Advanced Topics in Data Mining Special focus: Social Networks

Reminders

- By the end of this week/ beginning of next we need to have a tentative presentation schedule
- Each one of you should send me an email about a theme by Friday, February 22.

What did we learn in the last lecture?

What did we learn in the last lecture?

- Degree distribution
- What are the observed degree distributions
- Clustering coefficient
- What are the observed clustering coefficients?
- Average path length
- What are the observed average path lengths?

What are we going to learn in this lecture?

- How to generate graphs that have the desired properties
- Degree distribution
- Clustering coefficient
- Average path length
- We are going to talk about generative models

What is a network model?

- Informally, a network model is a process (radomized or deterministic) for generating a graph
- Models of static graphs
- input: a set of parameters Π, and the size of the graph n
- output: a graph G(П, n)
- Models of evolving graphs
- input: a set of parameters Π, and an initial graph G_{0}
- output: a graph G_{t} for each time t

Families of random graphs

- A deterministic model D defines a single graph for each value of n (or t)
- A randomized model R defines a probability space $\left\langle G_{n}, P\right\rangle$ where G_{n} is the set of all graphs of size n, and P a probability distribution over the set G_{n} (similarly for t)
- we call this a family of random graphs R, or a random graph R

Erdös-Renyi Random graphs

Paul Erdös (1913-1996)

Erdös-Renyi Random Graphs

- The $G_{n, p}$ model
- input: the number of vertices n, and a parameter $p, 0 \leq p \leq 1$
- process: for each pair (i, j), generate the edge (i, j) independently with probability p
- Related, but not identical: The $G_{n, m}$ model
- process: select m edges uniformly at random

Graph properties

- A property P holds almost surely (or for almost every graph), if

$$
\lim _{n \rightarrow \infty} P[G \text { has } P]=1
$$

- Evolution of the graph: which properties hold as the probability p increases?
- Threshold phenomena: Many properties appear suddenly. That is, there exist a probability p_{c} such that for $p<p_{c}$ the property does not hold a.s. and for $p>p_{c}$ the property holds a.s.
- What do you expect to be a threshold phenomenon in random graphs?

The giant component

- Let $z=n p$ be the average degree
- If $z<1$, then almost surely, the largest component has size at most $O(\ln n)$
- if $z>1$, then almost surely, the largest component has size $\Theta(n)$. The second largest component has size $O(\ln n)$
- if $z=\omega(\ln n)$, then the graph is almost surely connected.

The phase transition

- When $\mathrm{z}=1$, there is a phase transition
- The largest component is $\mathrm{O}\left(\mathrm{n}^{2 / 3}\right)$
- The sizes of the components follow a power-law distribution.

Random graphs degree distributions

- The degree distribution follows a binomial

$$
p(k)=B(n ; k ; p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Assuming $z=n p$ is fixed, as $n \rightarrow \infty, B(n, k, p)$ is approximated by a Poisson distribution

$$
p(k)=P(k ; z)=\frac{z^{k}}{k!} e^{-z}
$$

- Highly concentrated around the mean, with a tail that drops exponentially

Random graphs and real life

- A beautiful and elegant theory studied exhaustively
- Random graphs had been used as idealized network models
- Unfortunately, they don't capture reality...

A random graph example

Departing from the Random Graph model

- We need models that better capture the characteristics of real graphs
- degree sequences
- clustering coefficient
- short paths

Graphs with given degree sequences

- input: the degree sequence $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$
- Can you generate a graph with nodes that have degrees $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$?
- ? ()

Graphs with given degree sequences

- The configuration model
- input: the degree sequence $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$
- process:
- Create d_{i} copies of node i
- Take a random matching (pairing) of the copies
- self-loops and multiple edges are allowed
- Uniform distribution over the graphs with the given degree sequence

Example

- Suppose that the degree sequence is

- Create multiple copies of the nodes

- Pair the nodes uniformly at random
- Generate the resulting network

Graphs with given degree sequences

- How about simple graphs?
- No self loops
- No multiple edges

Graphs with given degree sequences

- Realizability of degree sequences
- Lemma: A degree sequence $d=[d(1), \ldots ., d(n)]$ with $d(1) \geq d(2) \geq \ldots \geq d(n)$ and $d(1)+d(2)+\ldots+d(n)$ even is realizable if and only if for every $1 \leq k$ $\leq n-1$ it holds that

$$
\sum_{i=1}^{k} d(i) \leq k(k-1)+\sum_{i=k+1}^{n} \min \{k, d(i)\}
$$

Graphs with given degree sequences -algorithm

- Input : d= [d(1),..., d(n)]
- Output: No or simple graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with degree sequence d
- If $\sum_{i=1 \ldots . . n} d(i)$ is odd return "No"
- While 1 do
- If there exist i with d(i) < 0 return "No"
- If $d(i)=0$ for all i return the graph $G=(V, E)$
- Pick random node v with $d(v)>0$
$-S(v)=$ set of nodes with the $d(v)$ highest d values
$-\mathrm{d}(\mathrm{v})=0$
- For each node win S(v)
- $E=E \backslash u n i o n(v, w)$
- $d(w)=d(w)-1$

How can we generate data with power-law degree distributions?

