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ABSTRACT
In the last decade, structural properties of several natu-
rally arising networks (the Internet, social networks, the
web graph, etc.) have been studied intensively with a view
to understanding their evolution. In recent empirical work,
Leskovec, Kleinberg, and Faloutsos identify two new and
surprising properties of the evolution of many real-world net-
works: densification (the ratio of edges to vertices grows over
time), and shrinking diameter (the diameter reduces over
time to a constant). These properties run counter to con-
ventional wisdom, and are certainly inconsistent with graph
models prior to their work.

In this paper, we present the first model that provides a
simple, realistic, and mathematically tractable generative
model that intrinsically explains all the well-known pro-
perties of the social networks, as well as densification and
shrinking diameter. Our model is based on ideas studied
empirically in the social sciences, primarily on the ground-
breaking work of Breiger (1973) on bipartite models of social
networks that capture the affiliation of agents to societies.

We also present algorithms that harness the structural
consequences of our model. Specifically, we show how to
overcome the bottleneck of densification in computing short-
est paths between vertices by producing sparse subgraphs
that preserve or approximate shortest distances to all or a
distinguished subset of vertices. This is a rare example of
an algorithmic benefit derived from a realistic graph model.

Finally, our work also presents a modular approach to con-
necting random graph paradigms (preferential attachment,
edge-copying, etc.) to structural consequences (heavy-tailed
degree distributions, shrinking diameter, etc.).

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics. Stochastic processes.
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1. INTRODUCTION
In the past few years, the idea of networks as a unify-

ing theme to study “how social, technological, and natural
worlds are connected” has emerged as an important and ex-
troverted direction within theoretical CS. For a delightful
example that contains a sample of the topics, see the web
page for the Cornell course entitled “Networks”, developed
by Easley and Kleinberg.

Within this umbrella, the specific aim of this paper is to
develop mathematical models of real-world “social” networks
that are realistic, mathematically tractable, and — perhaps
most importantly — algorithmically useful . There are seve-
ral models of social networks that are natural and realistic
(fit available data) but are hard from an analytical view-
point; the ones that are amenable to mathematical analysis
or that have algorithmic significance are often unnatural or
unrealistic. In contrast, we present a model, rooted in so-
ciology, that leads to clean mathematical analysis as well as
algorithmic benefits.

We now briefly outline the history of significant recent
developments in modeling real-world networks that provide
the immediate context for our work. The numerous referen-
ces from and to these salient pieces of work will offer the
reader a more comprehensive picture of this area.

Internet and Web Graphs. One of the first observa-
tions that led to the interest in random graph models si-
gnificantly different from the classical Erdős–Rényi models
comes in the work of Faloutsos et al.[16], who noticed that
the degree distribution of the Internet graph1 is heavy-tailed,
and roughly obeys a “power law,” that is, for some constant
α > 0, the fraction of nodes of degree d is proportional to
d−α. Similar observations were made about the web graph2

by Barabasi and Albert [2], who also presented models based
on the notion of “preferential attachment,” wherein a net-
work evolves by new nodes attaching themselves to existing
nodes with probability proportional to the degrees of those

1Loosely speaking, this is the graph whose vertices are com-
puters and whose edges are network links.
2This is the graph whose vertices are web pages, and whose
directed edges are hyperlinks among web pages.
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nodes. Both works draw their inspiration and mathemati-
cal precedents from classical works of Zipf [33], Mandelbrot
[24], and Simon [30]. The latter work was formalized and
studied rigorously in [6, 12, 7]. Broder et al. [10] made a rich
set of observations about the degree and connectivity struc-
ture of the web graph, and showed that besides power-law
degree distribution, the web graph consisted of numerous
dense bipartite subgraphs (often dubbed “communities”).

Within theoretical CS, Aiello et al. [1], and Kumar et al.
[19] presented two models of random graphs, both of which
offer rigorous explanations for power-law degree distribu-
tions; the models of [19] also led to graphs with numerous
dense bipartite subgraphs, the first models to do so. The
models of [19] are based on the notion of graph evolution by
“copying,”where each new vertex picks an existing vertex as
its “prototype,” and copies (according to some probabilistic
model) its edges.

Preferential attachment and edge copying are two basic
paradigms that both lead to heavy-tailed degree distribu-
tions and small diameter. The former is simpler to analyze,
and indeed, despite its shortcomings with respect to explain-
ing community structure, it has been analyzed extensively
[6, 7]. For an entirely different treatment, see [15].

Small-World Graphs. In another development, Watts
and Strogatz [32], Kleinberg [18, 17], and Duncan and Watts
[13] revisited a classic 1960’s experiment of the sociologist
Stanley Milgram [31], who discovered that, on average, pairs
of people chosen at random from the population are only six
steps apart in the network of first-name acquaintances. In
Kleinberg’s model, vertices reside in some metric space, and
a vertex is usually connected to most other vertices in its
metric neighborhood, and, in addition, to a few “long range”
neighbors. Kleinberg introduced an algorithmic twist, and
proved the remarkable result that the network has small dia-
meter and easily discoverable paths iff the long-range neigh-
bors are chosen in a specific way.

