Advanced Topics in Data Mining Special focus: Social Networks

Goal of the class

 Address major trends in the analysis of socialnetwork data

• Get you involved and interested

• Do something fun and cool

What is a social network?

- Facebook
- LinkedIn
- ...
- The network of your friends and acquaintances
- Social network is a graph G=(V,E)
 V: set of users
 - E: connections/friendships among users

Social Networks

- Links denote a social interaction
 - Networks of acquaintances
 - collaboration networks
 - actor networks
 - co-authorship networks
 - director networks
 - phone-call networks
 - e-mail networks
 - IM networks
 - Bluetooth networks
 - sexual networks
 - home page/blog networks

Themes in data analysis for social networks

- Measure characteristics of social networks (Measurements)
 - How many hops apart are two random Facebook users
- Design models that capture the generation process of network data (Generative Models)
 - Generate graphs with the same properties as real social network graphs
- Algorithmic problems related to (Algorithmic SN analysis)
 - Information propagation
 - Advertising
 - Expertise finding
 - Privacy

Structure and function of the class

- Material: Mostly based on recent papers related to social-network analysis.
 - Some papers and links are already posted on the website of the class
 - Other interesting papers can be found in the proceedings of : KDD, WWW, WSDM, ICDM... conferences
- **Goal:** Understand the material in these papers and (hopefully) extend it

Structure and function of the class

- Introductory lectures
- Paper presentations (20%)
- Projects and Project Presentation (50%)
- Project Report (otherwise called reaction paper) (20%)
- Class Participation (10%)

Introductory Lectures

• Measurements in networks

• Generative models

- Algorithmic topics
 - Introduction to information propagation
 - Expertise location
 - Privacy

Measuring Networks

- Degree distributions
- Small world phenomena
- Clustering Coefficient
- Mixing patterns
- Degree correlations
- Communities and clusters

Degree distributions

Problem: find the probability distribution that best fits the observed data

Power-law distributions

• The degree distributions of most real-life networks follow a power law

 $p(k) = Ck^{-\alpha}$

- Right-skewed/Heavy-tail distribution
 - there is a non-negligible fraction of nodes that has very high degree (hubs)
 - scale-free: no characteristic scale, average is not informative
- In stark contrast with the random graph model!
 - Poisson degree distribution, z=np

$$p(k) = P(k; z) = \frac{z^k}{k!}e^{-z}$$

- highly concentrated around the mean
- the probability of very high degree nodes is exponentially small

Power-law signature

• Power-law distribution gives a line in the log-log plot

• α : power-law exponent (typically $2 \le \alpha \le 3$)

Examples

Taken from [Newman 2003]

Exponential distribution

 Observed in some technological or collaboration networks

$$p(k) = \lambda e^{-\lambda k}$$

• Identified by a line in the log-linear plot

The basic random graph model

- The measurements on real networks are usually compared against those on "random networks"
- The basic G_{n,p} (Erdös-Renyi) random graph model:
 - n : the number of vertices
 - $-0 \le p \le 1$
 - for each pair (i,j), generate the edge (i,j) independently with probability p

A random graph example

Average/Expected degree

• For random graphs z = np

- For power-law distributed degree
 - if $\alpha \ge 2$, it is a constant
 - if $\alpha < 2$, it diverges

Maximum degree

- For random graphs, the maximum degree is highly concentrated around the average degree z
- For power law graphs

$$k_{max} \approx n^{1/(a-1)}$$

Clustering (Transitivity) coefficient

- Measures the density of triangles (local clusters) in the graph
- Two different ways to measure it:

$$C^{(1)} = \frac{\sum_{i} \text{triangles centered at nodei}}{\sum_{i} \text{triples centered at nodei}}$$

• The ratio of the means

Example

 $C^{(1)} = \frac{3}{1\!+\!1\!+\!6} \!=\! \frac{3}{8}$

Clustering (Transitivity) coefficient

• Clustering coefficient for node i

 $C_i = \frac{\text{triangles centered at node i}}{\text{triples centered at node i}}$

$$C^{(2)} = \frac{1}{n}C_{i}$$

• The mean of the ratios

Example

- The two clustering coefficients give different measures
- C⁽²⁾ increases with nodes with low degree

Clustering coefficient for random graphs

- The probability of two of your neighbors also being neighbors is p, independent of local structure
 - clustering coefficient C = p
 - when z is fixed C = z/n = O(1/n)

Table 1: Clustering coefficients, C, for a number of different networks; n is the number of node, z is the mean degree. Taken from [146].

