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ABSTRACT
Given a task T , a pool of individuals X with different skills,
and a social network G that captures the compatibility among
these individuals, we study the problem of finding X ′, a sub-
set of X , to perform the task. We call this the Team For-
mation problem. We require that members of X ′ not only
meet the skill requirements of the task, but can also work ef-
fectively together as a team. We measure effectiveness using
the communication cost incurred by the subgraph in G that
only involves X ′. We study two variants of the problem for
two different communication-cost functions, and show that
both variants are NP-hard. We explore their connections
with existing combinatorial problems and give novel algo-
rithms for their solution. To the best of our knowledge, this
is the first work to consider the Team Formation problem
in the presence of a social network of individuals. Experi-
ments on the DBLP dataset show that our framework works
well in practice and gives useful and intuitive results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
team formation, social networks, graph algorithms

1. INTRODUCTION
The success of a project depends not only on the exper-

tise of the people who are involved, but also on how effec-
tively they collaborate, communicate and work together as
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Figure 1: Network of connections between individuals in
{a, b, c, d, e}.

a team. Assume, for example, an IT project manager who
wants to build a team of engineers skilled in the following
areas: T={algorithms, software engineering, distributed sys-
tems, web programming}. Also assume there are five can-
didates, {a, b, c, d, e}, with the following backgrounds:
Xa={algorithms}, Xb={web programming}, Xc={software
engineering, distributed systems}, Xd={software engineer-
ing} and Xe={software engineering, distributed systems, web
programming}. The relationships among these candidates
are represented by the social network shown in Figure 1,
where the existence of an edge between two nodes in G indi-
cates that the corresponding persons can collaborate effec-
tively.

Without considering how effectively these people can col-
laborate, the manager can select either X ′ = {a, b, c} or
X ′′ = {a, e} – both these teams have the required skillset.
However, the existence of graph G makes X ′ = {a, b, c} a
superior solution, since the structure of G indicates that a
and e cannot work together at all.

The existence of a social network between individuals is
quite common in real scenarios. In a company, the network
may capture the hierarchical organization of the employ-
ees. In this case, the graph encodes the fact that people in
the same group or department can communicate easier than
people working in different divisions. In a research commu-
nity, the network captures previous successful collaborations
among scientists. Other examples of social networks be-
tween professionals include LinkedIn (www.linkedin.com),
Xing (www.xing.com) and others.

The problem: In this paper, we study the problem of
finding a group of individuals who can function as a team
to accomplish a specific task. We assume that there exists
a pool of n candidates X = {1, . . . , n}, where each candi-
date i has a set of skills Xi. We also assume that these
candidates are organized in a weighted and undirected so-
cial graph G (X , E). The weights on the edges of G should



be interpreted as follows: a low-weight edge between nodes
i, j implies that candidate i and j can collaborate and/or
communicate more easily than candidates connected with a
high-weight edge. These weights can be instantiated in dif-
ferent ways in different application domains. For example,
in a company, the weight between two employees may corre-
late to the length of the path from one employee to another
through the organizational chart. In a scientific research
community, the weight between two scientists is related to
the total number of publications they have coauthored. In-
terpersonal relationships among individuals can also be used
to calculate the weights.

Given a task T that requires a set of skills, our goal is to
find a set of individuals X ′ ⊆ X , such that every required
skill in T is exhibited by at least one individual in X ′. Addi-
tionally, the members of team X ′ should define a subgraph
in G with low communication cost. The communication cost
measures how effectively the team members can collaborate:
the lower the communication cost, the better the quality of
the team.

Our contributions: To the best of our knowledge, we
are the first to consider the Team Formation problem in
the presence of a social network of individuals. We study
two instances of this problem, analyze them rigorously and
present algorithms for their solution. Our experiments illus-
trate that our problem definitions, as well as our algorithms,
work well in practice and give useful and intuitive results.

Roadmap: The rest of the paper is organized as follows:
in Section 2 we review the related work on team formation
and task allocation. In Section 4 we formally define the
Team Formation problem and identify the two variants
that we are going to consider in this paper. In the same
section, we also study their computational complexity. In
Section 5 we give algorithms for the different variants of the
Team Formation problem and in Section 6 we illustrate
the usefulness of our methodology on a real collaboration
dataset. We conclude the paper in Section 7.

2. RELATED WORK
There is a considerable amount of literature on Team

Formation in the operations research (OR) community [3,
7, 17, 16]. A trend in this line of work is to formulate the
Team Formation problem as an integer linear program
(ILP), and then focus on finding an optimal match between
people and the demanded functional requirements. The
problem is often solved using techniques such as simulated
annealing [3], branch-and-cut [17] or genetic algorithms [16].
Interested readers may also identify a high-level connection
between this formulation and the assignment problem. The
main difference between the studies above and our work is
that we explicitly take into account the social graph struc-
ture of the individuals when deciding the right group. In
most of the previous work, the organizational or social bonds
among individuals are ignored and the focus is limited on
their skills. Moreover, the problem formulations we provide,
and the algorithmic approaches we take, are fundamentally
different from those proposed in the OR literature.

The necessity of effective collaboration among individuals
in a team has been considered in the past. Fitzpatrick and
Askin [9] use the Kolbe Conative Index (KCI) to measure
individuals’ drive and temperament, which in turn reflects
the quality of the team. Chen and Lin in [7] use the Myers-
Briggs test to measure the candidates’ personality and eval-

uate their interpersonal relationships as team members. Al-
though these approaches are interesting from the antrhopo-
logical/pscychological point of view, they also ignore the ex-
isting graph structure among individuals. Therefore, these
approaches should be considered complementary to ours.