Kleinberg’s models, dubbed “small-world networks,” offer
a nice starting point to analyze social networks3. A piece
of folklore wisdom about social networks is the observation
that friendship is mostly transitive, that is, if a and b are
friends and b and c are friends, then there is a good chance
that a and c are friends as well. Kleinberg’s model certainly
produces graphs that satisfy this condition, but because of
its stylized nature, isn’t applicable in developing an under-
standing of real social networks. The other limitation of
Kleinberg’s model is that it is static, and is not a model of
graph evolution.

Densification and Shrinking Diameter. Returning
to the topic of evolving random graphs, the next signifi-
cant milestone is the work of Leskovec et al.[22], who made
two stunning empirical observations, both of which imme-
diately invalidate prior models based on preferential attach-
ment, edge copying, etc., as well as the small-world mo-
dels. Namely, they reported that real-world networks be-
came denser over time (super-constant average degree), and
their diameters effectively decreased over time!
3Collaboration networks among authors, email and instant
messaging networks, as well as the ones underlying Friend-
ster, LiveJournal, Orkut, LinkedIn, MySpace, FaceBook,
Bebo, etc. Indeed, the work of [28] demonstrates interesting
correlations of friendships on the LiveJournal network with
geographic proximity as an underlying metric for a small-
world model.

The dual pursuits of empirical observations and theore-
tical models go hand in hand4, and the work of [22] poses
new challenges for mathematical modeling of real-world net-
works. Along with their observations, Leskovec et al. [22]
present two graph models called the “community guided at-
tachment” and “forest fire model”. The former is a hierar-
chical model, and the latter is based on an extension of edge
copying. While several analytical results are proved concern-
ing these two models in [22], the models are quite complex
and do not admit analyses powerful enough to establish all
the observed properties, most notably degree distribution,
densification, and shrinking diameter simultaneously.

The papers [21] and [23] study models explicitly contrived
to be mathematically tractable and yielding the observed
properties, without any claims of being realistic or intuiti-
vely natural. In the opposite direction, Leskovec et al. [20]
propose a model that fit the data quite well, but that do not
admit mathematical analyses. The crucial features of the
latter model are that edges are created based on preferen-
tial attachment and by randomly “closing triangles.”

Affiliation Networks. Our design goals for a mathe-
matical model of generic social networks are that it should
be simple to state and intuitively natural, sufficiently flexible
and modular in structure with respect to the paradigms em-
ployed, and, of course, by judicious choice of the paradigms,
offer compelling explanations of the empirically observed
phenomena.

The underlying idea behind our model is that in social
networks there are two types of entities — actors and so-
cieties — that are related by affiliation of the former in
the latter. These relationships can be naturally viewed as
bipartite graphs, called affiliation networks; the social net-
work among the actors that results from the bipartite graph
is obtained by “folding” the graph, that is, replacing paths
of length two in the bipartite graph among actors by an
(undirected) edge. The central thesis in developing a social
network as an folded affiliation network is that acquaintance-
ships among people often stem from one or more common or
shared affiliations — living on the same street, working at
the same place, being fans of the same football club, having
coauthored a paper together, etc.

Affiliation networks are certainly not new — indeed, this
terminology is prevalent in sociology, and a fundamental
1974 paper of Breiger [9] appears to be the first one to ex-
plicitly address the duality of “persons and groups” in the
context of “networks of interpersonal ties... [and] intergroup
ties.” Breiger notes that the metaphor of this “dualism” oc-
curs as early as in 1902 in the work of Cooley.

Our model for the evolving affiliation network and the
consequent social network incorporates elements of prefer-
ential attachment and edge copying in fairly natural ways.
The folding rule we analyze primarily in the paper is the
one that places an undirected edge between every pair of
(actor) nodes connected by a length-2 path in the bipartite
graph. We consider some extensions for which our analyses
continue to work, and more generally, on the flexibility of
our model in Section 8. We show that when an affiliation
network B is generated according to our model and its fold-
ing G on n vertices is produced, the resulting graphs satisfy
the following properties:

4See Mitzenmacher’s editorial [27] for an eloquent articula-
tion of this phenomenon
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(1) B has a power-law distribution, and G has a heavy-
tailed degree distribution as well, and all but o(n) vertices
of G have bounded degree;

(2) under a mild condition on the ratio of the expected
degree of actor nodes and society nodes in B, the graph G
has superlinear number of edges;

(3) under the same condition, the effective diameter of G
stabilizes to a constant.