Network	n	z	C	C for
			measured	random graph
Internet [153]	6,374	3.8	0.24	0.00060
World Wide Web (sites) [2]	153, 127	35.2	0.11	0.00023
power grid [192]	4,941	2.7	0.080	0.00054
biology collaborations [140]	1,520,251	15.5	0.081	0.000010
mathematics collaborations [141]	253,339	3.9	0.15	0.000015
film actor collaborations [149]	449,913	113.4	0.20	0.00025
company directors [149]	7,673	14.4	0.59	0.0019
word co-occurrence [90]	460,902	70.1	0.44	0.00015
neural network [192]	282	14.0	0.28	0.049
metabolic network [69]	315	28.3	0.59	0.090
food web [138]	134	8.7	0.22	0.065

The C(k) distribution

- The C(k) distribution is supposed to capture the hierarchical nature of the network
 - when constant: no hierarchy
 - when power-law: hierarchy

The small-world experiment

- Milgram 1967
- Picked 300 people at random from Nebraska
- Asked them to get the letter to a stockbroker in Boston – they could bypass the letter through friends they knew on a first-name basis
- How many steps does it take?

- Six degrees of separation: (play of John Guare)

Six Degrees of Kevin Bacon

- Bacon number:
 - Create a network of Hollywood actors

- Connect two actors if they co-appeared in some movie
- Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx 12% of all actors cannot be linked to Bacon
- What is the Bacon number of Elvis Prisley?

Erdos numbers?

The small-world experiment

- 64 chains completed
 - 6.2 average chain length (thus "six degrees of separation")
- Further observations
 - People that owned the stock had shortest paths to the stockbroker than random people
 - People from Boston area have even closer paths

Measuring the small world phenomenon

- d_{ij} = shortest path between i and j
- Diameter:

$$d = \max_{i,j} d_{ij}$$

• Characteristic path length:

$$\ell = \frac{1}{n(n-1)/2} \sum_{i>j} d_{ij}$$

Harmonic mean

$$\ell^{-1} = \frac{1}{n(n-1)/2} \sum_{i>j} d_{ij}^{-1}$$

• Also, distribution of all shortest paths

Is the path length enough?

• Random graphs have diameter

$$d = \frac{\log n}{\log z}$$

- $d = \log n / \log \log n$ when $z = \omega (\log n)$
- Short paths should be combined with other properties
 - ease of navigation
 - high clustering coefficient

Degree correlations

- Do high degree nodes tend to link to high degree nodes?
- Pastor Satoras et al.
 - plot the mean degree of the neighbors as a function of the degree

FIG. 3.13. Correlations of the degrees of nearest-neighbour vertices (autonomous systems) in the Internet at the interdomain level (after Pastor-Satorras, Vázquez, and Vespignani 2001). The empirical dependence of the average degree of the nearest neighbours of a vertex on the degree of this vertex is shown in a log-log scale. This empirical dependence was fitted by a power law with exponent approximately 0.5.

Degree correlations

- Newman
 - compute the correlation coefficient of the degrees of the two endpoints of an edge
 - assortative/disassortative

$$r = \frac{M^{-1} \sum_{i} j_{i} k_{i} - \left[M^{-1} \sum_{i} \frac{1}{2} (j_{i} + k_{i})\right]^{2}}{M^{-1} \sum_{i} \frac{1}{2} (j_{i}^{2} + k_{i}^{2}) - \left[M^{-1} \sum_{i} \frac{1}{2} (j_{i} + k_{i})\right]^{2}},$$

Connected components

- For undirected graphs, the size and distribution of the connected components

 is there a giant component?
- For directed graphs, the size and distribution of strongly and weakly connected components

Graph eigenvalues

- For random graphs
 - semi-circle law

 For the Internet (Faloutsos³)

FIG. 10. Rescaled spectral density of three random graphs having p = 0.05 and size N = 100 (continuous line), N = 300 (dashed line) and N = 1000 (short-dashed line). The isolated peak corresponds to the principal eigenvalue. After Farkas *et al.* 2001.

Next class

• What is a good model that generates graphs in which power law degree distribution appears?

• What is a good model that generates graphs in which small-world phenomena appear?