The network structure between individuals in a workforce
pool has been taken into account by Gaston et al. [11].
The authors provide an experimental study of how differ-
ent graph structures among the individuals affect the per-
formance of a team. Although related, the work presented
in [11] does not address the computational problem of find-
ing a team of experts in a given network. Some work has also
been devoted to the construction of the social network [5,
16], given a pool of skilled individuals.

The dynamics of group-formation processes and their im-
pact on the formation of communities in networks have been
recently addressed in [2]. The game-theoretic aspects of the
same problem have been studied in [12]. These studies are
complementary to ours and mostly focus on providing useful
insights about social processes.

3. PRELIMINARIES
We assume a pool of candidates consisting of n individu-

als, X = {1, . . ., n}. We also assume A = {a1, . . . , am} to be
a universe of m skills. Each individual i is associated with
a set of skills Xi ⊆ A. If αj ∈ Xi we say that individual
i has skill aj ; otherwise individual i does not have skill aj .
We often use the set of skills an individual possesses to refer
to him. Also, we say that a subset of individuals X ′ ⊆ X
possesses skill aj if there exists at least one individual in X ′
that has aj .

A task T is simply a subset of skills required to perform
a job. That is, T ⊆ A. If aj ∈ T we say that skill aj is
required by task T . We can also define the cover of a set of
individuals X ′ with respect to task T , denoted by C (X ′, T ),
to be the set of skills that are required by T and for which
there exists at least one individual in X ′ that has them.
That is, C (X ′, T ) = T ∩ ( ∪i∈X ′ Xi

)
. Given a skill a ∈ A,

we define its support set (or simply support), denoted by
S (a), to be the set of individuals in X that has this skill.
That is, S (a) = {i | i ∈ X and a ∈ Xi}.

As we have already discussed, we assume that individuals
are organized in an undirected and weighted graph G (X , E).
Every node of G corresponds to an individual in X ; E is
the set of edges connecting the nodes. The edges of G are
weighted; edges of low (high) weight represent low (high)
communication cost between the nodes they connect. With-
out loss of generality, we assume that the graph G is con-
nected; we can transform every disconnected subgraph to a
connected one by simply adding very high-weight edges be-
tween every pair of nodes that belong to different connected
components. Note that this very high weight is a number
higher than the sum of all pairwise shorted paths in G.

For every two nodes i, i′ ∈ X we define the (graph) dis-
tance function d(i, i′) to be the weight of the shortest path
between i and i′ in G. Note that this distance function be-
tween the nodes is a metric and thus satisfies the triangle
inequality. For every pair of nodes we also use Path(i, i′) to
represent the set of nodes that are along the shortest path
from i to i′. Apart from computing the distance between
two nodes in G, we will often need the distance between a
node i ∈ X and a set of nodes X ′ ⊆ X . We define this to be
d (i,X ′) = mini′∈X ′ d (i, i′). In this case, we use Path(i,X ′)



to represent the set of nodes that are along the shortest path
from i to the node j = arg mini′∈X ′ d(i, i′).

Finally, given graph G and X ′ ⊆ X , we use G [X ′] to
denote the subgraph of G that contains only the nodes in
X ′.

4. PROBLEMS
In this section, we formally define the Team Formation

problem that we address in this paper. Our problem defini-
tions reflect our belief that efficient communication among
team members is an important factor for the successful com-
pletion of a task.

4.1 Problem Definition

Problem 1. [Team Formation] Given the set of n in-
dividuals X = {1, . . . , n}, a graph G (X , E), and task T , find
X ′ ⊆ X , so that C (X ′, T ) = T , and the communication cost
Cc (X ′) is minimized.

In order to stress the generality of the Team Formation
problem, we have deliberately avoided defining the commu-
nication cost in the definition of Problem 1. In this paper,
we focus on two instantiations of the communication-cost
function. We chose these instantiations as we believe they
are practical, simple and intuitive.

Diameter (R): Given graph G (X , E) and a set of individ-
uals X ′ ⊆ X , we define the diameter communication
cost of X ′, denoted by Cc-R (X ′), to be the diameter
of the subgraph G [X ′]. Recall that the diameter of
a graph is the largest shortest path between any two
nodes in the graph.

Minimum Spanning Tree (Mst): Given graph G (X , E)
and X ′ ⊆ X we define the Mst communication cost
of X ′, denoted by Cc-Mst (X ′), to be the cost of the
minimum spanning tree on the subgraph G [X ′]. Recall
that the cost of a spanning tree is simply the sum of
the weights of its edges.

We call the Team Formation problem with communica-
tion function Cc-R, the Diameter-Tf problem. Similarly,
we refer to the Team Formation problem with communi-
cation function Cc-Mst as the Mst-Tf problem.

Proposition 1. The Diameter-Tf problem is NP-complete.

Proof. We prove the proposition by a reduction from the
Multiple-Choice Cover (Mcc) problem [1]. An instance
of the Mcc problem consists of a universe V = {1, . . . , N}
of N elements, a N ×N symmetric real matrix D with non-
negative entries, and a S = {S1, . . . , Sk} such that each Si ⊆
V . Given constant K, the decision version of the Mcc prob-
lem asks whether there exists V ′ ⊆ V such that for every
i ∈ {1, . . . , k}, |V ′ ∩ Si| > 0 and max(u,v)∈V ′×V ′ D(u, v) ≤
K.

We transform an instance of the Mcc problem to an in-
stance of the Diameter-Tf problem as follows: for every set
Si in the Mcc problem we create a skill ai. The task T to be
performed requires all the k skills. That is, T = {a1, . . . , ak}.
For every element v ∈ V of the Mcc instance, we create an
individual iv with skills Xv = {ai | v ∈ Si}. Two individu-
als iv and i′v are connected in the graph G by an undirected

edge with weight equal to D (v, v′). Given this mapping it is
easy to show that there exists a solution to the Mcc prob-
lem with cost at most K if and only if there exists a solution
to the Diameter-Tf problem with Cc-R cost at most K.
The problem is trivially in NP.

