·)
as Equation (5.10), we have that the relaxed generator will
then always on a graph within the range, for the probability
in Equation (5.11) is always equal to 1.

Figure 7 illustrates two choices of ψ(·). ψ(·) is the p.d.f.
of a normal distribution as shown in Equation (5.9). To make
the discussion easy, we assume s0 = s−+s+

2 , then σ1 = σ2.
If we choose a small σ as ψ1(·), ψ1(·) is large over [s−, s+]

and the relaxed generator has higher probability to generate
a graph in Gddd,SSS . However, the value of ψ(·) changes more
dramatically within the range, which reduces the uniformity
of the generated graphs. When σ is large as ψ2(·), ψ(·) does
not change greatly over the range and we can guarantee the
uniformity, but it reduces the probability that the generated
graph is in Gddd,SSS .

s
−

s
+

←ψ
1
(x)

←ψ
2
(x)

Figure 7: Choice of ψ(·)

5.2 Graph generation with feature distribution con-
straints In this Section, we study the generator that can gen-
erate graphs whose feature value satisfies a prescribed distri-
bution.

Let g(x) denote the p.d.f. of the target distribution of
feature S. On the other hand, S has its own p.d.f. f(x) over
Gddd. Algorithm 4 outlines the graph generator with feature
distribution constraint.

Algorithm 4 Graph generator with feature distribution con-
straint
Input: G0, g(·), f(·)
Output: Gk as one sample

1: for t ← 1 to k do
2: Gt ← SingleSwitch(Gt−1);
3: if rand() ≥ min

(
1, g[S(Gt)]f [S(Gt−1)]

g[S(Gt−1)]f [S(Gt)]

)
then

4: Gt ← Gt−1

5: end if
6: end for
7: return Gk;

From Property 1, we know that given any input function
ψ(x), the generated distribution of S value has the p.d.f. as

1
Ef [ψ(x)]ψ(x)f(x). By replacing ψ(x) with g(x)

f(x) in Equation
(5.11), we have

Ef [ψ(s)] = Ef

[
g(x)
f(x)

]
=

∫ +∞

−∞

g(x)
f(x)

f(x)dx = 1.
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Then also from Equation (5.11) we have

P [S(G) ≤ x] =
1

Ef [ψ(s)]

∫ x

−∞

g(t)
f(t)

f(t)dt

=
∫ x

−∞
g(t)dt,

and then the p.d.f. of S value is equal to g(x). Hence, by
setting q(·) in Equation (5.6) as

(5.12) q(G) ← g[S(G)]/f [S(G)],

we can achieve the target distribution in Algorithm 4.

Empirical evaluation We apply Algorithm 4 on graph pol-
books to simulate two distributions for four features: λ1, µ2,
harmonic mean of shortest distance (h), and transitivity (C).
The first distribution is the uniform distribution on interval
[µ̂ − 2σ̂, µ̂ + 2σ̂], where µ̂ and σ̂ are the sample mean and
standard deviation of graph polbooks from Table 2. The sec-
ond distribution is a double-triangle-shaped distribution:

g(x) =
|x− µ̂|

4σ̂2
, x ∈ [µ̂− 2σ̂, µ̂ + 2σ̂].

The shapes of the two target distributions are shown in
Figure 8. Both of them are very different from the features’
natural distributions f(x). When applying Algorithm 4, we
need to know the natural distribution of those features f(x),
and we use the kernel density estimator shown in Equation
(3.1) to estimate f(x) from the 3000 uniformly generated
samples. Figure 9 shows the distributions of the four features
of the 500 generated samples (k = 6000) using Algorithm
4. We can observe from Figure 9 that all the four features of
generated samples match well the target distributions (shown
in Figure 8).

µµ−2σ µ+2σ

(a) uniform

µµ−2σ µ+2σ

(b) double-triangle

Figure 8: Target distributions g(x)

In many practical cases that some feature distribution
f(·) over Gddd is unknown, the cost of estimating f(·) can be
high since we need to generate a large number of uniformly
sampled graphs. To reduce the cost, we may simply specify
f(·) as some a-priori distribution (e.g., normal or uniform
distribution) although it may sacrifice the accuracy of feature
target distribution of the generated samples.
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Figure 9: Feature distributions of generated graphs with fea-
ture distribution constraints shown in Figure 8 for polbooks

6 Related Work
6.1 State of the Art of Graph Generation Generally
there are two approaches for the generation of graphs:
matching approach [2, 7, 15, 18, 24, 29] and switching ap-
proach [22, 23].