Algorithmic Benefits, and an Application. Although
they are very interesting, these structural properties do not
yield any direct insight into the development of efficient algo-
rithms for challenging problems on large-scale graphs. With
our model of networks based on affiliation graphs, we take a
significant step towards remedying this situation. We show
how we can approach path problems on our networks by tak-
ing advantage of a key feature in their structure. Namely,
we utilize the fact that even though the ultimate network
produced by the model is dense, there is a sparse (constant
average degree) backbone of the network given by the un-
derlying affiliation network.

First we show that if we are given a large random set R
of distinguished nodes and we care about paths from arbi-
trary nodes to nodes in R, then we can sparsify the graph
to have only a small constant fraction of its edges, yet pre-
serving all shortest distances to vertices in R. Secondly, we
show that if we are allowed some distortion, we can spar-
sify the graph significantly via a simple algorithm for graph
spanners: namely, we show that we can sparsify the graph
to have a linear number of edges, while stretching distances
by no more than a factor given by the ratio of the expected
degree of actor and society nodes in the affiliation network.

Finally, we mention our motivating example: a “social”
network that emerges from search engine queries, where
these shortest path problems have considerable significance.
The affiliation network here is the bipartite graph of queries
and web pages (urls), with edges between queries and urls
that users clicked on for the query; by folding this network,
we may produce a graph on just the queries, whose edges
take on a natural semantics of relatedness. Now suppose
we are given a distinguished subset of queries that possess
some significance (high commercial value, topic names, peo-
ple names, etc.). Given any query, we can: find the near-
est commercial queries (to generate advertisements), classify
the query into topics, or discover people associated with the
query. We have empirically observed that our sparsification
algorithms work well on these graphs with hundreds of mil-
lions of nodes.

Critique of our work. In this paper we only analyze
the most basic folding rule, namely replace each society node
in the affiliation network by a complete graph on its actors
in the folded graph. As noted in Section 8, this could be
remedied somewhat without losing the structural properties;
we leave for future work a more detailed exploration of the
possibilities here.

The next drawback of our models is that given a social
network (or other large graph), it is not at all clear how one
can test the hypothesis that it was formed by the folding of
an affiliation network. The general problem of solving, given
a graph G on a set Q of vertices, whether it was obtained by
folding an affiliation network on vertex sets Q and U , where
|U | = O(|Q|), is NP-Complete.

Finally, our model of folded affiliation networks seems li-

mited to social networks among people related together by
various attributes (the societies). A feature that is often
seen in several large real networks that appears to be missed
by our model is the presence of an approximately hierarchi-
cal structure (for example, the Internet graph exhibits an
approximate hierarchy in the form of autonomous systems,
domains, intra- and inter-domain edges via gateways, and
so forth).

2. OUR MODEL
In our model, two graphs evolve at the same time. The

first one is a simple bipartite graph that represents the af-
filiation network; we refer to this graph as B(Q, U). The
second one it is the social network graph, we call this graph
G(Q, E). The set Q is the same in both graphs. As defined,
G(Q, E) is a multigraph, so we also analyze the underlying

simple graph Ĝ(Q, Ê); the results and proofs for Ĝ(Q, Ê)
are omitted. For readability, we present the two evolution
processes separately even though the two graphs evolve to-
gether.

B(Q,U)
Fix two integers cq , cu > 0, and let β ∈ (0, 1).

At time 0, the bipartite graph B0(Q, U) is a simple
graph with at least cqcu edges, where each node in Q
has at least cq edges and each node in U has at least
cu edges.

At time t > 0:

(Evolution of Q) With probability β:

(Arrival) A new node q is added to Q.

(Preferentially chosen Prototype) A node q′ ∈ Q is
chosen as prototype for the new node, with probability
proportional to its degree.

(Edge copying) cq edges are “copied” from q′; that is,
cq neighbors of q′, denoted by u1, . . . , ucq , are chosen
uniformly at random (without replacement), and the
edges (q, u1), · · · , (q, ucq ) are added to the graph.

(Evolution of U) With probability 1 − β, a new
node u is added to U following a symmetrical process,
adding cu edges to u.

In order to understand the intuition behind this evolv-
ing process, let us consider, for example, the citation graph
among papers. In this case the bipartite graph consists of
papers, the set Q, and topics, the set U . Now when an
author writes a new paper, he probably has in mind some
older paper that will be the prototype, and he is likely to
write on (a subset of the) topics considered in this proto-
type. Similarly, when a new topic emerges in the literature,
it is usually inspired by an existing topic (prototype) and it
has been probably foreseen by older papers.

We call folded any edge that is in G0(Q, E) or has been
added to G(Q,E) via the prototype or by evolution of U ;
the set of folded edges is denoted by F .

To continue the example of citation networks, the intuition
behind the construction of G(Q,E) is that when an author
writes the references of a new paper he will cite all, or most,
of the paper on the same topics and some other papers of
general interest. The same ideas that suggest this model for
the citation graph can be applied also to other social graphs.
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G(Q, E)
Fix integers cq, cu, s > 0, and let β ∈ (0, 1).

