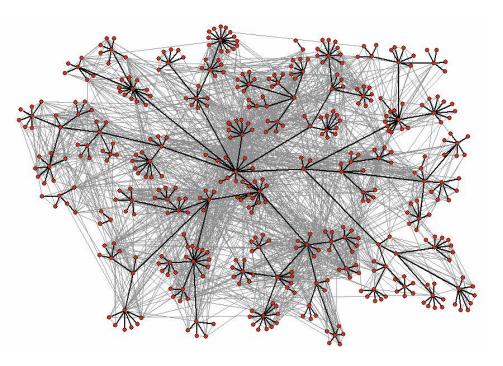
Epidemics in Social Networks



Epidemic Processes

- Viruses, diseases
- Online viruses, worms
- Fashion
- Adoption of technologies
- Behavior
- Ideas

Example: Ebola virus

- First emerged in Zaire 1976 (now Democratic Republic of Kongo)
- Very lethal: it can kill somebody within a few days
- A small outbreak in 2000
- From 10/2000 01/2009 173 people died in African villages

Example: HIV

- Less lethal than Ebola
- Takes time to act, lots of time to infect
- First appeared in the 70s
- Initially confined in special groups: homosexual men, drug users, prostitutes
- Eventually escaped to the entire population

Example: Melissa computer worm

- Started on March 1999
- Infected MS Outlook users
- The user
 - Receives email with a word document with a virus
 - Once opened, the virus sends itself to the first
 50 users in the outlook address book
- First detected on Friday, March 26
- On Monday had infected >100K computers

Example: Hotmail

- Example of Viral Marketing: Hotmail.com
- Jul 1996: Hotmail.com started service
- Aug 1996: 20K subscribers
- Dec 1996: 100K
- Jan 1997: 1 million
- Jul 1998: 12 million

Bought by Microsoft for \$400 million

Marketing: At the end of each email sent there was a message to subscribe to Hotmail.com "Get your free email at Hotmail"

The Bass model

- Introduced in the 60s to describe product adoption
- Can be applied for viruses
- No network structure

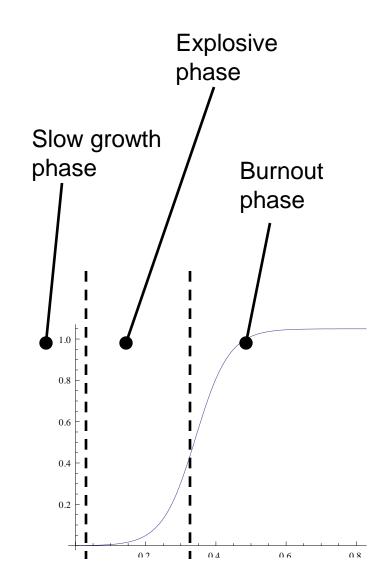
F(t+1) = F(t) + p(1 - F(t)) + q(1 - F(t))F(t)

- F(t): Ratio of infected at time t
- p: Rate of infection by outside
- q: Rate of contagion

The Bass model

- F(t): Ratio of infected at time t
- p: Rate of infection by outside
- q: Rate of contagion

$$F(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p}e^{-(p+q)t}}$$

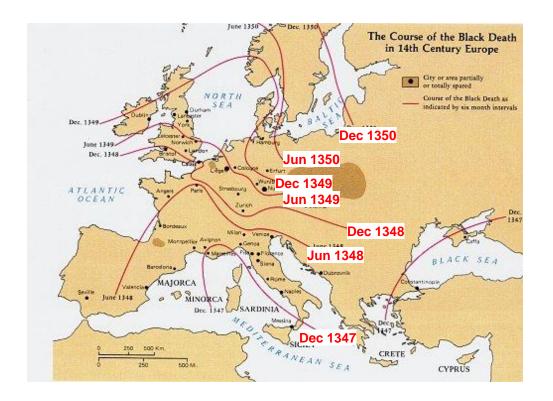


Network Structure

- The Bass model does not take into account network structure
- Let's see some examples

Example: Black Death (Plague)

- Started in 1347 in a village in South Italy from a ship that arrived from China
- Propagated through rats, etc.



