
Advanced Topics in Data Mining 
Special focus: Social Networks



Reminders

• By the end of this week/ beginning of next we 
need to have a tentative presentation 
schedule

• Each one of you should send me an email 
about a theme by Friday, February 22.  



What did we learn in the last lecture?



What did we learn in the last lecture?

• Degree distribution

– What are the observed degree distributions

• Clustering coefficient

– What are the observed clustering coefficients?

• Average path length

– What are the observed average path lengths?



What are we going to learn in this 
lecture?

• How to generate graphs that have the desired 
properties

– Degree distribution

– Clustering coefficient

– Average path length

• We are going to talk about generative models



What is a network model?

• Informally, a network model is a process (radomized 
or deterministic) for generating a graph

• Models of static graphs

– input: a set of parameters Π, and the size of the graph n

– output: a graph G(Π,n)

• Models of evolving graphs

– input: a set of parameters Π, and an initial graph G0

– output: a graph Gt for each time t



Families of random graphs

• A deterministic model D defines a single graph for 
each value of n (or t)

• A randomized model R defines a probability space 
‹Gn,P› where Gn is the set of all graphs of size n, and 
P a probability distribution over the set Gn (similarly 
for t)

– we call this a family of random graphs R, or a random 
graph R



Erdös-Renyi Random graphs

Paul Erdös (1913-1996)



Erdös-Renyi Random Graphs

• The Gn,p model

– input: the number of vertices n, and a parameter 
p, 0 ≤ p ≤ 1

– process: for each pair (i,j), generate the edge (i,j)
independently with probability p

• Related, but not identical: The Gn,m model

– process: select m edges uniformly at random



Graph properties

• A property P holds almost surely (or for almost every graph), if

• Evolution of the graph: which properties hold as the 
probability p increases?

• Threshold phenomena: Many properties appear suddenly. 
That is, there exist a probability pc such that for p<pc the 
property does not hold a.s. and for p>pc the property holds 
a.s.

• What do you expect to be a threshold phenomenon in 
random graphs?
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The giant component

• Let z=np be the average degree

• If z < 1, then almost surely, the largest 
component has size at most O(ln n)

• if z > 1, then almost surely, the largest 
component has size Θ(n). The second largest 
component has size O(ln n)

• if z =ω(ln n), then the graph is almost surely 
connected.



The phase transition

• When z=1, there is a phase transition

– The largest component is O(n2/3)

– The sizes of the components follow a power-law 
distribution.



Random graphs degree distributions

• The degree distribution follows a binomial

• Assuming z=np is fixed, as n→∞, B(n,k,p) is 
approximated by a Poisson distribution

• Highly concentrated around the mean, with a tail 
that drops exponentially

  knk p1p
k

n
p)k;B(n;  p(k)













z
k

e
k!

z
z)P(k;p(k) 



Random graphs and real life

• A beautiful and elegant theory studied 
exhaustively

• Random graphs had been used as idealized 
network models

• Unfortunately, they don’t capture reality…



A random graph example



Departing from the Random Graph 
model

• We need models that better capture the 
characteristics of real graphs

– degree sequences

– clustering coefficient

– short paths



Graphs with given degree sequences

• input: the degree sequence [d1,d2,…,dn]

• Can you generate a graph with nodes that 
have degrees [d1,d2,…,dn] ?

• ? 



Graphs with given degree sequences

• The configuration model

– input: the degree sequence [d1,d2,…,dn]

– process:

• Create di copies of node i

• Take a random matching (pairing) of the copies
– self-loops and multiple edges are allowed

• Uniform distribution over the graphs with the 
given degree sequence



Example

• Suppose that the degree sequence is

• Create multiple copies of the nodes

• Pair the nodes uniformly at random

• Generate the resulting network

4 1 3 2



Graphs with given degree sequences

• How about simple graphs ?