At time 0, G0(Q, E) consists of the subset Q of the
vertices of B0(Q, U), and two vertices have an edge
between them for every neighbor in U that they have
in common in B0(Q,U).

At time t > 0:

(Evolution of Q) With probability β:

(Arrival) A new node q is added to Q.

(Edges via Prototype) An edge between q and another
node in Q is added for every neighbor that they have
in common in B(Q, U) (note that this is done after the
edges for q are determined in B).

(Edges via evolution of U)
With probability 1 − β:

A new edge is added between two nodes q1 and q2 if
the new node added to u ∈ U is a neighbor of both q1

and q2 in B(Q, U).

(Preferentially Chosen Edges) A set of s nodes
qi1 , . . . , qis is chosen, each node independently of the
others (with replacement), by choosing vertices with
probability proportional to their degrees, and the
edges (q, qi1), . . . , (q, qis) are added to G(Q, E).

3. EVOLUTION OF THE DEGREE DISTRI-
BUTION OF AFFILIATION NETWORKS

In this section we state the main results concerning the
degree distribution of B(Q, U). The first result shows that
the degree distribution of vertices in both Q and U satisfy
power laws. In addition, we establish three additional lem-
mata that are important from a structural viewpoint; these
lemmata tell us how the degrees of the high-degree vertices
evolve, and also assert that most of the edges of B added
“later” in the process have their end points pointing to a
low-degree node.

Theorem 1. For the bipartite graph B(Q,U) generated
after n steps, almost surely, when n → ∞, the degree se-
quence of nodes in Q (resp. U) follows a power law distribu-

tion with exponent α = −2 −
cqβ

cu(1−β)

“

α = −2 − cu(1−β)
cqβ

”

,

for every degree smaller than nγ , with γ < 1

4+
cqβ

cu(1−β)

 

γ <

< 1

4+
cu(1−β)

cqβ

!

.

Lemma 2. If a node in B(Q, U) has degree g(n) at time
n, with g(n) ∈ ω(log n), it had degree with high probability
Ω(g(n)) also at time ǫn, for any constant ǫ > 0.

Lemma 3. If a node in B(Q,U) has degree Θ(nλ) at the
end of the process a constant fraction of the node pointing
to u have been inserted after time φn, for any constant 0 <
φ, λ < 1.

Lemma 4. At any time φn, for any constant 0 < φ ≤ 1,
the number of edges, in B(Q,U), that points to a node in U

of degree at least i is Θ

„

ni
−

cu(1−β)
cqβ

«

, for any i up to nγ ,

with γ < 1

4+
cu(1−β)

cqβ

.

4. PROPERTIES OF THE DEGREE DISTRI-
BUTIONS OF THE GRAPHS G(Q, E) AND
Ĝ(Q, Ê)

Although derived from B(Q,U), the problem of comput-

ing the degree distributions of G(Q,E) and of Ĝ(Q, Ê) is
much harder; in this section we will show some interesting
properties of the degree distribution of the folded graphs.
First we will show that the probability of a random node
G having high-degree dominates the complementary cumu-
lative distribution function of the degree distribution of the
nodes in U in B(Q,U). Then, by construction, a similar
theorem follows with respect to the nodes in Q. Together,
these results imply:

Theorem 5. The degree distributions of the graphs G(Q,

E) and Ĝ(Q, Ê) are heavy-tailed.

Proposition 6. For the folded graphs G(Q, E) and Ĝ(Q,

Ê) generated after n steps, almost surely, when n → ∞,
the complementary cumulative distribution function of the
degrees of nodes inserted after time φn, for any constant
0 < φ < 1, dominates the complementary cumulative distri-

bution of a power law with exponent α = −2 − cu(1−β)
cqβ

, for

every degree bigger than log2+ǫ n and smaller than nγ , with
γ < 1

4+
cu(1−β)

cqβ

.

Proof. Let Qi be the number of nodes inserted after
time φn and with degree at least i in G(Q, E). Instead of
computing directly Qi we show that Qi is bigger than a

random variables, which is in Θ

„

ni
−2−

cu(1−β)
cqβ

«

.

Let Si be the number of edges inserted after time φn,
pointing to a node of degree at least i in B(Q,U), and such
that ∀(a, b) ∈ Si, if a ∈ Q then (a, b) is the oldest edge
pointing to the node a. By definition the following inequality
holds: Si ≤ Qi. Now by Lemma 2 we know that all the
nodes inserted after time φn will have degree in O(log n)
in B(Q, U). So any node in Qi has degree in O(log n) in
B(Q,U) and only cu of its neighbors can have degree in
ω(log n). Hence if a node in Qi has degree i ∈ ω(log2+ǫ n)
in G(Q, E) at least one of its initial neighbors has degree in
Ω(i) in B(Q,U).

