
What did we see in the last lecture?



What are we going to talk about 
today?

• Generative models for graphs with power-law 
degree distribution

• Generative models for graphs with small-
world properties

• Models that capture graph evolution over 
time



The Linearized Chord Diagram (LCD) model

• Consider 2n nodes labeled {1,2,…,2n} placed 
on a line in order. 



Linearized Chord Diagram

• Generate a random matching of the nodes. 



Linearized Chord Diagram

• Starting from left to right identify all endpoints until the first 
right endpoint. This is node 1. Then identify all endpoints until 
the second right endpoint to obtain node 2, and so on.



Linearized Chord Diagram

• Uniform distribution over matchings gives uniform 
distribution over all graphs in the preferential attachment 
model



Linearized Chord Diagram

• Create a random matching with 2(n+1) nodes by adding to a matching 
with 2n nodes a new cord with the right endpoint being in the rightmost 
position and the left being placed uniformly



Linearized Chord Diagram

• A new right endpoint creates a new graph node



Linearized Chord Diagram

• The left endpoint may be placed within any of the 
existing “supernodes”



Linearized Chord Diagram

• The number of free positions within a supernode is equal to 
the number of pairing nodes it contains

• This is also equal to the degree



Linearized Chord Diagram

• For example, the probability that the black graph 
node links to the blue node is 4/11

– di = 4,      t = 6,       di/(2t-1) = 4/11



Milgram’s experiment revisited

• What did Milgram’s experiment show?

– (a) There are short paths in large networks that 
connect individuals

– (b) People are able to find these short paths using 
a simple, greedy, decentralized algorithm

• Small world models take care of (a)

• Kleinberg: what about (b)? 



Kleinberg’s model

• Consider a directed 2-dimensional lattice

• For each vertex u add q shortcuts
– choose vertex v as the destination of the shortcut with probability 

proportional to [d(u,v)]-r

– when r = 0, we have uniform probabilities



The decentralized search algorithm

• Given a source s and a destination t, the 
search algorithm
1. knows the positions of the nodes on the grid 

(geography information)

2. knows the neighbors and shortcuts of the current 
node (local information)

3. operates greedily, each time moving as close to t
as possible (greedy operation)

4. knows the neighbors and shortcuts of all nodes 
seen so far (history information)



Kleinberg results

• The search algorithm
1. knows the positions of the nodes on the grid (geography

information)

2. knows the neighbors and shortcuts of the current node (local
information)

3. operates greedily, each time moving as close to t as possible (greedy
operation)

4. knows the neighbors and shortcuts of all nodes seen so far (history 
information)

• When r=2, an algorithm that uses only local information at 
each node (not 4) can reach the destination in expected time 
O(log2n).



Kleinberg’s results

• The search algorithm
1. knows the positions of the nodes on the grid (geography information)
2. knows the neighbors and shortcuts of the current node (local

information)
3. operates greedily, each time moving as close to t as possible (greedy

operation)
4. knows the neighbors and shortcuts of all nodes seen so far (history

information)

• When r<2 a local greedy algorithm (1-4) needs expected time 
Ω(n(2-r)/3).

• When r>2 a local greedy algorithm (1-4) needs expected time  
Ω(n(r-2)/(r-1)).



Searching in a small world

• For r < 2, the graph has paths of logarithmic length (small 
world), but a greedy algorithm cannot find them

• For r > 2, the graph does not have short paths

• For r = 2 is the only case where there are short paths, and the 
greedy algorithm is able to find them



Generalization

• When r=2, an algorithm that uses only local 
information at each node (not 4) can reach the 
destination in expected time O(log2n).

• When r<2 a local greedy algorithm (1-4) needs 
expected time Ω(n(2-r)/3).

• When r>2 a local greedy algorithm (1-4) needs 
expected time  Ω(n(r-2)/(r-1)).

• The results generalize for a d-dimensional grid. The 
algorithm works in expected O(log2n) time, when r=d



Extensions

• If there are logn shortcuts, then the search 
time is O(logn)

– we save the time required for finding the shortcut

• If we know the shortcuts of logn neighbors the 
time becomes O(log1+1/dn)



Other models

• Lattice captures geographic distance. How do we 
capture social distance (e.g. occupation)?

• Hierarchical organization of groups

– distance h(i,j) = height of Least Common Ancestor



Other models

• Generate links between leaves with probability 
proportional to b-αh(i,j)

– b=2 the branching factor



Other models

• Theorem: For α=1 there is a polylogarithimic search 
algorithm. For α≠1 there is no decentralized 
algorithm with poly-log time

– note that α=1 and the exponential dependency results in 
uniform probability of linking to the subtrees



Searching Power-law networks

• Kleinberg considered the case that you can fix 
your network as you wish. What if you 
cannot?

• [Adamic et al.] Instead of performing simple 
BFS flooding, pass the message to the 
neighbor with the highest degree

• Reduces the number of messages to   O(n(a-

2)/(a-1))



Evolution of graphs

• So far we looked at the properties of graph 
snapshots. What if we have the history of a 
graph?