Note that the above reduction does not assume anything
about the distance function between the nodes in G. How-
ever, from [1], we know that the Mcc problem is NP-hard
even when the distance matrix D corresponds to a metric.
Therefore, the Diameter-Tf problem is NP-hard when the
distance function d between the individuals in G is a metric.
Observe that the above reduction is approximation preserv-
ing. Therefore, the approximation properties of the Mcc
problem described in [1] carry over to the Diameter-Tf
problem as well.

For the Mst-Tf problem, we have the following hardness
result:

Proposition 2. The Mst-Tf problem is NP-complete.

Proof. We prove the proposition by a reduction from the
Group Steiner Tree (Gst) problem [13]. An instance of
the Gst problem consists of an undirected graph G (V, E),
cost function c : E → R and k subsets of vertices (called
groups) {g1, . . . , gk} with gi ⊆ V, i ∈ {1, . . . , k}.

Given constant K, the decision version of the Gst problem
asks whether there exists a subtree T (V ′, E′) of G (V, E)
(i.e., V ′ ⊆ V and E′ ⊆ E) such that |V ′ ∩ gi| > 0 for every
i ∈ {1, . . . , k} and cost

∑
e∈E′ c(e) ≤ K.

We transform an instance of the Gst problem to an in-
stance of the Mst-Tf problem as follows: for every group
gi in the Gst problem we create a skill ai. The task T to be
performed requires all the k skills. That is, T = {a1, . . . , ak}.
For every node v ∈ V of the Gst problem we create an in-
dividual iv with skills Xv = {ai | v ∈ gi}. The graph G′ of
the Mst-Tf problem is identical to the graph G of the Gst
problem, where the cost function c determines the weights
of the edges in the Mst-Tf instance of the problem. Given
this mapping it is easy to show that there exists a tree solu-
tion to the Gst problem with cost at most C if and only if
there exists a solution to the Mst-Tf problem with Cc-Mst
cost at most C. The problem is trivially in NP.

As before, note that the proofs above do not assume any-
thing about the distance function between individuals in
G. However, since the Gst problem remains NP-hard even
when the graph edge weights satisfy the triangle inequality,
so does the Mst-Tf. As in the case of the Diameter-Tf
problem, the above reduction is approximation preserving.
Therefore, the approximation properties of the Gst prob-
lem ([6] and references therein) carry over to the Mst-Tf
problem as well.

4.2 Discussion
In the definition of the Team Formation problem and

its specializations, we focused on minimizing the commu-
nication cost among team members. Other notions of the
“effectiveness” of a team can lead to different optimization
functions. For example, if the communication cost was not
a concern, we could define as our goal to find X ′ ⊆ X ,
such that C (X ′, T ) = T and |X ′| are minimized. Such
a problem definition ignores the existence of the underly-
ing graph G (X , E), and is actually an instance of the clas-
sic Set Cover problem, which can be solved by the stan-



dard GreedyCover algorithm. Details are presented in Sec-
tions 5.2 and 6.

Optimizing both the cardinality of the team and the com-
munication cost between its members would require the min-
imization of a function of the form α·|X ′|+(1−α)·Cc (X ′, G),
where α ∈ [0, 1]. For α = 1 the problem seeks for teams
with the minimum cardinality. For α = 0 this problem is
the Team Formation problem. However, for values of α in
(0, 1) it is not clear that optimizing this alternative function
makes sense; this is mostly because the two terms in the
sum are in different scales and there is no knowledge on how
these scales relate.

Alternatively, these two objectives (team size and commu-
nication cost) could be taken into account simultaneously by
defining the problem as a bi-objective optimization problem.
In such cases the goal is to find Pareto-optimal solutions [4].
Note that a solution is called Pareto-optimal if there does not
exist another solution that is better in both objectives. For
many problems, the set of Pareto-optimal solutions is expo-
nential to the size of the input and thus cannot be found in
polynomial time. Although we do not study this bi-objective
version of the problem in this paper, we note that a solu-
tion with minimum communication cost implicitly requires
a small team, since larger teams typically result in higher
communication costs.

In our setting, we assume that individuals either have a
skill or not; we do not allow for a scaling of the nodes’ abili-
ties. Similarly for the tasks; we assume that a task requires
a certain set of skills, without considering the special impor-
tance that different skills might have for the completion of
the task. Therefore, a straightforward generalization of the
Team Formation problem would be its graded variant. In
such a variant, the degree of skillfulness of individuals and
the extent to which a skill is required for the completion
of a task can be modelled by means of an integer weight
in some interval, e.g., {0, 1, . . . , δ}. In this case, the task
specification explicitly states for every required skill aj ∈ T
the minimum level requirement δj . Similarly, for every in-
dividual i with skill aj , the level of his competence with
respect to aj is specified. Then, all individuals with com-
petence level higher or equal to the minimum required level
are capable of contributing in covering this skill for the given
task. Conceptually, we assume that an individual has a skill,
only if his respective competence level is equal or higher to
the required level. In this way, this “graded” version of the
problem becomes identical to the basic version of the Team
Formation problem, studied in this paper.

5. ALGORITHMS
In this section, we present algorithms for the Diameter-

Tf and Mst-Tf problems. Our algorithmic solutions ex-
ploit the relationship of these two problems with the Mcc
and Gst problems, respectively.