Example: Mad-cow disease

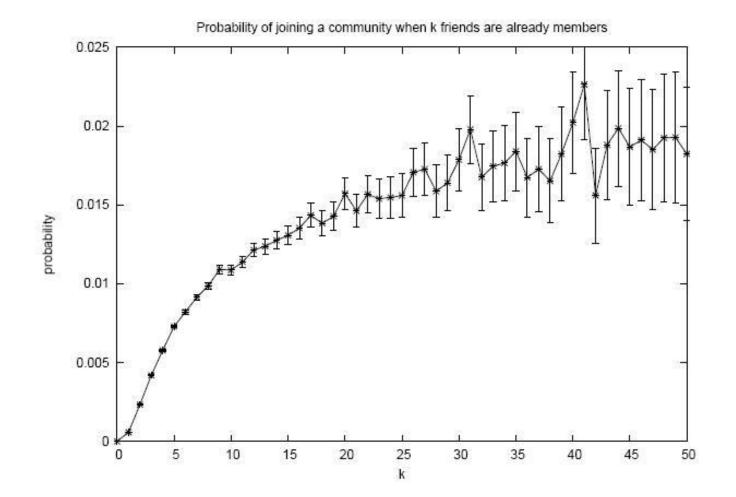
- Jan. 2001: First cases observed in UK
- Feb. 2001: 43 farms infected
- Sep. 2001: 9000 farms infected

 Measures to stop: Banned movement, killed millions of animals

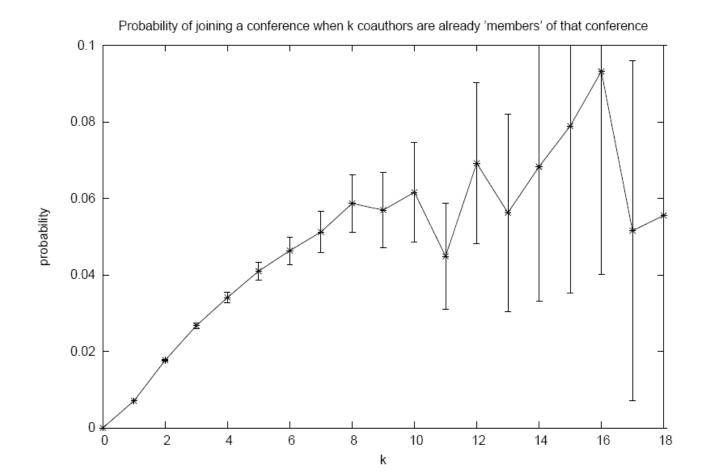
Network Impact

- In the case of the plague it is like moving in a lattice
- In the mad cow we have weak ties, so we have a small world
 - Animals being bought and sold
 - Soil from tourists, etc.
- To protect:
 - Make contagion harder
 - Remove weak ties (e.g., mad cows, HIV)