– e.g., citation networks, internet graphs



Measuring preferential attachment

• Is it the case that the rich get richer?
• Look at the network for an interval [t,t+dt]
• For node i, present at time t, we compute

– dki = increase in the degree
– dk = number of edges added 

• Fraction of edges added to nodes of degree k

• Cumulative: fraction of edges added to nodes of degree at 
most k
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Measuring preferential attachment

• We plot F(k) as a function of k

(a) citation network
(b) Internet
(c) scientific collaboration network
(d) actor collaboration network



Network models and temporal evolution

• For most of the existing models it is assumed 
that

– number of edges grows linearly with the number 
of nodes

– the diameter grows at rate logn, or loglogn

• What about real graphs?

– Leskovec, Kleinberg, Faloutsos 2005



Densification laws 

• In real-life networks the average degree 
increases! – networks become denser!

α = densification exponent
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More examples

• The densification exponent 1≤α≤2

– α = 1: linear growth – constant out degree

– α = 2: quadratic growth - clique

N(t)

E(t)

1.66

N(t)
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patent citation network movies affiliation network



What about diameter?

• Effective diameter: the interpolated value 
where 90% of node pairs are reachable
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Diameter shrinks

scientific
citation network

Internet

patent citation network
affiliation network



Densification – Possible Explanation

• Existing graph generation models do not capture the 
Densification Power Law and Shrinking diameters

• Can we find a simple model of local behavior, which 
naturally leads to observed phenomena?

• Two proposed models

– Community Guided Attachment – obeys Densification

– Forest Fire model – obeys Densification, Shrinking 
diameter (and Power Law degree distribution)



Community structure

• Let’s assume the 
community structure

• One expects many 
within-group 
friendships and fewer 
cross-group ones 

• How hard is it to cross 
communities?

Self-similar university 
community structure

CS Math Drama Music

Science Arts

University



• If the cross-community linking probability of nodes 
at tree-distance h is scale-free

• We propose cross-community linking probability: 

where: c ≥ 1 … the Difficulty constant

h … tree-distance

Fundamental Assumption



Densification Power Law

• Theorem: The Community Guided Attachment leads 
to Densification Power Law with exponent

• α … densification exponent

• b … community structure branching factor

• c … difficulty constant



• Theorem:

• Gives any non-integer Densification 
exponent

• If c = 1: easy to cross communities
– Then: α = 2, quadratic growth of edges – near 

clique

• If c = b: hard to cross communities
– Then: α = 1, linear growth of edges – constant 

out-degree

Difficulty Constant



Room for Improvement

• Community Guided Attachment explains 
Densification Power Law

• Issues:

– Requires explicit Community structure

– Does not obey Shrinking Diameters

• The ”Forrest Fire” model



“Forest Fire” model – Wish List

• We want:

– no explicit Community structure

– Shrinking diameters

– and:

• “Rich get richer” attachment process, to get heavy-
tailed in-degrees

• “Copying” model, to lead to communities

• Community Guided Attachment, to produce 
Densification Power Law



“Forest Fire” model – Intuition

• How do authors identify references?

1. Find first paper and cite it

2. Follow a few citations, make citations

3. Continue recursively

4. From time to time use bibliographic tools (e.g. 
CiteSeer) and chase back-links



“Forest Fire” model – Intuition

• How do people make friends in a new 
environment?

1. Find first a person and make friends

2. From time to time get introduced to his friends

3. Continue recursively

• Forest Fire model imitates exactly this process



“Forest Fire” – the Model

• A node arrives

• Randomly chooses an “ambassador”

• Starts burning nodes (with probability p) and 
adds links to burned nodes

• “Fire” spreads recursively



Forest Fire in Action (1)

• Forest Fire generates graphs that Densify
and have Shrinking Diameter
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Forest Fire in Action (2)

• Forest Fire also generates graphs with 
heavy-tailed degree distribution

in-degree out-degree

count vs. in-degree count vs. out-degree



Forest Fire model – Justification

• Densification Power Law:
– Similar to Community Guided Attachment

– The probability of linking decays exponentially 
with the distance – Densification Power Law

• Power law out-degrees:
– From time to time we get large fires

• Power law in-degrees:
– The fire is more likely to reach hubs



Forest Fire model – Justification

• Communities: 

– Newcomer copies neighbors’ links

• Shrinking diameter



Information-propagation models

• Epidemics

– One of the major reasons that people started 
studying social networks in the first place

– How do epidemic diseases propagate through 
society

• Consumer’s society

– How trends and products propagate?

– Major reason for studying online social networks



SIR model

• S: susceptible
– A node in state S does not have the disease but he 

can, in principle, get it through someone else

• I: Infected
– A node in state I has the disease and he can pass it 

on

• R: Recovered
– A node is state R does not had the disease in the 

past, recovered from it and has eternal immunity



SIR model

• Any susceptible individual has uniform probability
β of catching the disease per unit time

• Any infected individual can become cured at rate 
γ

• Questions/problems:
– Given an epidemic how can we compute the 

parameters β and γ

– Given a network and an epidemic, with known 
parameters, which are the nodes to vaccine to 
prevent the global explosion of the epidemic?



SIS model

• S: susceptible
– A node in state S does not have the disease but he 

can, in principle, get it through someone else

• I: Infected
– A node in state I has the disease and he can pass it 

on

• A node can never get eternal immunity; once 
an infected node is cured he becomes 
susceptible again!



The deterministic propagation model



The independent cascade model (IC)



The Linear threshold model (LT)



Problems – consumer’s society

• Which nodes should I influence to buy a 
product so that the product becomes a trend?