5.1 Algorithms for the Diameter-Tf prob-
lem

Algorithm 1 shows the pseudocode of the RarestFirst

algorithm for the Diameter-Tf problem. The algorithm
is a variation of the Multichoice algorithm presented in [1].
First, for every skill a required by the task T , we compute
S(a), the support of a. Then, the algorithm picks the skill
arare ∈ T with the lowest-cardinality support S (arare). Note
that at least one individual from the set S (arare) needs to

be included in the solution. Among all candidates from the
set S (arare), the algorithm picks the one that leads to the
smallest diameter subgraph, when connected to its closest
individual in all other support groups S (a) (a ∈ T and a 6=
arare).

Algorithm 1 The RarestFirst algorithm for the
Diameter-Tf problem.

Input: Graph G (X , E); individuals’ skill vectors
{X1, . . . , Xn} and task T .
Output: Team X ′ ⊆ X and subgraph G [X ′].

1: for every a ∈ T do
2: S(a) = {i | a ∈ Xi}
3: arare ← arg mina∈T |S(a)|
4: for every i ∈ S (arare) do
5: for a ∈ T and a 6= arare do
6: Ria ← d

(
i, S (a)

)

7: Ri ← maxa Ria

8: i∗ ← arg min Ri

9: X ′ = i∗ ∪ {Path (i∗, S (a)) | a ∈ T}

Recall that in line 6 of Algorithm 1, d
(
i, S (a)

)
is simply

mini′∈S(a) d(i, i′). Also recall that Path (i∗, S (a)) in line 9
is the set of nodes in the graph that are along the short-
est path from i∗ to i′, where i′ is such that i′ ∈ S(a) and
d
(
i∗, S (a)

)
= d(i∗, i′). We assume that all pairs shortest

path have been pre-computed, and we use hash tables for
storing the attributes of every individual and a different set
of hashtables for storing the individuals that posses a spe-
cific attribute. Then, the running time of the RarestFirst

algorithm is O (|S (arare)| × n). A worst-case analysis sug-
gests that |S (arare)| = O (n). Thus the worst-case running
time of the RarestFirst is O (

n2
)
. However, in practice,

the running time of the algorithm is much less that this
worst-case analysis suggests.

Since the employed distance function d is a metric, we
can state the following for the approximation factor of the
RarestFirst algorithm:

Proposition 3. For any graph-distance function d that
satisfies the triangle inequality, the Cc-R cost of the solu-
tion X ′, given by RarestFirst for a given task, is at most
twice the Cc-R cost of the optimal solution X ∗. That is,
Cc-R (X ′) ≤ 2 ·Cc-R (X ∗).

Proof. The analysis we present here is similar to the
analysis of the Multichoice algorithm presented in [1]. First,
consider the solution X ′ output by the RarestFirst algo-
rithm, and let arare ∈ T be the skill possessed by the least
number of individuals in X . Also, let i∗ be the individual
picked from set S(arare) to be included in the solution X ′.
Now consider two other skills a 6= a′ 6= arare and individuals
i, i′ ∈ X ′ such that i ∈ S(a), i /∈ S(a′) and i′ ∈ S(a′), i′ /∈
S(a). If i, i′ are part of the team reported by the Rarest-

First algorithm, it means that i = arg minj∈S(a) d (i∗, j)
and i′ = arg minj∈S(a′) d (i∗, j). Due to the way the algo-
rithm operates, we can lowerbound the Cc-R cost of the
optimal solution as follows:

Cc-R (X ∗) ≥ d (i∗, i) and Cc-R (X ∗) ≥ d
(
i∗, i′

)
. (1)

Since we have assumed that the distance function d satisfies
the triangle inequality we also have that d (i, i′) ≤ d (i∗, i)+



d (i∗, i′). By applying the bounds given in (1) in the triangle
inequality we get the proposed approximation factor.

d
(
i, i′

) ≤ d (i∗, i) + d
(
i∗, i′

)

≤ Cc-R (X ∗) + Cc-R (X ∗)
= 2 ·Cc-R (X ∗) .

5.2 Algorithms for the Mst-Tf problem
In this section we describe two algorithms for solving the

Mst-Tf problem: the CoverSteiner and EnhancedSteiner

algorithms. Both algorithms are motivated by the resem-
blance of Mst-Tf to Steiner tree problems.

5.2.1 The CoverSteiner algorithm

Algorithm 2 The CoverSteiner algorithm for the Mst-Tf
problem.

Input: Graph G (X , E); individuals’ skill vectors
{X1, . . . , Xn} and task T .
Output: Team X ′ ⊆ X and subgraph G [X ′].

1: X0 ←GreedyCover(X , T )
2: X ′ ←SteinerTree(G,X0)

The first heuristic we present for the Mst-Tf problem
proceeds in two steps. In the first step, the social network
is ignored and the algorithm focuses on finding a set of in-
dividuals X0 ⊆ X such that ∪i∈X0Xi ⊇ T . In the second
step, the algorithm finds the minimum cost tree that spans
all the nodes in X0, and possibly other nodes in X \ X0. In
that way, a set of nodes X ′ such that X0 ⊆ X ′ ⊆ X is re-
ported. We call this two-step algorithm the CoverSteiner

algorithm.
The pseudocode of this algorithm is given in Algorithm 2.

The goal of the first step is to solve an instance of the classi-
cal Set Cover problem: the universe of elements to be cov-
ered are the requirements of task T and each individual in
X is a subset of the universe. To solve this, we use the stan-
dard GreedyCover algorithm for the Set Cover problem.
The GreedyCover algorithm is an iterative greedy procedure,
adding at each step t the individual Xt that possesses the
most yet uncovered required skills in T . For details on this
algorithm see [15].