Preferential Attachment in Networks

- First considered by [Price 65] as a model for citation networks
- each new paper is generated with m citations (mean)
- new papers cite previous papers with probability proportional to their indegree (citations)
- what about papers without any citations?
- each paper is considered to have a "default" citation
- probability of citing a paper with degree k, proportional to $k+1$
- Power law with exponent $\alpha=2+1 / m$

Barabasi-Albert model

- The BA model (undirected graph)
- input: some initial subgraph G_{0}, and m the number of edges per new node
- the process:
- nodes arrive one at the time
- each node connects to m other nodes selecting them with probability proportional to their degree
- if $\left[d_{1}, \ldots, d_{t}\right]$ is the degree sequence at time t, the node $t+1$ links to node i with probability

$$
\frac{\mathrm{d}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}}=\frac{\mathrm{d}_{\mathrm{i}}}{2 \mathrm{mt}}
$$

- Results in power-law with exponent $\alpha=3$

Variations of the BA model

- Many variations have been considered

Copying model

- Input:
- the out-degree d (constant) of each node
- a parameter α
- The process:
- Nodes arrive one at the time
- A new node selects uniformly one of the existing nodes as a prototype
- The new node creates d outgoing links. For the $i^{\text {th }}$ link
- with probability α it copies the i-th link of the prototype node
- with probability 1- α it selects the target of the link uniformly at random

An example

Copying model properties

- Power law degree distribution with exponent $\beta=(2-\alpha) /(1-\alpha)$
- Number of bipartite cliques of size $i x d$ is $n e^{-i}$
- The model has also found applications in biological networks
- copying mechanism in gene mutations

Small world Phenomena

- So far we focused on obtaining graphs with power-law distributions on the degrees. What about other properties?
- Clustering coefficient: real-life networks tend to have high clustering coefficient
- Short paths: real-life networks are "small worlds"
- this property is easy to generate
- Can we combine these two properties?

Small-world Graphs

- According to Watts [W99]
- Large networks (n >> 1)
- Sparse connectivity (avg degree $z \ll n$)
- No central node ($\mathrm{k}_{\max } \ll \mathrm{n}$)
- Large clustering coefficient (larger than in random graphs of same size)
- Short average paths (~log n, close to those of random graphs of the same size)

Mixing order with randomness

- Inspired by the work of Solmonoff and Rapoport
- nodes that share neighbors should have higher probability to be connected
- Generate an edge between i and j with probability proportional to $R_{i j}$

$$
R_{i j}=\left\{\begin{array}{ccc}
1 & \text { if } m_{i j} \geq z & m_{i j}=\begin{array}{c}
\text { number of common } \\
\text { neighbors of } i \text { and } j
\end{array} \\
\left(\frac{m_{i j}}{z}\right)^{a}(1-p)+p & \text { if } 0<m_{i j}<z & \\
p & \text { if } m_{i j}=0 & p=\text { very small probability }
\end{array}\right.
$$

- When $\alpha=0$, edges are determined by common neighbors
- When $\alpha=\infty$ edges are independent of common neighbors
- For intermediate values we obtain a combination of order and randomness

Algorithm

- Start with a ring
- For $\mathrm{i}=1$... n
- Select a vertex j with probability proportional to $R_{i j}$ and generate an edge (i,j)
- Repeat until z edges are added to each vertex

Clustering coefficient - Avg path length

small world graphs

Watts and Strogatz model [WS98]

- Start with a ring, where every node is connected to the next z nodes
- With probability p, rewire every edge (or, add a shortcut) to a uniformly chosen destination.
- Granovetter, "The strength of weak ties"

randomness

$$
p=0
$$

$0<p<1$
$p=1$

Watts and Strogatz model [WS98]

- Start with a ring, where every node is connected to the next z nodes
- With probability p, rewire every edge (or, add a shortcut) to a uniformly chosen destination.
- Granovetter, "The strength of weak ties"

randomness

$$
p=0
$$

$0<p<1$
$p=1$

Clustering Coefficient - Characteristic Path Length

log-scale in p

When $\mathrm{p}=0, \mathrm{C}=3(\mathrm{k}-2) / 4(\mathrm{k}-1) \sim 3 / 4$

$$
\mathrm{L}=\mathrm{n} / \mathrm{k}
$$

For small p, C~3/4
L~logn

Next Class

- Some more generative models for socialnetwork graphs