Now by Lemma 4 there are Θ

„

ni
−

cu(1−β)
cqβ

«

edges of de-

gree at least i, for i up to nγ , with γ < 1

4+
cu(1−β)

cqβ

, thus

there are two constants p∗ and p∗ ∈ Θ

„

i
−

cu(1−β)
cqβ

«

such

that p∗ < Pr[copying an edge of degree at least i at time
t] < p∗, for any t ≥ φn.

Hence Si dominates the number of heads that we have if
we flip Θ((1−φ)n) times a biased coin that gives head with
probability p∗. Thus applying the Chernoff bound, we have:
Θ(p∗(1 − φ)n) ≤ Qi.

Hence Qi ∈ Ω

„

ni
−

cu(1−β)
cqβ

«

, and Pr[a node in Q′ has de-

gree > i] ∈ Ω

„

i
−

cu(1−β)
cqβ

«

.

Proposition 7. For the folded graphs G(Q, E) and Ĝ(Q,

Ê) generated after n steps, almost surely, when n → ∞,
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the complementary cumulative distribution function of nodes
dominates the complementary cumulative distribution func-
tion of a power law distribution with exponent α = −2 −

cqβ

cu(1−β)
, for every degree smaller than nγ , with γ < 1

4+
cqβ

cu(1−β)

.

Finally we will show that most the nodes have degrees in
Θ(1).

Proposition 8. For the folded graphs G(Q, E) and Ĝ(Q,

Ê) generated after n steps, all but o(n) nodes have degree in
Θ(1).

Proof. We start by notice that we can restrict our atten-
tion to the edges in F because the edges in |E −F | ∈ Θ(n).
Thus only o(n) nodes can have degree in ω(1) in the graph
G(Q, E − F ).
Further, by Theorem 1, all but o(n) nodes in B(Q, U) have
degree ∈ Θ(1). In addition, recalling that for Lemma 4 only
an o(n) of the edges in B(Q,U) will point to a non-constant
degree node in U . We have that only an o(n) of the nodes
increase their degrees by more than a constant factor.

5. DENSIFICATION OF EDGES
In this section we prove that the number of edges in the

graph G(Q,E) is ω(|Q|).

Theorem 9. If cu < β

1−β
cq the number of edges in G(Q,

E) is ω(n).

Proof. We notice that every node u in U ∈ B(Q,U) in
G(Q, E) gives rise to a clique where all neighbors of u are
connected. Thus we can lower bound the number of edges
in the graph G(Q, E) as follows:

|E| >
Pn

i=1(# of nodes of degree i in U)
`

i

2

´

≥
PN

i=1(# of nodes of degree i)
`

i

2

´

,

where N = nγ , with γ < 1

4+
cqβ

cu(1−β)

. By Theorem 1 with

high probability:

|E| >
PN

i=1

   

n

ζ

„

−2−
cu(1−β)

cqβ

«

1

i
2+

cu(1−β)
cqβ

!

(1 ± o(1))

!

`

i

2

´

!

∈ ω(n).

The same theorem holds also for Ĝ(Q, Ê); the proof is omit-
ted.

6. SHRINKING/STABILIZING OF THE
EFFECTIVE DIAMETER

We use the definition of the q-effective diameter given
in [21].

Definition 1 (Effective Diameter). For 0 < q <
1, we define the q-effective diameter as the minimum de such
that, for at least a q fraction of the reachable node pairs, the
shortest path between the pairs is at most de.

In this section we will show that the effective diameters
of G(Q, E) and Ĝ(Q, Ê) shrink or stabilize over time. The
intuition behind those proofs is that even if a person q is not
interested in any popular topic, and so is not linked to any
popular topic in B(Q,U), with high probability at least a
friend of q is interested in a popular topic.

Theorem 10. If cu < β

1−β
cq, the q-effective diameter of

the graph G(Q, E) shrinks or stabilizes after time φn, for
any constants 0 < φ, q < 1.

Proof. Let H be the set of nodes of U in B(Q,U) with
degree ≥ nα, for small α > 0. By Lemma 2 every node in
H has been inserted in the graph before time γn, for any
constant 0 < γ < 1. Thus the diameter of the neighborhood
of H in G(Q, E) shrinks or stabilizes after time γn.

Now we want to show that all but o(n) nodes inserted
after time ǫn with constant ǫ ≪ φ has at least a neighbor
that is in the neighborhood of H in B(Q, U). Hence we will
be able to upper bound the q-effective diameter with the
diam(H) + 2, for any constant q < 1.

The number of edges that have one endpoint which is a
neighbor of H is lower bounded by the number of edges ge-
nerated, in the folding process, by the existence of nodes in
H . At any time after ǫn the number of this edges can be
lower bounded, as in Theorem 9, by

PN

i=nα

   

ǫn

ζ

„

−2−
cu(1−β)

cqβ

«

1

i
2+

cu(1−β)
cqβ

!