In its second step, the CoverSteiner algorithm solves an
instance of the Steiner Tree problem on graph G. Recall
that in the standard Steiner Tree problem, we are given
an undirected graph with non-negative edge costs. The ver-
tices of this graph are partitioned into two sets: the re-
quired and the Steiner vertices. The Steiner Tree prob-
lem then asks for the minimum-cost tree in the input graph
that contains all required vertices and any subset of the
Steiner vertices. In our case, the set of nodes X0 reported
by the GreedyCover algorithm corresponds to the set of re-
quired vertices, while the vertices in X \ X0 represent the
Steiner vertices. Given graph G (X , E), the goal of line 2
of Algorithm 2 is to find the solution X ′ that minimizes
Cc-Mst (X ′), under the constraint that X ′ ⊇ X0.

There exist many algorithms for solving the classical Steiner
Tree problem. The pseudocode of the algorithm we use for
our experiments is given in Algorithm 3. We call this algo-
rithm the SteinerTree. The algorithm is due to [14], and is

Algorithm 3 The SteinerTree algorithm.

Input: Graph G (X , E); required nodes X0 and Steiner
nodes X \ X0.
Output: Team X0 ⊆ X ′ ⊆ X and subgraph G [X ′].

1: X ′ ← v, where v is a random node from X0.
2: while (X0 \ X ′) 6= ∅ do
3: v∗ ← arg minu∈X0\X ′ d (u,X ′)
4: if Path (v∗,X ′) 6= ∅ then
5: X ′ ← X ′ ∪ {Path (v∗,X ′)}
6: else
7: Return Failure

in fact a greedy heuristic for the Steiner Tree. The algo-
rithm incrementally adds to the current solution X ′ nodes
from the required set X0. At every step, a single node from
X0 is added; this is the node v∗ that has the minimum dis-
tance to the set of nodes X ′ already added to the solution
(line 3). If such node exists v∗ along with all the nodes in
the shortest path from it to X ′ are added to the solution
set. Otherwise, failure is reported.

The running time of the CoverSteiner algorithm is the
summation of the running times of GreedyCover and Stein-

erTree. The time required for the execution of the Greedy-

Cover algorithm is O (|T | × |X |) or O (mn). The time re-
quired for the execution of SteinerTree shown in Algo-
rithm 3 is O (|X0| × |E|). Thus, in the worst case, the
running time of CoverSteiner is O (

n3
)

(this is because

|X0| = O (n) and |E| = O (
n2

)
). However, in practice the

cardinalities of sets X0 and E are much less than their worst-
case upper bounds.

The main disadvantage of the CoverSteiner algorithm is
that, in the first step, it completely ignores the underlying
graph structure. This can lead to teams with a high comm-
nication cost, or may even lead to failure, even in cases where
a solution to the Mst-Tf problem actually exists.

5.2.2 The EnhancedSteiner algorithm
The inadequacies of the CoverSteiner algorithm can be

alleviated by the EnhancedSteiner algorithm that we de-
scribe in this section.

The EnhancedSteiner algorithm starts by first enhanc-
ing graph G with additional nodes and edges to form the
enhanced graph H. Then, SteinerTree is evoked to solve
the Steiner Tree problem on the enhanced graph H (for
similar applications of Steiner tree algorithms see [8]). The
pseudocode that corresponds to these two steps of the En-

hancedSteiner algorithm is shown in Algorithm 4.

Algorithm 4 The EnhancedSteiner algorithm for the Mst-
Tf problem.

Input: Graph G (X , E); individuals’ skill vectors
{X1, . . . , Xn} and task T .
Output: Team X ′ ⊆ X and subgraph G [X ′].

1: H ←EnhanceGraph
(
G, T

)
2: XH ←SteinerTree(H, {Y1, . . . , Yk})
3: X ′ ← XH \ {Y1, . . . , Yk}

Let the task to be performed require k skills, i.e., T =
{a1, . . . , ak}. The routine Enhance (line 1 of Algorithm 4)
makes a linear pass over the graph G and enhances it as
follows: an additional node Yj is created for every skill aj ∈



T . Each such new vertex Yj is connected to a node i ∈ X
if and only if aj ∈ Xi. The distance between node Yj and
nodes i ∈ S(aj) are set to be d(Yj , i) = D where D is a
large real number, larger than the sum of all the pairwise
distances of the nodes in the graph G. Finally, every node
i ∈ X that has abilities Xi is replaced by a clique Ci of size
|Xi|. Each node in the clique Ci should be considered as
a copy of individual i that has only a single distinct skill
from the set Xi. The distance between every two nodes
in the clique Ci is set to zero. Each node in the clique Ci

maintains all the existing connections of node i to the rest of
the graph – including the connections to nodes {Y1, . . . , Yk}.

The set of nodes XH that participate in the Steiner tree of
the enhanced graph H are found by calling the SteinerTree
algorithm with required nodes Y1, . . . , Yk. In a final step,
the algorithm removes from set XH the artificially added
nodes Y1, . . . , Yk (and their incident edges) to obtain the
final solution X ′.

The following claim can be made with respect to this algo-
rithm. Let X ∗H be the set of nodes in the optimal Steiner tree
of the enhanced graph H, and X ∗ be the optimal team for
the Mst-Tf problem. Then, we have that Cc-Mst (X ∗) =
Cc-Mst (X ∗H \ {Y1, . . . , Yk}). That is, if we remove nodes
Y1, . . . , Yk (and their incident edges) from the optimal solu-
tion of the Steiner tree problem on the enhanced graph H,
then the remaining nodes form the optimal solution to the
Mst-Tf problem.

