Reminders

• By the end of this week/ beginning of next we need to have a tentative presentation schedule

• Each one of you should send me an email about a theme by Friday, February 22.
What did we learn in the last lecture?
What did we learn in the last lecture?

• Degree distribution
 – What are the observed degree distributions

• Clustering coefficient
 – What are the observed clustering coefficients?

• Average path length
 – What are the observed average path lengths?
What are we going to learn in this lecture?

- How to generate graphs that have the desired properties
 - Degree distribution
 - Clustering coefficient
 - Average path length

- We are going to talk about generative models
What is a network model?

- Informally, a network model is a process (randomized or deterministic) for generating a graph.
- Models of static graphs
 - input: a set of parameters Π, and the size of the graph n
 - output: a graph $G(\Pi, n)$
- Models of evolving graphs
 - input: a set of parameters Π, and an initial graph G_0
 - output: a graph G_t for each time t
Families of random graphs

- A deterministic model D defines a single graph for each value of n (or t)

- A randomized model R defines a probability space $\langle G_n, P \rangle$ where G_n is the set of all graphs of size n, and P a probability distribution over the set G_n (similarly for t)
 - we call this a family of random graphs R, or a random graph R
Erdös-Renyi Random graphs

Paul Erdös (1913-1996)
Erdös-Renyi Random Graphs

• The $G_{n,p}$ model
 – input: the number of vertices n, and a parameter p, $0 \leq p \leq 1$
 – process: for each pair (i,j), generate the edge (i,j) independently with probability p

• Related, but not identical: The $G_{n,m}$ model
 – process: select m edges uniformly at random
Graph properties

• A property \(P \) holds almost surely (or for almost every graph), if

\[
\lim_{n \to \infty} P[G \text{ has } P] = 1
\]

• Evolution of the graph: which properties hold as the probability \(p \) increases?

• Threshold phenomena: Many properties appear suddenly. That is, there exist a probability \(p_c \) such that for \(p < p_c \) the property does not hold a.s. and for \(p > p_c \) the property holds a.s.

• What do you expect to be a threshold phenomenon in random graphs?
The giant component

• Let $z=np$ be the average degree
• If $z < 1$, then almost surely, the largest component has size at most $O(\ln n)$
• If $z > 1$, then almost surely, the largest component has size $\Theta(n)$. The second largest component has size $O(\ln n)$
• If $z = \omega(\ln n)$, then the graph is almost surely connected.
The phase transition

• When $z=1$, there is a phase transition
 – The largest component is $O(n^{2/3})$
 – The sizes of the components follow a power-law distribution.
Random graphs degree distributions

- The degree distribution follows a binomial

\[p(k) = B(n; k; p) = \binom{n}{k} p^k (1 - p)^{n-k} \]

- Assuming \(z = np \) is fixed, as \(n \to \infty \), \(B(n, k, p) \) is approximated by a Poisson distribution

\[p(k) = P(k; z) = \frac{z^k}{k!} e^{-z} \]

- Highly concentrated around the mean, with a tail that drops exponentially
Random graphs and real life

• A beautiful and elegant theory studied exhaustively

• Random graphs had been used as idealized network models

• Unfortunately, they don’t capture reality...
A random graph example
Departing from the Random Graph model

• We need models that better capture the characteristics of real graphs
 – degree sequences
 – clustering coefficient
 – short paths
Graphs with given degree sequences

• **input:** the degree sequence \([d_1,d_2,\ldots,d_n]\)

• Can you generate a graph with nodes that have degrees \([d_1,d_2,\ldots,d_n]\) ?

• ☺️
Graphs with given degree sequences

• The configuration model
 – **input:** the degree sequence \([d_1, d_2, \ldots, d_n]\)
 – **process:**
 • Create \(d_i\) copies of node \(i\)
 • Take a random matching (pairing) of the copies
 – self-loops and multiple edges are allowed

• Uniform distribution over the graphs with the given degree sequence
Example

• Suppose that the degree sequence is

\[4 \quad 1 \quad 3 \quad 2 \]

• Create multiple copies of the nodes

• Pair the nodes uniformly at random

• Generate the resulting network
Graphs with given degree sequences

• How about **simple** graphs?
 – No self loops
 – No multiple edges
Graphs with given degree sequences

- Realizability of degree sequences

- **Lemma**: A degree sequence $d = [d(1),...,d(n)]$ with $d(1) \geq d(2) \geq ... \geq d(n)$ and $d(1)+d(2)+...+d(n)$ even is realizable if and only if for every $1 \leq k \leq n-1$ it holds that

$$\sum_{i=1}^{k} d(i) \leq k(k - 1) + \sum_{i=k+1}^{n} \min\{k, d(i)\}$$
Graphs with given degree sequences -- algorithm