(1 ± o(1))

!

`

i

2

´

!

,

where N = nγ , with

γ < 1

4+
cqβ

cu(1−β)

, thus they are in Ω

0

@n
1+ 1

4+
cqβ

cu(1−β)

cu(1−β)
cqβ

1

A.

Instead the number of edges whose endpoints are not neigh-
bors of H can be upper bounded by

Pnα

i=1

   

n

ζ

`

−2−
cu(1−β)

cqβ

´

1

i
2+

cu(1−β)
cqβ

!

(1 ± o(1))

!

`

i

2

´

!

+

+sn ∈ Ω

 

n
1+α

cu(1−β)
cqβ

!

,

where the first term of the sum represents all the edges that
are created by nodes in U in B(Q,U) and /∈ H and the
second term represents all the edges added to the graph by
a choice based on preferential attachment in G(Q, E).

Now when a new node v arrives at a time between ǫn and
φn, it chooses a set of nodes qi1 , . . . , qis independently with
a probability proportional to their degrees and it connects
to those nodes. Thus by fixing α < 1

4+
cqβ

cu(1−β)

we have that

v will point with high probability to a node that is neighbor
to H in B(Q,U). Hence for at least a q fraction of the
reachable node pairs, the shortest path length between a
pair is at most diam(H) + 2.

The same theorem holds also for Ĝ(Q, Ê); the proof is
omitted.

7. SPARSIFICATION OF G(Q,E)

Several interesting algorithms (eg. the Dijkstra’s algo-
rithm) have complexity proportional to the number of edges
in the graph. As proved in section 5, graphs produced by
our model have a superlinear number of edges. In this sec-
tion we will analyze two settings in which we can reduce the
number of edges.
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First we analyze the case in which we wish to compute
shortest paths from an arbitrary node to one of several rele-
vant, or distinguished, nodes. We analyze the case in which
the set of relevant nodes has cardinality at most n

log n
and

is chosen uniformly at random. For this case, we present an
algorithm, Algorithm A , which, with high probability, gen-
erates from G(Q, E) a new graph G′(Q, E′), with |E′| ≤ δ|E|
and 0 < δ < 1, such that for any node u in G and any rele-
vant node v, a path of shortest distance in G is also present
in G′.

In the second setting, in which a constant stretching of
distances is allowed, we show that exists an algorithm that
reduces the number of edges to a Θ(n) both in G(Q, E) and

in Ĝ(Q, Ê).

7.1 Sparsification with preservation of the
distances from a set of relevant nodes

We start by describing algorithm A , the sparsification
algorithm.

Input: G(Q,E) and a set R of relevant nodes.
(1) Initially, label all edges deletable.
(2) For each node a ∈ R:
(a) Compute the breadth first search tree starting from

node a and exploring the children of a node in increasing
order of insertion.

(b) Label all edges in the breadth first search tree of node
a as undeletable.

(3) Delete all edges labeled as deletable.

Theorem 11. Suppose the set of relevant nodes R has
cardinality n

log n
and suppose that the elements of R are cho-

sen uniformly at random from Q. If cu ≤ β

1−β
cq, the algo-

rithm A with high probability generates from G(Q,E) a new
graph G′(Q, E′), with |E′| ≤ δ|E| and 0 < δ < 1, in which
the distance between every couple of nodes (a, b) is preserved
if at least one of the two node is in R.

Before proving Theorem 11 we introduce two useful lem-
mata.

Definition 2 (Useless Nodes). For a node u ∈ U in
B(Q, U), we say that a set Su of nodes in G(Q,E) is useless
for u if every v ∈ Su has an edge to u in B and, furthermore,
if we compute a breadth first search in B(Q,U), starting
from node u and analyzing the nodes following increasing
insertion order, no node in Su will be in a path between u
and a relevant node in the breadth first search tree.

Lemma 12. Let u ∈ U and let Su be a set of useless nodes
for u; then algorithm A will delete all edges in G(Q,E) that
are between nodes in Su and that are in the clique among
the neighbors of u.

Lemma 13. For ǫ > 0, if u has degree Ω(nǫ), then a con-
stant fraction of its neighbors will be in Su.

Proof. (of Theorem 11) It is easy to see that running al-
gorithm A will not change distances between pairs of nodes
(a, b) if at least one of the two nodes is in R. So we have
only to prove that a constant fraction of the edges are deleted
by the algorithm. First we notice that we can restrict our
attention only to the set F of folded edges; indeed, by con-
struction, |E − F | ∈ Θ(n). Now, recalling the description
of the generating process given in Theorem 9, we have that

all but an o(|E|) of the edges in F will be part of cliques of
polynomial size generated from a node u of degree Ω(nǫ), for
small ǫ. Now by Lemma 12 and Lemma 13 we have that in
every clique generated from such a node a constant fraction
of the edges will be deleted, thus the claim follows.

