
Advanced Topics in Data Mining 
Special focus: Social Networks



Goal of the class

• Address major trends in the analysis of social-
network data

• Get you involved and interested

• Do something fun and cool



What is a social network?

• Facebook

• LinkedIn

• ….

• The network of your friends and 
acquaintances

• Social network is a graph G=(V,E)

– V: set of users

– E: connections/friendships among users



Social Networks

• Links denote a social interaction
– Networks of acquaintances
– collaboration networks

• actor networks
• co-authorship networks
• director networks

– phone-call networks
– e-mail networks
– IM networks
– Bluetooth networks
– sexual networks
– home page/blog networks



Themes in data analysis for social 
networks

• Measure characteristics of social networks (Measurements)
– How many hops apart are two random Facebook users 

• Design models that capture the generation process of 
network data (Generative Models)
– Generate graphs with the same properties as  real social 

network graphs

• Algorithmic problems related to (Algorithmic SN analysis)
– Information propagation
– Advertising
– Expertise finding
– Privacy



Structure and function of the class

• Material: Mostly based on recent papers related 
to social-network analysis. 
– Some papers and links are already posted on the 

website of the class

– Other interesting papers can be found in the 
proceedings of : KDD, WWW, WSDM, ICDM… 
conferences

• Goal: Understand the material in these papers 
and (hopefully) extend it



Structure and function of the class

• Introductory lectures

• Paper presentations (20%)

• Projects and Project Presentation (50%)

• Project Report (otherwise called reaction 
paper) (20%)

• Class Participation (10%)



Introductory Lectures

• Measurements in networks

• Generative models

• Algorithmic topics

– Introduction to information propagation

– Expertise location

– Privacy



Measuring Networks

• Degree distributions

• Small world phenomena

• Clustering Coefficient

• Mixing patterns

• Degree correlations

• Communities and clusters



Degree distributions

• Problem: find the probability distribution that best fits the 
observed data
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Power-law distributions

• The degree distributions of most real-life networks follow a power law

• Right-skewed/Heavy-tail distribution
– there is a non-negligible fraction of nodes that has very high degree (hubs)
– scale-free: no characteristic scale, average is not informative

• In stark contrast with the random graph model!
– Poisson degree distribution, z=np

– highly concentrated around the mean
– the probability of very high degree nodes is exponentially small
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Power-law signature

• Power-law distribution gives a line in the log-log plot

• α : power-law exponent (typically 2 ≤ α ≤ 3)

degree

frequency

log degree

log frequency α

log p(k) = -α logk + logC



Examples

Taken from [Newman 2003]



Exponential distribution

• Observed in some technological or collaboration 
networks

• Identified by a line in the log-linear plot

p(k) = λe-λk

log p(k) = - λk + log λ
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The basic random graph model

• The measurements on real networks are usually 
compared against those on “random networks”

• The basic Gn,p (Erdös-Renyi) random graph model:

– n : the number of vertices

– 0 ≤ p ≤ 1

– for each pair (i,j), generate the edge (i,j) independently
with probability p



A random graph example



Average/Expected degree

• For random graphs z = np

• For power-law distributed degree

– if α ≥ 2, it is a constant

– if α < 2, it diverges 



Maximum degree

• For random graphs, the maximum degree is 
highly concentrated around the average 
degree z

• For power law graphs
1)1/(α

max nk



Clustering (Transitivity) coefficient

• Measures the density of triangles (local 
clusters) in the graph

• Two different ways to measure it:

• The ratio of the means
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Clustering (Transitivity) coefficient

• Clustering coefficient for node i

• The mean of the ratios
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Example

• The two clustering coefficients give different 
measures 

• C(2) increases with nodes with low degree
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Clustering coefficient for random graphs

• The probability of two of your neighbors also being neighbors 
is p, independent of local structure
– clustering coefficient C = p

– when z is fixed C = z/n =O(1/n)



The C(k) distribution

• The C(k) distribution is supposed to capture the hierarchical 
nature of the network
– when constant: no hierarchy

– when power-law: hierarchy

degreek

C(k)

C(k) = average clustering coefficient
of nodes with degree k



The small-world experiment

• Milgram 1967

• Picked 300 people at random from Nebraska

• Asked them to get the letter to a stockbroker 
in Boston – they could bypass the letter 
through friends they knew on a first-name 
basis

• How many steps does it take?

– Six degrees of separation: (play of John Guare)



Six Degrees of Kevin Bacon

• Bacon number:
– Create a network of Hollywood actors

– Connect two actors if they co-appeared in some 
movie

– Bacon number: number of steps to Kevin Bacon

• As of Dec 2007, the highest (finite) Bacon number 
reported is 8

• Only approx 12% of all actors cannot be linked to 
Bacon

• What is the Bacon number of Elvis Prisley?



Erdos numbers?



The small-world experiment

• 64 chains completed

– 6.2 average chain length (thus “six degrees of 
separation”)

• Further observations

– People that owned the stock had shortest paths to 
the stockbroker than random people

– People from Boston area have even closer paths



Measuring the small world phenomenon

• dij = shortest path between i and j
• Diameter:

• Characteristic path length:

• Harmonic mean

• Also, distribution of all shortest paths
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Is the path length enough?

• Random graphs have diameter

• d=logn/loglogn when z=ω(logn)

• Short paths should be combined with other 
properties
– ease of navigation

– high clustering coefficient
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Degree correlations

• Do high degree nodes tend to link to high degree nodes?

• Pastor Satoras et al.
– plot the mean degree of the neighbors as a function of the degree



Degree correlations

• Newman

– compute the correlation coefficient of the degrees 
of the two endpoints of an edge

– assortative/disassortative



Connected components

• For undirected graphs, the size and 
distribution of the connected components

– is there a giant component?

• For directed graphs, the size and distribution 
of strongly and weakly connected components



Graph eigenvalues

• For random graphs

– semi-circle law

• For the Internet 
(Faloutsos3)



Next class

• What is a good model that generates graphs in 
which power law degree distribution appears?

• What is a good model that generates graphs in 
which small-world phenomena appear?