• Input: \(d = [d(1),...,d(n)] \)
• Output: No or simple graph \(G=(V,E) \) with degree sequence \(d \)
• If \(\sum_{i=1}^{n} d(i) \) is odd return "No"
• While 1 do
 – If there exist \(i \) with \(d(i) < 0 \) return "No"
 – If \(d(i)=0 \) for all \(i \) return the graph \(G=(V,E) \)
 – Pick random node \(v \) with \(d(v)>0 \)
 – \(S(v) = \) set of nodes with the \(d(v) \) highest \(d \) values
 – \(d(v) = 0 \)
 – For each node \(w \) in \(S(v) \)
 • \(E = E \cup \{v,w\} \)
 • \(d(w) = d(w)-1 \)
How can we generate data with power-law degree distributions?
Preferential Attachment in Networks

• First considered by [Price 65] as a model for citation networks
 – each new paper is generated with m citations (mean)
 – new papers cite previous papers with probability proportional to their indegree (citations)
 – what about papers without any citations?
 • each paper is considered to have a “default” citation
 • probability of citing a paper with degree k, proportional to $k+1$

• Power law with exponent $\alpha = 2+1/m$
Barabasi-Albert model

- The BA model (undirected graph)
 - **input**: some initial subgraph G_0, and m the number of edges per new node
 - **the process**:
 - nodes arrive one at the time
 - each node connects to m other nodes selecting them with probability proportional to their degree
 - if $[d_1,...,d_t]$ is the degree sequence at time t, the node $t+1$ links to node i with probability
 $$\frac{d_i}{\sum_{i} d_i} = \frac{d_i}{2mt}$$
 - Results in power-law with exponent $\alpha = 3$
Variations of the BA model

• Many variations have been considered
Copying model

• Input:
 – the out-degree \(d \) (constant) of each node
 – a parameter \(\alpha \)

• The process:
 – Nodes arrive one at the time
 – A new node selects uniformly one of the existing nodes as a prototype
 – The new node creates \(d \) outgoing links. For the \(i^{\text{th}} \) link
 • with probability \(\alpha \) it copies the \(i^{\text{th}} \) link of the prototype node
 • with probability \(1 - \alpha \) it selects the target of the link uniformly at random
An example
Copying model properties

• Power law degree distribution with exponent
 \[\beta = \frac{2-\alpha}{1-\alpha} \]

• Number of bipartite cliques of size \(i \times d \) is \(ne^{-i} \)

• The model has also found applications in biological networks
 – copying mechanism in gene mutations
Small world Phenomena

• So far we focused on obtaining graphs with power-law distributions on the degrees. What about other properties?
 – **Clustering coefficient**: real-life networks tend to have high clustering coefficient
 – **Short paths**: real-life networks are “small worlds”
 • this property is easy to generate
 – Can we combine these two properties?
Small-world Graphs

- According to Watts [W99]
 - Large networks ($n >> 1$)
 - Sparse connectivity (avg degree $z << n$)
 - No central node ($k_{\text{max}} << n$)
 - Large clustering coefficient (larger than in random graphs of same size)
 - Short average paths ($\sim \log n$, close to those of random graphs of the same size)
Mixing order with randomness

- Inspired by the work of Solmonoff and Rapoport
 - nodes that share neighbors should have higher probability to be connected
- Generate an edge between \(i \) and \(j \) with probability proportional to \(R_{ij} \)

\[
R_{ij} = \begin{cases}
1 & \text{if } m_{ij} \geq z \\
\left(\frac{m_{ij}}{z} \right)^\alpha (1 - p) + p & \text{if } 0 < m_{ij} < z \\
p & \text{if } m_{ij} = 0
\end{cases}
\]

- \(m_{ij} = \) number of common neighbors of \(i \) and \(j \)
- \(p = \) very small probability

- When \(\alpha = 0 \), edges are determined by common neighbors
- When \(\alpha = \infty \) edges are independent of common neighbors
- For intermediate values we obtain a combination of order and randomness
Algorithm

• Start with a ring

• For $i = 1 \ldots n$
 – Select a vertex j with probability proportional to R_{ij} and generate an edge (i,j)

• Repeat until z edges are added to each vertex
Clustering coefficient – Avg path length

small world graphs
Watts and Strogatz model [WS98]

- Start with a ring, where every node is connected to the next \(z \) nodes.
- With probability \(p \), rewire every edge (or, add a shortcut) to a uniformly chosen destination.
 - Granovetter, “The strength of weak ties”

\[
p = 0 \quad 0 < p < 1 \quad p = 1
\]
Watts and Strogatz model [WS98]

• Start with a ring, where every node is connected to the next z nodes.
• With probability p, rewire every edge (or, add a shortcut) to a uniformly chosen destination.
 – Granovetter, “The strength of weak ties”
Clustering Coefficient – Characteristic Path Length

When $p = 0$, $C = \frac{3(k-2)}{4(k-1)} \sim \frac{3}{4}$
$L = \frac{n}{k}$

For small p, $C \sim \frac{3}{4}$
$L \sim \log n$
Next Class

• Some more generative models for social-network graphs