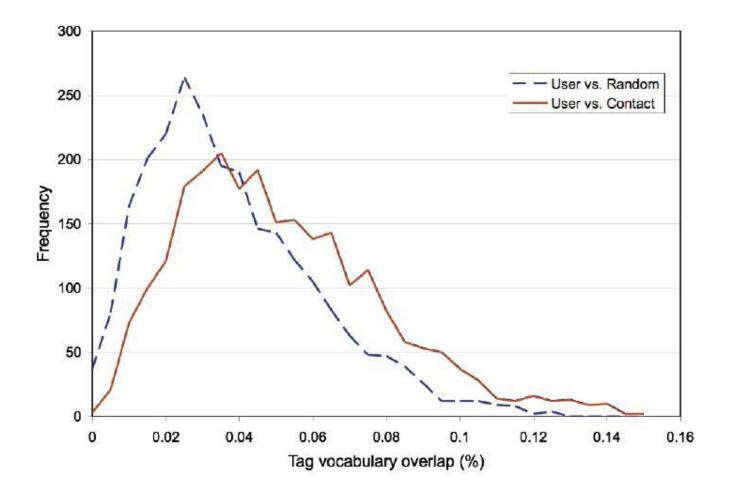
Example: Join an online group



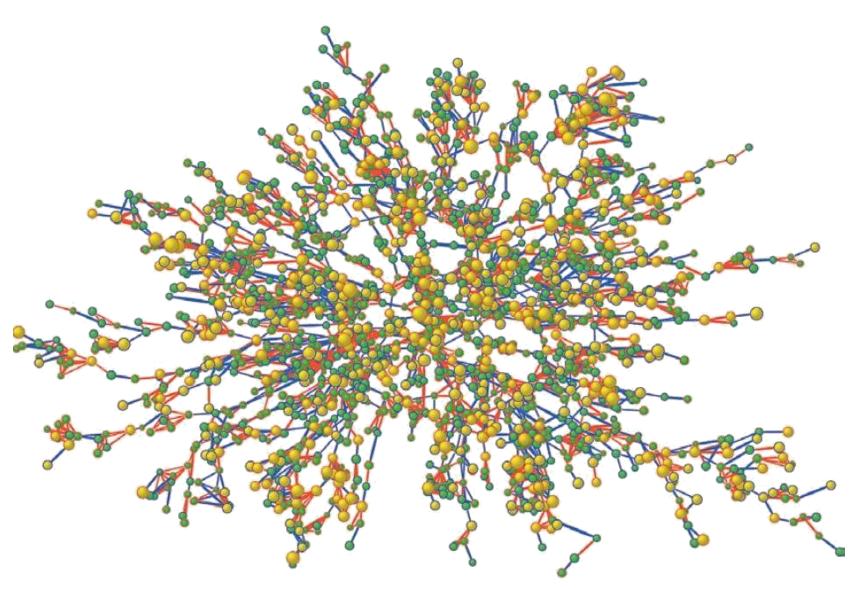
Example: Publish in a conference



Example: Use the same tag



Obesity study



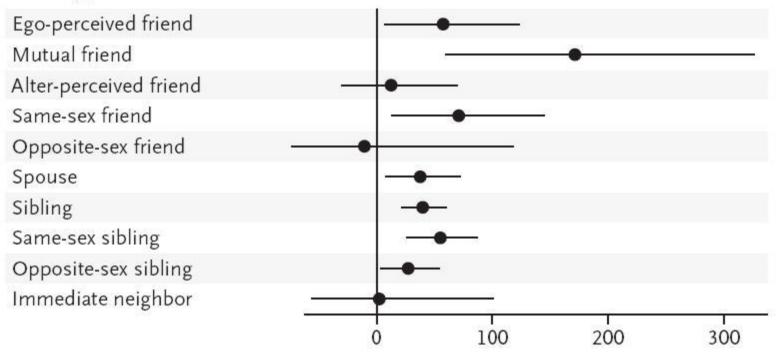
Example: obesity study

Christakis and Fowler, "The Spread of Obesity in a Large Social Network over 32 Years", New England Journal of Medicine, 2007.

- Data set of 12,067 people from 1971 to 2003 as part of Framingham Heart Study
- Results
 - Having an obese friend increases chance of obesity by 57%.
 - obese sibling \rightarrow 40%, obese spouse \rightarrow 37%

Obesity study

Alter Type



Increase in Risk of Obesity in Ego (%)

Models of Influence

- We saw that often decision is correlated with the number/fraction of friends
- This suggests that there might be influence: the more the number of friends, the higher the influence
- Models to capture that behavior:
 - Linear threshold model
 - Independent cascade model