Observe that the replacement of every individual i with a
clique Ci of size |Xi| is only conceptual. In practice, the im-
plementation of the algorithm does not require this. There-
fore, the enhanced graph H contains only k more nodes than
the input graph G, namely the nodes Y1, . . . , Yk. Therefore,
following the analysis of the SteinerTree done in the previ-
ous section, we have that the running time of the Enhanced-

Steiner algorithm is O (k × |E|).
The EnhancedSteiner algorithm is in fact motivated by

the obvious similarity between the Mst-Tf problem and the
Group Steiner Tree (Gst) problem; the connection was
already highlighted in the proof of Proposition 2. In gen-
eral, instead of the EnhancedSteiner algorithm any other
(approximation) algorithm for the Gst problem can also be
used to solve the Mst-Tf problem. We have picked the
EnhancedSteiner algorithm because it is simple, intuitive
and works well in practice. The best approximation ratio
achieved by an algorithm is O(log3 n log k) [10]. For a re-
view of some recent approximation algorithms for the Gst
problem see [6, 8, 10] and references therein.

6. EXPERIMENTAL EVALUATION
In this section we evaluate the proposed algorithms for the

Team Formation problem using the scientific-collaboration
graph extracted from the DBLP bibliography server. We
show that our algorithms for both the Diameter-Tf and
Mst-Tf problems give high-quality results in terms of the
communication cost, the cardinality of the team, and the con-
nectivity of the team. Examples of teams reported by our
methods illustrate the effectiveness of our framework in real
scenarios.

6.1 Other algorithms
In addition to the algorithms we described in Section 5,

we also experiment with some straightforward greedy heuris-
tics that would be natural alternatives for solving the Team

Formation problem. The rationale of these algorithms is
to form a solution iteratively. At round t, team Xt is formed
by adding to the team Xt−1 a node i ∈ X \ Xt−1. The node
i is selected so that it maximizes the ratio

i = arg max
i′∈X\Xt−1

∣∣C(Xt−1 ∪ Path (Xt−1, i
′) , T

)− C
(Xt−1, T

)∣∣
Cc

(Xt−1 ∪ Path (Xt−1, i′)
) .

That is, the node i that achieves the best ratio of newly cov-
ered skills in T divided by the corresponding communication
cost is picked. We refer to the variation of the greedy algo-
rithm that uses the Cc-R (resp. Cc-Mst) communication-
cost function, as GreedyDiameter (resp. GreedyMST).

6.2 The DBLP dataset
We use a snapshot of the DBLP data taken on April 12,

2006 to create a benchmark dataset for our experiments.
We only keep entries of the snapshot that correspond to pa-
pers published in the areas of Database (DB), Data mining
(DM), Artificial intelligence (AI) and Theory (T) confer-
ences. For each paper, we have information about its au-
thors (names), title, the forum where it was published and
the year of publication. We end up with a total of 19 venues
categorized as follows: DB = {sigmod, vldb, icde, icdt,
edbt, pods}, DM = {www, kdd, sdm, pkdd, icdm}, AI
= {icml, ecml, colt, uai} and T = {soda, focs, stoc,
stacs}. We refer to the set of selected papers as the DBLP
dataset.

We now proceed to generate the input to the Team For-
mation Problem as follows. The set of skilled individuals
Xdblp consists of the set of authors that have at least three
papers in the DBLP dataset. The skillset Xi of each such
author i consists of the set of terms that appear in at least
two titles of papers in DBLP that he has co-authored. The
above procedure creates a set Xauthors consisting of 5508
individuals and 1792 distinct skills. Two authors i, i′ are
connected in the graph Gdblp (Xdblp, E) if they appear as
co-authors in at least two papers in DBLP. This threshold
leads to a graph Gdblp that has 5588 total edges. The weight

of an edge connecting nodes i, i′ is w(i, i′) = 1 − |Pi∩Pi′ |
|Pi∪Pi′ | ;

Pi (resp., Pi′) is the set of papers authored by i (resp., i′).
In other words, the weights on the edges represent pairwise
Jaccard distances between all pairs of connected nodes. We
compute the graph distance between two nodes in graph
Gdblp using the shortest path distance as we described in
Section 3.

6.3 Performance Evaluation
This section evaluates the Team Formation algorithms

on the communication cost, the cardinality of the team and
the connectivity of the team.
Task generation: Every generated task is characterized by
two parameters: 1) t – the number of required skills in the
task; and 2) s – the diversity of the required skills in terms of
their corresponding areas. We use T (t, s) to refer to a task
generated for a specific configuration of these parameters.

Specifically, a task T (t, s) is generated as follows: first,
we select a subset of the research areas S ⊆ { db, dm, ai
,t } with |S| = s. Then, we randomly pick t required skills
from the terms appearing in papers published in conferences
belonging to these areas. For the results we report in this
section we use t ∈ {2, 4, . . . , 20} and s = 1. For every (s, t)
configuration we generate 100 random tasks for this con-
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Figure 2: Average communication cost of the teams produced by each Team Formation algorithm for tasks T (t, 1) with t ∈ {2, 4, . . . , 20}.
Figure 2(a): Average Cc-R cost of RarestFirst and GreedyDiameter algorithms. Figure 2(b): Average Cc-Mst cost of EnhancedSteiner,
CoverSteiner and GreedyMST algorithms.
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Figure 3: Figure 3(a): Average cardinality of the teams reported by RarestFirst, EnhancedSteiner, CoverSteiner, GreedyDiameter,
GreedyMST, GreedyCover. Figure 3(b): Number of reported teams that define a subgraph with disconnected components. The count is
taken over 100 independent tasks generated for every T (t, 1) where t ∈ {2, 4, . . . , 20}.

figuration and report the average results obtained by the
different methods. Experiments for s = 2, 3, 4 exhibit simi-
lar trends as those for s = 1 and thus are not presented due
to space constraints.
Communication cost: Figure 2(a) shows the average Cc-
R costs of the solutions achieved by RarestFirst and Greedy-

Diameter on tasks T (t, 1) with t ∈ {2, 4, . . . , 20}. Figure 2(b)
shows the average Cc-Mst costs of the EnhancedSteiner,
CoverSteiner and GreedyMST algorithms on the same set of
tasks. Note that the average is calculated for the solutions
X ′ that result in a connected graph G[X ′]. If, for a specific
task, the solution produced by a specific algorithm does not
lead to a connected graph, we simply ignore it.

