Advanced Topics in Data Mining
Special focus: Social Networks



Goal of the class

* Address major trends in the analysis of social-
network data

* Get you involved and interested

* Do something fun and cool



What is a social network?

Facebook
LinkedIn

The network of your friends and
acquaintances

Social network is a graph G=(V,E)

— \/: set of users

— E: connections/friendships among users



Social Networks

Links denote a social interaction
— Networks of acquaintances

— collaboration networks
e actor networks
e co-authorship networks
e director networks

— phone-call networks

— e-mail networks

— IM networks

— Bluetooth networks

— sexual networks

— home page/blog networks




Themes in data analysis for social
networks

Measure characteristics of social networks (Measurements)
— How many hops apart are two random Facebook users

Design models that capture the generation process of
network data (Generative Models)

— Generate graphs with the same properties as real social
network graphs

Algorithmic problems related to (Algorithmic SN analysis)
— Information propagation

— Advertising

— Expertise finding

— Privacy



Structure and function of the class

 Material: Mostly based on recent papers related
to social-network analysis.

— Some papers and links are already posted on the
website of the class

— Other interesting papers can be found in the
proceedings of : KDD, WWW, WSDM, ICDM...
conferences

* Goal: Understand the material in these papers
and (hopefully) extend it



Structure and function of the class

ntroductory lectures
Paper presentations (20%)
Projects and Project Presentation (50%)

Project Report (otherwise called reaction
paper) (20%)

Class Participation (10%)



Introductory Lectures

* Measurements in networks
e Generative models

e Algorithmic topics
— Introduction to information propagation
— Expertise location
— Privacy



Measuring Networks

Degree distributions
Small world phenomena
Clustering Coefficient
Mixing patterns

Degree correlations
Communities and clusters



Degree distributions

frequency

f, = fraction of nodes with degree k
= probability of a randomly
selected node to have degree k

k degree

* Problem: find the probability distribution that best fits the
observed data



Power-law distributions

* The degree distributions of most real-life networks follow a power law
p(k) = Ck™®

* Right-skewed/Heavy-tail distribution
— there is a non-negligible fraction of nodes that has very high degree (hubs)
— scale-free: no characteristic scale, average is not informative

* In stark contrast with the random graph model!
— Poisson degree distribution, z=np

k

p(9) =P(k;2) =+ e

— highly concentrated around the mean
— the probability of very high degree nodes is exponentially small



Power-law signhature

* Power-law distribution gives a line in the log-log plot

frequency

4k

log p(k) = -a logk + logC

log frequency

degree

N\

log degree

* a: power-law exponent (typically 2 < a < 3)
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Exponential distribution

* Observed in some technological or collaboration

networks
p(k) = Ae

* |dentified by a line in the log-linear plot
log p(k) =- Ak + log A

log frequency A
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The basic random graph model

* The measurements on real networks are usually
compared against those on “random networks”

* The basic G, , (Erd6s-Renyi) random graph model.
— n : the number of vertices
—0<p<l

— for each pair (i,j), generate the edge (i,j) independently
with probability p
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Average/Expected degree

* For random graphs z = np

* For power-law distributed degree
—ifa =2, itis a constant
—ifa< 2, it diverges



Maximum degree

* For random graphs, the maximum degree is
highly concentrated around the average

degree 7
* For power law graphs

K

- ni/(a-1)
max n



Clustering (Transitivity) coefficient

 Measures the density of triangles (local
clusters) in the graph

* Two different ways to measure it:

Ztriangles centeredat nodei
Cch) — _

) triples centeredat node;

e The ratio of the means



Example
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Clustering (Transitivity) coefficient

* Clustering coefficient for node i

_ triangles centered at node |

C =
' triples centered at node |
co-1c
n I

e The mean of the ratios



Example
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* The two clustering coefficients give different
measures

e C jincreases with nodes with low degree



Clustering coefficient for random graphs

* The probability of two of your neighbors also being neighbors
is p, independent of local structure

— clustering coefficient C=p
— when z is fixed C = z/n =0(1/n)

Table 1: Clustering coefficients, C', for a number of different networks; n is
the number of node, z is the mean degree. Taken from [146].