– No self loops

– No multiple edges



Graphs with given degree sequences

• Realizability of degree sequences

• Lemma: A degree sequence d = *d(1),…,d(n)+ 
with d(1)≥d(2)≥… ≥d(n) and d(1)+d(2)+…+d(n) 
even is realizable if and only if for every 1≤k 
≤n-1 it holds that
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Graphs with given degree sequences --
algorithm

• Input : d= *d(1),…,d(n)+
• Output: No or simple graph G=(V,E) with degree sequence d

• If Σi=1…n d(i) is odd return “No”

• While 1 do
– If there exist i with d(i) < 0 return “No”
– If d(i)=0 for all i return the graph G=(V,E)
– Pick random node v with d(v)>0
– S(v) = set of nodes with the d(v) highest d values
– d(v) = 0
– For each node w in S(v)

• E = E\union (v,w)
• d(w) = d(w)-1 



How can we generate data with 
power-law degree distributions?



Preferential Attachment in Networks

• First considered by [Price 65] as a model for citation 
networks

– each new paper is generated with m citations (mean)

– new papers cite previous papers with probability 
proportional to their indegree (citations)

– what about papers without any citations?
• each paper is considered to have a “default” citation

• probability of citing a paper with degree k, proportional to k+1

• Power law with exponent α = 2+1/m



Barabasi-Albert model

• The BA model (undirected graph)
– input: some initial subgraph G0, and m the number of 

edges per new node

– the process: 
• nodes arrive one at the time

• each node connects to m other nodes selecting them with 
probability proportional to their degree

• if [d1,…,dt] is the degree sequence at time t, the node t+1 links to 
node i with probability

• Results in power-law with exponent α = 3
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Variations of the BA model

• Many variations have been considered



Copying model

• Input:
– the out-degree d (constant) of each node

– a parameter α

• The process:
– Nodes arrive one at the time

– A new node selects uniformly one of the existing nodes as 
a prototype

– The new node creates d outgoing links. For the ith link
• with probability α it copies the i-th link of the prototype node

• with probability 1- α it selects the target of the link uniformly at 
random



An example



Copying model properties

• Power law degree distribution with exponent 
β = (2-α)/(1- α)

• Number of bipartite cliques of size i x d is ne-i

• The model has also found applications in 
biological networks

– copying mechanism in gene mutations



Small world Phenomena

• So far we focused on obtaining graphs with 
power-law distributions on the degrees. What 
about other properties?

– Clustering coefficient: real-life networks tend to 
have high clustering coefficient

– Short paths: real-life networks are “small worlds”

• this property is easy to generate

– Can we combine these two properties?



Small-world Graphs

• According to Watts [W99]

– Large networks (n >> 1)

– Sparse connectivity (avg degree z << n)

– No central node (kmax << n)

– Large clustering coefficient (larger than in random 
graphs of same size)

– Short average paths (~log n, close to those of 
random graphs of the same size)



Mixing order with randomness

• Inspired by the work of Solmonoff and Rapoport
– nodes that share neighbors should have higher probability to be connected

• Generate an edge between i and j with probability proportional to Rij

• When α = 0, edges are determined by common neighbors
• When α = ∞ edges are independent of common neighbors
• For intermediate values we obtain a combination of order and 

randomness
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Algorithm

• Start with a ring

• For i = 1 … n

– Select a vertex j with probability proportional to Rij

and generate an edge (i,j)

• Repeat until z edges are added to each vertex



Clustering coefficient – Avg path length

small world graphs



Watts and Strogatz model [WS98]

• Start with a ring, where every node is connected to the next z
nodes

• With probability p, rewire every edge (or, add a shortcut) to a 
uniformly chosen destination.
– Granovetter, “The strength of weak ties”

order randomness

p = 0 p = 10 < p < 1



Watts and Strogatz model [WS98]

• Start with a ring, where every node is connected to the next z
nodes

• With probability p, rewire every edge (or, add a shortcut) to a 
uniformly chosen destination.
– Granovetter, “The strength of weak ties”

order randomness

p = 0 p = 10 < p < 1



Clustering Coefficient – Characteristic Path 
Length

log-scale in p

When p = 0, C = 3(k-2)/4(k-1) ~ ¾
L = n/k

For small p, C ~ ¾
L ~ logn



Next Class

• Some more generative models for social-
network graphs