It can be observed that, in terms of the diameter cost,
RarestFirst significantly outperforms GreedyDiameter. Sim-
ilarly, in terms of the MST cost, EnhancedSteiner generally
gives better results than CoverSteiner and GreedyMST. The
conclusion is that our proposed algorithms can form teams
that are able to accomplish a given task with low communi-
cation efforts.
Cardinality of the team: Since the size of the team often
has a positive correlation with the expenses of a project, we
evaluate the cardinality of the teams formed by every Team
Formation algorithm. The results in Figure 3(a) show that

the RarestFirst algorithm tends to report relatively large
teams, especially for large values of t. On the other hand, the
EnhancedSteiner algorithm generally finds teams of small
size. This can be explained by the fact that the RarestFirst
algorithm aims to minimize the diameter of the graph, which
is less likely to be affected by the introduction of new nodes.
On the other hand, the EnhancedSteiner algorithm tries to
minimize the Mst cost, which is always increased when a
new node is added to the team.

For comparison purposes, we also include the cardinality
of the teams reported by the GreedyCover algorithm. Re-
call that GreedyCover ignores the existence of the graph and
only reports a set of individuals who can perform the task by
simply looking at their skillsets. Therefore, the cardinality
of this solution is a lower bound on the cardinality of the so-
lutions produced by all the five aforementioned algorithms.
However, since GreedyCover ignores the graph structure, it
often forms teams of members that cannot communicate.
That is, the subgraph of the original graph defined by the
members of such teams is not connected. The following ex-
periment illustrates the validity of this claim.
Connectivity of the team: Given a task T , it might be
the case that there does not exist a team X ′ such that the
members of X ′ simultaneously have all the skills required by



T and define a connected subgraph. Further, even if such a
team exists, it might be the case that some algorithms fail
to find it. In this experiment, we evaluate the effectiveness
of the different algorithms in finding teams that correspond
to connected subgraphs of the original graph. Recall that
connected subgraphs have significantly lower communication
costs (both Cc-R and Cc-Mst) than disconnected ones.

Figure 3(b) shows, for every algorithm and every t ∈ {2, 4,
. . . , 20}, the number of times a team formed by an algorithm
defines a disconnected subgraph. The count is taken over
the 100 independent tasks generated for every T (t, 1). We
can observe that RarestFirst, GreedyDiameter, Enhanced-
Steiner and GreedyMST produce approximately the same
number of disconnected teams. We conjecture that the tasks
for which these algorithms fail to report a connected sub-
graph are in fact those that have no connected team as a so-
lution. On the other hand, CoverSteiner and GreedyCover

often fail to find a connected team, even in cases where such
a team actually exists. The results indicate that, although
GreedyCover produces teams of small size, the members of
this team cannot communicate efficiently.

6.4 Qualitative evidence
The goal of this experiment is show that our problem def-

initions and their corresponding algorithms produce reason-
able and intuitive results in practical settings. As input
to our problem, we again consider the individual authors
in Xdblp and the corresponding co-authorship graph Gdblp,
that we described in Section 6.2. We test our framework
on 10 distinct tasks. The required skills for each task are
defined by the words appearing in the title of an already pub-
lished paper. The papers were chosen from the “Most Cited
Computer Science Articles” list, maintained by CiteSeerX
(citeseerx.ist.psu.edu/stats/articles). We thus form
10 tasks by selecting the top-10 cited papers from the list,
which were also published in one of the 19 conferences cov-
ered by the DBLP Dataset. Table 1 shows the titles of the
these papers.

Table 2 shows the ten teams of authors obtained by the
RarestFirst and EnhancedSteiner algorithms. The set of
original authors for every paper is also reported. The names
highlighted in bold in the last two columns of the table in-
dicate authors that have been selected because they covered
some required skill of the input task. The names appearing
not in bold correspond to authors that were included in the
team as mediators, i.e., communication nodes that ensure
the connectivity of the graph.

We can observe that for papers 3, 6, and 9, RarestFirst
finds a single-node solution, whereas EnhancedSteiner fails
to do so. This is due to the fact that EnhancedSteiner starts
with a random node from X0, so it may be the case that none
of the nodes in the final team possesses all the required skills.
On the other hand, RarestFirst examines every node who
has the skill with the lowest-cardinality support. If a node
of them happens to have all other required skills, the process
simply reports that node and terminates.

In general, both algorithms produce teams of reasonable
size; note that not too many mediator nodes (nodes without
skill contribution) are introduced. In many cases, the actual
authors of a paper were included in the formed team. This is
reasonable, since the real teams are more likely to combine
skill coverage with a low communication cost. This attests
not only to the effectiveness of the algorithms, but also to

Table 1: Titles of the top-10 most cited papers from the DBLP
dataset according to CiteSeerX citation counting. The keywords
appearing in the tiles define the required skills of 10 distinct tasks.

Rank Paper title

1 The anatomy of a large-scale

hypertextual Web search engine

2 Fast algorithms for mining

association rules

3 Mining association rules between

sets of items in large databases

4 Text categorization with support vector machines:

Learning with many relevant features

5 Conditional random fields: Probabilistic models

for segmenting and labeling sequence data

6 Mining frequent patterns without

candidate generation

7 A survey of approaches to automatic

schema matching

8 Automatic subspace clustering of high dimensional

data for data mining applications

9 Models and issues in data stream systems

10 NiagaraCQ: A Scalable Continuous Query

System for Internet Databases

the validity of the problem definitions.