The first matching based graph generator is the ran-
dom graph model [7], which assumes every pair of nodes
has identical, independent probability of being joined by an
edge. To simulate important properties of real world graphs,
various realistic graph generators using matching approach
have been proposed in the past, such as the preferential at-
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tachment [2, 15], the copying model, the small-world model
[29], and the forest fire model. See [4] for a detailed survey.
For example, the preferential attachment model can generate
heavy-tailed degree distributions by attaching new nodes to
high-degree old nodes. More recently, Leskovec and Falout-
sos in [18,19] proposed the Kronecker model (based on Kro-
necker matrix multiplication) to generate graphs that obey
multiple properties of real world graphs. Although the gen-
erated graphs satisfy power-law or some other properties
(e.g., low diameters, similar spectrum), none of the above
matching models can generate a uniform sample of possi-
ble graphs. Furthermore, there is no guarantee how well the
generated synthetic graph mimics the structural features of a
given real graph.

Switching approach applies a Markov chain to gener-
ate a synthetic graph by switching edges from the original
graph. It has been shown in [22] that switching itself cannot
generate uniformly sampled directed graphs. A “Go with
the winners” algorithm based on a non-Markov chain Monte
Carlo method was proposed to generate uniformly sampled
directed graphs. However, previous switching based gen-
erators cannot guarantee the generated graph still preserves
some useful features. As shown in this paper, many impor-
tant topological features are lost in the generated graph.

Randomization techniques for testing the significance
of discovered patterns have attracted much attention in data
mining [10]. To conduct significance testing of network
analysis results, it is essential to generate a group of synthetic
graphs with features satisfying some distributions. In this
paper, we presented algorithms based on Markov chain to
generate synthetic graphs with feature range and distribution
constraints.

6.2 State of the Art of Privacy Preservation in Social
Networks Social network analysis has increasing interest in
the database, data mining, and theory communities. The
current state of the art is that there has been little work
dedicated to privacy preserving social network analysis with
the exception of some very recent work [1,3,5,12,13,20,30–
33].

In [1], Backstrom et al. described a family of at-
tacks such that an adversary can learn whether edges exist
or not between specific targeted pairs of nodes from node-
anonymized social networks. In this scenario, a social net-
work owner releases the underlying graph structure after re-
moving all node annotations. The goal of an attacker is to
map the nodes in this anonymized graph to real work enti-
ties. The adversary can construct a highly distinguishable
subgraph with edges to a set of targeted nodes, and then to
re-identify the subgraph and consequently the targets in the
released anonymized network. Similarly in [12], Hay et al.
further observed that the structure of the graph itself (e.g.,
the degree of the nodes or the degree of the node’s neighbors)

determines the extent to which an individual in the network
can be distinguished. In [5], the authors considered settings
where releasing the unlabeled graph is permitted and pro-
posed an approach that masks the mapping from entities to
nodes of the bipartite graph. The approach ensures that the
underlying bipartite graph structure is not affected and iden-
tity privacy is preserved by perturbing the mapping from en-
tities to nodes. However, this approach is not secure against
subgraph attacks.

Link randomization or generalization has been shown a
necessity in addition to node anonymization to preserve pri-
vacy in the released graph [1, 12]. Various anonymization
schemes have been proposed to prevent the re-identification
of individuals by the adversary with a priori knowledge of
the social relationship of certain individuals. The idea is
to modify a graph via a set of edge addition (or deletion)
operations in order to construct a new k-anonymous graph,
in which every node is indistinguishable with at least k − 1
other nodes. In [20], Liu and Terzi investigated how to mod-
ify a graph via a set of edge addition (or deletion) operations
in order to construct a new k-degree anonymous graph, in
which every node has the same degree with at least k − 1
other nodes. This property prevents the re-identification of
individuals by the attackers with a-priori knowledge of the
social relationships of certain people. In [33], Zhou and Pei
anonymized the graph by generalizing node labels and in-
serting edges until each neighborhood is indistinguishable
to at least k − 1 others. In [3, 32], authors applied a struc-
tural anonymization approach called edge generalization that
consists of collapsing clusters together with their component
nodes’ structure, rather than add or delete edges from the
social network dataset. Although the above proposed ap-
proaches would preserve privacy, however, it is not clear how
useful the anonymized graph is since many topological fea-
tures may be lost.