Network T - C C for
measured | random graph
Internet [153] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 | 352 || 0.1 0.00023
power grid [192] 4,941 2.7 0.080 0.00054
biology collaborations [140] 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 | 3.9 0.15 0.000015
film actor collaborations [149] 449,913 | 113.4 0.20 0.00025
company directors [149] 7.673 14.4 0.59 0.0019
word co-occurrence [90) 460,902 | 70.1 0.44 0.00015
neural network [192] 282 14.0 0.28 0.049
metabolic network [69] 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065




The C(k) distribution

 The C(k) distribution is supposed to capture the hierarchical
nature of the network
— when constant: no hierarchy
— when power-law: hierarchy

C(k) = average clustering coefficient
of nodes with degree k

C(k) fmme D ,

k degree



The small-world experiment

Milgram 1967
Picked 300 people at random from Nebraska

Asked them to get the letter to a stockbroker
in Boston — they could bypass the letter
through friends they knew on a first-name
basis

How many steps does it take?
— Six degrees of separation: (play of John Guare)



Six Degrees of Kevin Bacon
 Bacon number:

— Create a network of Hollywood actors i{

— Connect two actors if they co-appeared in some
movie

— Bacon number: number of steps to Kevin Bacon

e As of Dec 2007, the highest (finite) Bacon number
reported is 8

* Only approx 12% of all actors cannot be linked to
Bacon

* What is the Bacon number of Elvis Prisley?



Erdos numbers?




The small-world experiment

* 64 chains completed

— 6.2 average chain length (thus “six degrees of
separation”)

e Further observations

— People that owned the stock had shortest paths to
the stockbroker than random people

— People from Boston area have even closer paths



Measuring the small world phenomenon

d;; = shortest path between i and |

Diameter:
d= maxd

Characteristic path Iength
1
- d.
n(n-1)/2§ )
Harmonic mean
1
(™ = d*
n(n-1)/2 ; )
Also, distribution of all shortest paths




Is the path length enough?

 Random graphs have diameter

_logn

d=
logz

* d=logn/loglogn when z=w(logn)

e Short paths should be combined with other
properties
— ease of navigation
— high clustering coefficient



Degree correlations

Do high degree nodes tend to link to high degree nodes?
Pastor Satoras et al.

— plot the mean degree of the neighbors as a function of the degree
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Fia. 3.13. Correlations of the degrees of nearest-neighbour vertices (au-
tonomous systems) in the Internet at the interdomain level (after Pas-
tor-Satorras, Vazquez, and Vespignani 2001). The empirical dependence of
the average degree of the nearest neighbours of a vertex on the degree of this
vertex is shown in a log-log scale. This empirical dependence was fitted by a
power law with exponent approximately 0.5.



Degree correlations

 Newman

— compute the correlation coefficient of the degrees
of the two endpoints of an edge

— assortative/disassortative

o MUY ki — MUY 50+ )] :
MY, (G2 4 k) — [M— 5, 400+ k)]



Connected components

* For undirected graphs, the size and
distribution of the connected components

— is there a giant component?

* For directed graphs, the size and distribution
of strongly and weakly connected components



Graph eigenvalues

For random graphs * For the Internet
— semi-circle law (Faloutsos3)
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FIG. 10. Rescaled spectral density of three random graphs (a) Int-12-98

having p = 0.05 and size N = 100 {continuous line), N = 300
(dashed line) and N = 1000 (short-dashed line). The isolated
peak corresponds to the principal eigenvalue, After Farkas et
al. 2001.



Next class

* What is a good model that generates graphs in
which power law degree distribution appears?

* What is a good model that generates graphs in
which small-world phenomena appear?