7. CONCLUSIONS
In this paper, we addressed the problem of forming a team

of skilled individuals to perform a given task, while minimiz-
ing the communication cost among the members of the team.
We explored two alternative formulations for the communi-
cation cost, which we believe are practical and intuitive.
We proved that the Team Formation problem is NP-Hard
for both formulations and proposed appropriate approxima-
tion algorithms. In a thorough experimental evaluation, we
evaluated the performance of our algorithms, and compared
them against reasonable baseline approaches. We concluded
with a qualitative evaluation, reporting the teams formed by
our algorithms on a set of real tasks.

8. REFERENCES
[1] E. M. Arkin and R. Hassin. Minimum-diameter

covering problems. Networks, 36(3):147–155, 2000.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In KDD ’06:
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 44–54, New York, NY, USA, 2006. ACM.

[3] A. Baykasoglu, T. Dereli, and S. Das. Project team
selection using fuzzy optimization approach. Cybern.
Syst., 38(2):155–185, 2007.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge UP, 2004.

[5] M. Cheatham and K. Cleereman. Application of social
network analysis to collaborative team formation. In
CTS ’06: Proceedings of the International Symposium
on Collaborative Technologies and Systems, pages
306–311.



Table 2: Authors of the top-10 most cited papers from the DBLP dataset; column 1: paper ranking in the top-10 list; column 2:
the actual authors of the papers; column 3: authors suggested by the RarestFirst algorithm; column 4: authors suggested by the
EnhancedSteiner algorithm

Rank Actual authors RarestFirst result EnhancedSteiner result

1 S. Brin, L. Page Paolo Ferragina, Patrick Val-

duriez, H. V. Jagadish, Alon

Y. Levy, Daniela Florescu Di-

vesh Srivastava, S. Muthukrishnan

P. Ferragina ,J. Han, H. V.

Jagadish, Kevin Chen-Chuan

Chang, A. Gulli, S. Muthukrish-

nan, Laks V. S. Lakshmanan

2 R. Agrawal, R. Srikant R. Agrawal Philip S. Yu

3 R. Agrawal, T. Imielinski, A. N.

Swami

Philip S. Yu Wei Wang, Philip S. Yu

4 T. Joachims Wei-Ying Ma, Gui-Rong Xue,

H. Liu, J. Han, H. Lu, Z. Chen,

Q.Yang, H. Cheng

J. Han, H. Lu, Wei-Ying Ma,

Z. Chen, H. Liu, Gui-Rong

Xue, Q. Yang

5 J. Lafferty, F. Pereira, A. McCal-

lum

A. McCallum A. McCallum

6 J. Han, J. Pei, Y. Yin F. Bonchi A. Gionis, H. Mannila, R.

Motwani

7 E. Rahm, P. A. Bernstein C. Bettini, R. Agrawal, Kevin

Chen-Chuan Chang, T. Imielin-

ski, H. Garcia-Molina, D. Barbara,

S. Jajodia

C. Bettini, P. A. Bernstein,

H. Garcia-Molina, S. Jajodia, D.

Maier, D. Barbara

8 R. Agrawal, J. Gehrke, D. Gunop-

ulos, P. Raghavan

D. Gunopulos, R. Agrawal R. Agrawal, D. Gunopulos

9 B. Babcock, S. Babu, M. Datar, R.

Motwani, J. Widom

M. T. Ozsu H. V. Jagadish, D. Srivastava

10 J. Chen, D. J. DeWitt, F. Tian, Y.

Wang

Donald Kossmann, David J.

DeWitt, Michael J. Franklin,

Michael J. Carey

M. J. Carey, M. J. Franklin, D.

Kossmann, D. J. DeWitt

[6] C. Chekuri, G. Even, and G. Kortsarz. A greedy
approximation algorithm for the group steiner
problem. Discrete Appl. Math., 154(1):15–34, 2006.

[7] S.-J. Chen and L. Lin. Modeling team member
characteristics for the formation of a multifunctional
team in concurrent engineering. IEEE Transactions on
Engineering Management, 51(2):111–124, 2004.

[8] C. W. Duin, A. Volgenant, and S. Vo[ss]. Solving
group Steiner problems as Steiner problems. European
Journal of Operational Research, 154(1):323–329, 2004.

[9] E. L. Fitzpatrick and R. G. Askin. Forming effective
worker teams with multi-functional skill requirements.
Comput. Ind. Eng., 48(3):593–608, 2005.

[10] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic
approximation algorithm for the group steiner tree
problem. J. Algorithms, 37(1):66–84, 2000.

[11] M. Gaston, J. Simmons, and M. desJardins. Adapting
network structures for efficient team formation. In In
Proceedings of the AAAI Fall Symposium on Artificial
Multi-agent Learning, 2004.

[12] M. Jackson. Network formation. The New Palgrave
Dictionary of Economics and the Law, 2008.

[13] G. Reich and P. Widmayer. Beyond steiner’s problem:
a VLSI oriented generalization. In Proceedings of the
fifteenth international workshop on Graph-theoretic
concepts in computer science, pages 196–210, 1990.

[14] H. Takahashi and A. Matsuyama. An approximate
solution for the Steiner problem in graphs.
Mathematica Japonica, 24:573–577, 1980.

[15] V. Vazirani. Approximation Algorithms. Springer,

2003.

[16] H. Wi, S. Oh, J. Mun, and M. Jung. A team formation
model based on knowledge and collaboration. Expert
Syst. Appl., 36(5):9121–9134, 2009.

[17] A. Zzkarian and A. Kusiak. Forming teams: an
analytical approach. IIE Transactions, 31:85–97, 2004.