Proof. (of Lemma 12) First we notice if an edge is deleted
by A in G(Q, F ), where F is the set of folded edges, it will
be deleted also in G(Q,E). This is true because A deletes
all edges that do not appear in any shortest path from any
node to a node to in R and F ⊂ E. Thus in the following
we will consider G(Q, F ).

Let u ∈ U and NB(u) the set of neighbors of u in B(Q,U).
After running algorithm A , we have that any node v ∈ Su ⊂
NB(u) does not appear as an intermediate node in a shortest
path between a relevant node and a node in NB(u). Indeed
suppose by contradiction that v appears as an intermediate
node in the path between a relevant node r and a node
t ∈ NB(u), this would imply that no node h ∈ NB(u) would
satisfy d(h, r) ≤ d(v, r), where d(·, ·) is the distance function,
and h has been added to B(Q, U) before v.
Thus the breadth first search tree in B(Q, U) rooted at u
should have v in the path between (u, r), thus v /∈ Su a
contradiction. Thus each node in Su belongs to a different
branch in every breadth first search tree in G(Q, F ) rooted
at any relevant node, hence any edge between two nodes in
Su will be deleted by A .

Proof. (of Lemma 13) As in the proof of Lemma 12
we can restict out attention to G(Q, F ). By Lemma 2 and
Lemma 3 we have that if a node u has degree nλ ∈ Ω(nǫ)
at the end of the process it should have degree µnλ, also
at time φn, for some constants 0 < µ ≤ 1 and 0 < φ < 1,
and that a constant fraction of the nodes pointing to u have
been inserted after time φn. We call this set of nodes, L,
latecomers. We prove that in the breadth first search from
u, only o(|L|) of the vertices in L are used to reach a rele-
vant node. Thus |Su| ∈ Θ(|L|) ∈ Θ(NB(u)) so the Lemma
will follow. In order to prove this we start by showing that
the sum of the nodes over the branches of the breadth first
search tree rooted at u and containing a latecomer node is
Θ(nλ).5.

We say that a node i is a child of u if the edge (i, j) exists
in B(Q, U) and i has been inserted in B(Q,U) after u. Let
the descendants of u be the set S such that a node v is in
S if and only if v is a child of u or v is a child of a node
in S. Let Edesc

t be the expected number of nodes that are
descendants of a latecomer. Notice that Edesc

φn = 0, so we
have:

Edesc
t = Edesc

t−1 + (βcq + (1 − β)cu)
Edesc

t−1 +µnλ

et−1+eB0

Instead of studying Edesc
t will we study the function Wt,

with Wφn = µnλ and the recursive equation:

Wt = Wt−1 + (βcq + (1 − β)cu)
Wt−1

et−1 + eB0

5Note that when a node is added all its edges are copied
from its prototype. So the distance between any couple of
pre-existing nodes cannot shrink after the insertion of a new
node. Thus in the breadth-first tree built by A it holds that:
for a node u all the sons of u have been inserted after u

432



It easy to note that Wt > Edesc
t . So we have:

Edesc
t < Wt−1(1 + (βcq + (1 − β)cu) 1

et−1+eB0
)

= Wt−1

“

1 +
(βcq+(1−β)cu)

eφn+(βcq+(1−β)cu)((t−1)−φn)(1±o(1))

”

< Wt−1

“

1 +
(βcq+(1−β)cu)

eφn+(βcq+(1−β)cu)((1−ϕ)(t−1)−φn)

”

Edesc
n < Wφn

Γ(eφn+(βcq+(1−β)cu)((1−ϕ)n−φn)+(βcq+(1−β)cu))

Γ(eφn+(βcq+(1−β)cu)((1−ϕ)n−φn))
Γ(eφn+(βcq−(1−β)cu)(ϕn−φn))

Γ(eφn−(βcq+(1−β)cu)(ϕn−φn)+(βcq+(1−β)cu))

∼ nλ
“

eφn+(βcq+(1−β)cu)((1−ϕ)n−φn)

eφn+(βcq−(1−β)cu)(ϕn−φn))

”(βcq+(1−β)cu)

∈ Θ(nλ)

The final technical steps use some concentration results on
hereditary function from the literature [14], which are omit-
ted. Specifically, we notice that the number of descendants
can be seen as a hereditary function on the set of edges
where the boolean property is being a descendant of u. Us-
ing that the median M [number of descendants] < cmnλ for
a 0 < cm < 1. We have that Edesc

t is sharply concentrated.
Furthermore the set of relevant nodes is of cardinality n

log n

and it is chosen uniformly at random hence with high prob-
ability only a o(|L|) of the latecomers and their descendants
would be a relevant. Thus only a o(|L|) of the branches of
the breadth first search tree rooted at u and containing a
node inserted after time φn will lead to a relevant nodes. So
all but a o(|L|) of the latecomers will be in Su.

