Epidemics in Social Networks
Epidemic Processes

- Viruses, diseases
- Online viruses, worms
- Fashion
- Adoption of technologies
- Behavior
- Ideas
Example: Ebola virus

- First emerged in Zaire 1976 (now Democratic Republic of Kongo)
- Very lethal: it can kill somebody within a few days
- A small outbreak in 2000
- From 10/2000 – 01/2009 173 people died in African villages
Example: HIV

- Less lethal than Ebola
- Takes time to act, lots of time to infect
- First appeared in the 70s
- Initially confined in special groups: homosexual men, drug users, prostitutes
- Eventually escaped to the entire population
Example: Melissa computer worm

- Started on March 1999
- Infected MS Outlook users
- The user
 - Receives email with a word document with a virus
 - Once opened, the virus sends itself to the first 50 users in the outlook address book
- First detected on Friday, March 26
- On Monday had infected >100K computers
Example: Hotmail

- Example of Viral Marketing: Hotmail.com
 - Jul 1996: Hotmail.com started service
 - Aug 1996: 20K subscribers
 - Dec 1996: 100K
 - Jan 1997: 1 million
 - Jul 1998: 12 million

Bought by Microsoft for $400 million

Marketing: At the end of each email sent there was a message to subscribe to Hotmail.com “Get your free email at Hotmail"
The Bass model

- Introduced in the 60s to describe product adoption
- Can be applied for viruses
- No network structure

\[F(t + 1) = F(t) + p(1 - F(t)) + q(1 - F(t))F(t) \]

- \(F(t) \): Ratio of infected at time \(t \)
- \(p \): Rate of infection by outside
- \(q \): Rate of contagion
The Bass model

- $F(t)$: Ratio of infected at time t
- p: Rate of infection by outside
- q: Rate of contagion

\[
F(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p} e^{-(p+q)t}}
\]
Network Structure

• The Bass model does not take into account network structure
• Let’s see some examples
Example: Black Death (Plague)

- Started in 1347 in a village in South Italy from a ship that arrived from China
- Propagated through rats, etc.
Example: Mad-cow disease

• Jan. 2001: First cases observed in UK
• Feb. 2001: 43 farms infected
• Sep. 2001: 9000 farms infected

• Measures to stop: Banned movement, killed millions of animals
Network Impact

• In the case of the plague it is like moving in a lattice

• In the mad cow we have weak ties, so we have a small world
 – Animals being bought and sold
 – Soil from tourists, etc.

• To protect:
 – Make contagion harder
 – Remove weak ties (e.g., mad cows, HIV)
Example: Join an online group
Example: Publish in a conference

Probability of joining a conference when k coauthors are already 'members' of that conference

![Graph showing the probability of joining a conference as a function of k, where k ranges from 0 to 18. The probability increases with k, showing fluctuations and error bars.](graph.png)
Example: Use the same tag
Obesity study
Example: obesity study

• Data set of 12,067 people from 1971 to 2003 as part of Framingham Heart Study

• Results
 – Having an obese friend increases chance of obesity by 57%.
 – obese sibling → 40%, obese spouse → 37%
Obesity study

![Graph showing the increase in risk of obesity in ego for different types of alters. The x-axis represents the increase in risk of obesity in ego (in %), and the y-axis lists various alter types including Ego-perceived friend, Mutual friend, Alter-perceived friend, Same-sex friend, Opposite-sex friend, Spouse, Sibling, Same-sex sibling, Opposite-sex sibling, and Immediate neighbor.]
Models of Influence

• We saw that often decision is correlated with the number/fraction of friends
• This suggests that there might be influence: the more the number of friends, the higher the influence
• Models to capture that behavior:
 – Linear threshold model
 – Independent cascade model
Linear Threshold Model

- A node v has threshold $\theta_v \sim U[0,1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that
\[\sum_{\text{w is a neighbor of v}} b_{v,w} \leq 1 \]
- A node v becomes active when at least (weighted) θ_v fraction of its neighbors are active
\[\sum_{\text{w is an active neighbor of v}} b_{v,w} \geq \theta_v \]

Examples: riots, mobile phone networks
Example

Stop!
Independent Cascade Model

• When node v becomes active, it has a single chance of activating each currently inactive neighbor w.

• The activation attempt succeeds with probability p_{vw}.
Example

Stop!
Optimization problems

• Given a particular model, there are some natural optimization problems.