Randomization methods [12, 30] based on link pertur-
bation can be considered as one approach of generating
a synthetic graph. In [30], we studied two natural edge-
based graph perturbation strategies: Rand Add/Del( ran-
domly adding one edge followed by deleting another edge
and repeating this process for a fixed times.) and Rand
Switch( randomly switching a pair of existing edges and re-
peating it for a fixed times) and showed that various struc-
tural properties can be significantly lost due to randomiza-
tion. How to preserve utility (in terms of various struc-
tural features) and link privacy in the released graph is an
important issue in privacy preserving social network analy-
sis. In [30], a spectrum preserving graph randomization ap-
proach, which chooses switching edges via examining eigen-
vector values of corresponding nodes in order to better pre-
serve network spectrum (i.e., eigenvalues of network matri-
ces), was presented since the spectrum of a network is inti-
mately connected to many important topological features. In
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this paper, we presented an approach of directly generating
graphs satisfying various feature constraints. The problem
on how attackers may exploit the topological features of the
released graph to breach link privacy was also recently stud-
ied in [31]. However, the attacking strategy in [31] was to
exploit the relationship between existence of a link and the
similarity measure values of node pairs in one released ran-
domized graph. In this paper, the attacking model is based
on the probability of existence of a link across all possible
graphs in the graph space. It is interesting to compare these
two attacking strategies and explore other potential attacking
strategies on released perturbed social networks.

One loosely-related work is [16] that considered a par-
ticular threat in which an attacker subverts user accounts to
gain information about local neighborhoods in the network
and pieces them together in order to build a global informa-
tion about the social graph. It considered the case where no
underlying graph is released, and, in fact, the owner of the
network would like to keep the entire structure of the graph
hidden from any one individual. The goal of the attacker is,
rather than to de-anonymize particular individuals from that
graph, to compromise the link privacy of as many individu-
als as possible by determining the link structure of the graph
based on the local neighborhood views of the graph from the
perspective of several non-anonymous users.

7 Conclusion and Future Work
In this paper, we have presented a framework for generat-
ing synthetic graphs from the original one for two impor-
tant applications, privacy preserving social network publish-
ing and significance testing of network analysis results. We
presented a simple switching based graph generator to gen-
erate graphs preserving features of a real graph. We then
investigated the potential disclosure of sensitive links due
to the preserved features. Our algorithm on graph gener-
ation with feature distribution constraints is based on the
Metropolis-Hastings sampling, a standard method for gener-
ating a Markov chain with a target distribution. By configur-
ing the transition probabilities in the switch process, we are
able to generate graphs satisfying given feature constraints.
This is of great importance for significance testing of net-
work analysis results.

Our algorithms can be straightforwardly extended to
generate graphs with constraints of multiple features. In our
future work, we will explore the relationships of various fea-
tures for larger real-world graphs and investigate how to ef-
ficiently generate graphs when a large number of constraints
of multiple features are given as well as the impacts on link
privacy. We are also interested in studying whether the at-
tacker can improve their predication by exploring those non-
random graphs in the graph space Gddd,SSS , since the real-world
graph usually contains less randomness than the synthetic
graphs.
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A Proof of Property 1
Note that f(s)|Gddd| is the number of graphs in Gddd whose S
value equal to s, and each such graph will be generated with
probability ψ(s)

K . Hence we have

(1.13) P [s(G) = s] =
ψ(s)
K

f(s)|Gddd|,

Then for any interval [a, b], we have

(1.14) P [a ≤ S(G) ≤ b] =
|Gddd|
K

∫ b

a

ψ(s)f(s)ds.

Let the range be the whole real axis, then

1 = P [S(G) ∈ R] =
|Gddd|
K

∫

R
ψ(s)f(s)ds =

|Gddd|
K

Ef [ψ(s)],

and we have K = |Gddd|Ef [ψ(s)]. Combining this with
Equation (1.14), we have the property proved. ¤

B Proof of Result 1
Let G̃s, s = 1, 2, . . . , N be the N samples uniformly from
the Gddd,SSS .

1
N

N∑
s=1

‖G̃s −G‖2F =
1
N

∣∣∣∣∣
N∑

s=1

(G̃s −G).2

∣∣∣∣∣

=

∣∣∣∣∣
1
N

(∑
s

G̃.2
s − 2G⊗

∑
s

G̃s + NG.2

)∣∣∣∣∣ ,(2.15)

where ⊗ and .2 denote the entry-wise multiplication and
square respectively, and | · | denotes the sum of all the
elements in the matrix. Since G̃s and G are 0-1 matrices, we
have G̃.2

s = G̃s and G.2 = G, then continue with Equation
(2.15), we have

1
N

N∑
s=1

‖G̃s −G‖2F

=

∣∣∣∣∣
1
N

∑
s

G̃s − 2G⊗
(

1
N

∑
s

G̃s

)
+ G

∣∣∣∣∣
=

∑

i,j

pij − 2
∑

ij∈E

pij + 2m

=4m− 2
∑

ij∈E

pij (note
∑

ij pij = 2m).

Therefore,

1
N

N∑
s=1

d(G̃s, G) =
1
N

N∑
s=1

‖G̃s −G‖
4m

= 1− 1
m

∑

i<j,ij∈E

p̂ij .

With the law of large number 1
N

∑N
s=1 d(G̃s, G) → d̄ as

N →∞, and we have reached the conclusion of (4.4).
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