7.2 Sparsification with a stretching of the
distances

In the previous subsection we have shown that we can
reduce the number of edges in G(Q,E) by a constant factor
using the algorithm A . In this section we will study what
we can achieve if we permit some bounded stretching of the
shortest distance between two nodes.

We start by noticing that the graph B(Q,U) has a linear
number of edges and any distance between two nodes in this
graph is equal to 2 times the distance of nodes in G(Q,F )
so adding the edges in E − F it seems that we have the
perfect solution to our problem. Unfortunately the original
bipartite graph may not be available to us; nevertheless, we
are able to explore the underlying backbone structure of G
to prove the following theorem.

Theorem 14. There is a polynomial algorithm that, for
any fixed cu, cq, β, finds a graph G′(Q, E′) with a linear num-
ber of edges, where the distance between two nodes is at most
k times larger that the distance in G(Q, E) and in Ĝ(Q, Ê),
where k is a function of cu, cq , β.

Proof. First we notice that we can restrict our attention
only to the folded edges, indeed by construction |E − F | ∈
Θ(n).

Let us say that S is a k-spanner of the graph G if it is
a subgraph of G in which every two vertices are no more
than k times further apart as they are in G. The problem of
finding k-spanners of a graph is studied extensively in several
papers — [29, 4, 5], to name a few. In our analysis, we will
consider the algorithm proposed in [4] for the unit-weight
case.

Their algorithm builds the set ES of edges of the 2k-
spanner as follows: at the beginning ES = ∅. The edges
are processed one by one, and an edge is added to ES if and

only if it does not close a cycle of length 2k or smaller in
the graph induced by the current spanner edges ES. At the
end of the process the graph G(Q,ES) will be a 2k-spanner
of G(Q, E) by construction and the fact that the girth of
G(V, ES) will be at least k + 1. Since a graph with more

than n1+ 1
k edges must have a cycle of at most 2k edges, the

algorithm builds a spanner of size O(n1+ 1
k ).

It is important to notice that if we apply the algorithm de-
scribed above to G(Q, E) and G(Q, F ), analyzing the edges
in F in the same order, every edge deleted in G(Q, F ) is
deleted also in G(Q,E). Now in the G(Q, F ) we have that

any clique generated by any node in U has O(n1+ 1
k ) edges.

Thus using the algorithm described, we have the follow-
ing upper bound on the number edges for a 2k-spanner of
G(Q, F ).

|FS | ≤
n
X

i=1

“

# of nodes of degree i in U)
“

i1+
1
k

””

The rest of the proof uses Theorem 1 and Lemma 4, together
with some elementary manipulation, to show that |FS | ∈
Θ(n).

8. FLEXIBILITY OF THE MODEL
In this section we consider some variations of the model

for which is easy to prove that the main theorems hold. We
will analyze the two following cases:

• Instead of generating only one bipartite graph B(Q, U),
a list B0(Q, U), · · · , Bk(Q, U) of bipartite graphs 6 are
generated. At the same time the multigraph G(Q, E)
evolves in parallel; besides “folding” length-2 paths in
B0, · · · , Bk into edges, we also add to G(Q, E) a few
preferentially attached neighbors.

• Instead of “folding” length-2 paths in B into edges,
for every pair of nodes in Q and every shared com-
mon neighbor u ∈ U between them, we randomly
and independently place an edge between the nodes
in G(Q, E) with probability proportional to the recip-
rocal of d(u)α, where d(·) denotes degree 0 < α < 1.

In the first case if for at least a bipartite graph cui
<

β

1−β
cqi

the densification of the edges and the shrinking/ sta-
bilizing follow using the same arguments used in the proof of
the theorems 9 and 10. Furthermore if k is constant all the
theorems on the degree distribution of G(Q, E) and Ĝ(Q, Ê)
continue to hold.

In the second case it is sufficient to notice that every node
u in U in B(Q,U) is no longer substituted by a clique but
by a G(n, p), where n = d(u) and p = 1

d(u)α . Now if cu <
β

1−β
cq(1 − α) using the same argument of Theorem 5 and

the Chernoff bound we obtain the densification of the edges.
The shrinking/stabilizing diameter in this case follows from
the fact that most of the nodes will point to a high degree
node in G(Q, E)7 and that the G(n, p), where p = nα for
0 < α < 1, has constant diameter by [8]. Finally also in
this case the degree distribution is heavy-tailed because with
high probability the complementary cumulative distribution

6In this model the choice of adding a node to U or Q
is the same for all the graphs, but the number of edges
added(cu0 , cq0 , · · · , cuk

, cqk
) and their destination differ.

7This can be proved using the same proof strategy as before.
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function of nodes dominates the complementary cumulative
distribution function of the degrees of Q in B(Q, U).
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