1. How do I select a set of users to give coupons to in order to maximize the total number of users infected?

2. How do I select a set of people to vaccinate in order to minimize influence/infection?

3. If I have some sensors, where do I place them to detect an epidemic ASAP?
Influence Maximization Problem

- Influence of node set S: \(f(S) \)
 - expected number of active nodes at the end, if set S is the initial active set

- Problem:
 - Given a parameter \(k \) (budget), find a \(k \)-node set \(S \) to maximize \(f(S) \)
 - Constrained optimization problem with \(f(S) \) as the objective function
f(S): properties (to be demonstrated)

• Non-negative (obviously)
• Monotone: \(f(S + v) \geq f(S) \)
• Submodular:
 – Let \(N \) be a finite set
 – A set function \(f : 2^N \rightarrow \mathbb{R} \) is submodular \textit{iff}
 \[
 \forall S \subset T \subset N, \forall v \in N \setminus T, \quad f(S + v) - f(S) \geq f(T + v) - f(T)
 \]
 (diminishing returns)
Bad News

• For a submodular function f, if f only takes non-negative value, and is monotone, finding a k-element set S for which $f(S)$ is maximized is an NP-hard optimization problem [GFN77, NWF78].

• It is NP-hard to determine the optimum for influence maximization for both independent cascade model and linear threshold model.
Good News

• We can use Greedy Algorithm!
 – Start with an empty set S
 – For k iterations:
 Add node v to S that maximizes $f(S + v) - f(S)$.

• How good (bad) it is?
 – Theorem: The greedy algorithm is a $(1 - 1/e)$ approximation.
 – The resulting set S activates at least $(1 - 1/e) > 63\%$ of the number of nodes that any size-k set S could activate.
Key 1: Prove submodularity

\[\forall S \subset T \subset N, \forall v \in N \setminus T, \]
\[f(S + v) - f(S) \geq f(T + v) - f(T) \]
Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.
Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.
- Can pre-flip all coins and reveal results immediately.
 - Active nodes in the end are reachable via green paths from initially targeted nodes.
 - Study reachability in green graphs
Submodularity, Fixed Graph

- Fix “green graph” G. $g(S)$ are nodes reachable from S in G.

- Submodularity: $g(T + v) - g(T) \subseteq g(S + v) - g(S)$ when $S \subseteq T$.

- $g(S + v) - g(S)$: nodes reachable from $S + v$, but not from S.

- From the picture: $g(T + v) - g(T) \subseteq g(S + v) - g(S)$ when $S \subseteq T$ (indeed!).
Submodularity of the Function

Fact: A non-negative linear combination of submodular functions is submodular

\[f(S) = \sum_G \text{Prob}(G \text{ is green graph}) \cdot g_G(S) \]

- \(g_G(S) \): nodes reachable from \(S \) in \(G \).
- Each \(g_G(S) \): is submodular (previous slide).
- Probabilities are non-negative.
Submodularity for Linear Threshold

- Use similar “green graph” idea.
- Once a graph is fixed, “reachability” argument is identical.
- How do we fix a green graph now?
- Each node picks at most one incoming edge, with probabilities proportional to edge weights.
- Equivalent to linear threshold model (trickier proof).
Key 2: Evaluating $f(S)$
Evaluating $f(S)$

- How to evaluate $f(S)$?
- Still an open question of how to compute efficiently
- But: very good estimates by simulation
 - repeating the diffusion process often enough (polynomial in $n; 1/\varepsilon$)
 - Achieve $(1 - \varepsilon)$-approximation to $f(S)$.
- Generalization of Nemhauser/Wolsey proof shows: Greedy algorithm is now a $(1 - 1/e - \varepsilon')$-approximation.
Experiment Data

- A collaboration graph obtained from co-authorships in papers of the arXiv high-energy physics theory section
- Co-authorship networks arguably capture many of the key features of social networks more generally
- Resulting graph: 10748 nodes, 53000 distinct edges
Experiment Settings

- Linear Threshold Model: multiplicity of edges as weights
 - weight(v→ω) = \(C_{vw} / dv \), weight(ω→v) = \(C_{wv} / dw \)

- Independent Cascade Model:
 - Case 1: uniform probabilities \(p \) on each edge
 - Case 2: edge from \(v \) to \(ω \) has probability \(1/ dω \) of activating \(ω \).

- Simulate the process 10000 times for each targeted set, re-choosing thresholds or edge outcomes pseudo-randomly from \([0, 1]\) every time

- Compare with other 3 common heuristics
 - (in)degree centrality, distance centrality, random nodes.
Outline

• Models of influence
 – Linear Threshold
 – Independent Cascade

• Influence maximization problem
 – Algorithm
 – Proof of performance bound
 – Compute objective function

• Experiments
 – Data and setting
 – Results
Results: linear threshold model
Independent Cascade Model – Case 1

- \(P = 1\% \)
- \(P = 10\% \)
Independent Cascade Model – Case 2

Reminder: linear threshold model