Linear Threshold Model

- A node v has threshold $\theta_v \sim U[0, 1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that

$$\sum_{w \text{ neighbor of } v} b_{v,w} \leq 1$$

• A node v becomes active when at least (weighted) θ_v fraction of its neighbors are active

$$\sum_{v,w} b_{v,w} \ge \theta_{v}$$

w active neighbor of v

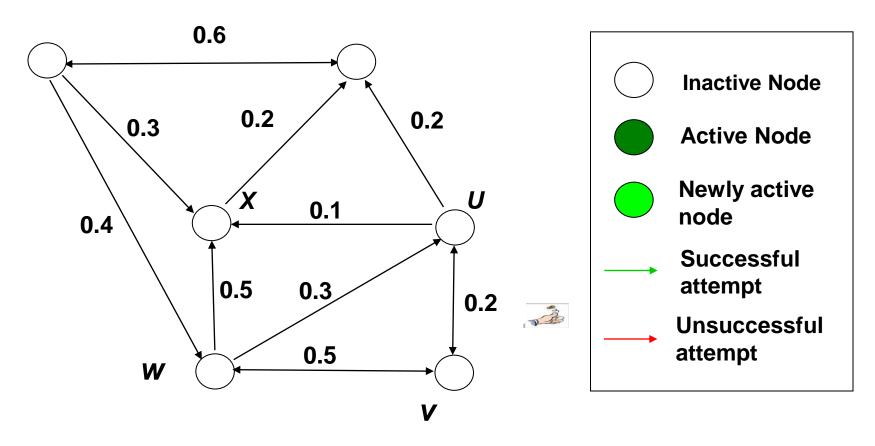
Examples: riots, mobile phone networks

Example **Inactive Node** 0.6 **Active Node** 0.2 0.2 **Threshold** 0.3 **Active neighbors** Χ 0.1 0.4 U 0.3 0.5 Stop! 0.2 0.5 W V

Independent Cascade Model

- When node *v* becomes active, it has a single chance of activating each currently inactive neighbor *w*.
- The activation attempt succeeds with probability p_{vw} .

Example



Stop!

Optimization problems

- Given a particular model, there are some natural optimization problems.
 - 1. How do I select a set of users to give coupons to in order to maximize the total number of users infected?
 - 2. How do I select a set of people to vaccinate in order to minimize influence/infection?
 - 3. If I have some sensors, where do I place them to detect an epidemic ASAP?

Influence Maximization Problem

- Influence of node set S: f(S)
 - expected number of active nodes at the end, if set S is the initial active set
- Problem:
 - Given a parameter k (budget), find a k-node set S to maximize f(S)
 - Constrained optimization problem with f(S) as the objective function

f(S): properties (to be demonstrated)

- Non-negative (obviously)
- Monotone: $f(S+v) \ge f(S)$
- Submodular:
 - -Let N be a finite set
 - A set function $f: 2^N \mapsto \Re$ is submodular *iff* $\forall S \subset T \subset N, \forall v \in N \setminus T,$ $f(S+v) - f(S) \ge f(T+v) - f(T)$

(diminishing returns)

Bad News

- For a submodular function *f*, if *f* only takes nonnegative value, and is monotone, finding a *k*element set *S* for which *f*(*S*) is maximized is an NP-hard optimization problem[GFN77, NWF78].
- It is NP-hard to determine the optimum for influence maximization for both independent cascade model and linear threshold model.

Good News

- We can use Greedy Algorithm!
 - Start with an empty set S
 - For k iterations:

Add node v to S that maximizes f(S + v) - f(S).

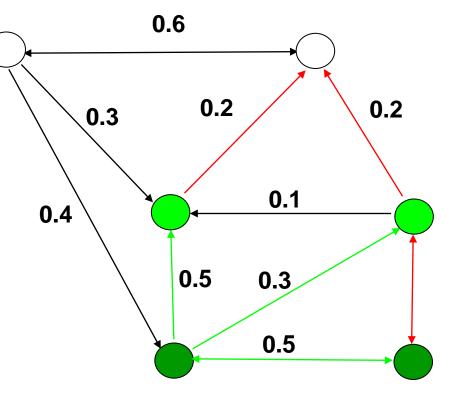
- How good (bad) it is?
 - Theorem: The greedy algorithm is a (1 1/e) approximation.
 - The resulting set S activates at least (1- 1/e) > 63% of the number of nodes that any size-k set S could activate.

Key 1: Prove submodularity

 $\forall S \subset T \subset N, \forall v \in N \setminus T,$ $f(S+v) - f(S) \ge f(T+v) - f(T)$

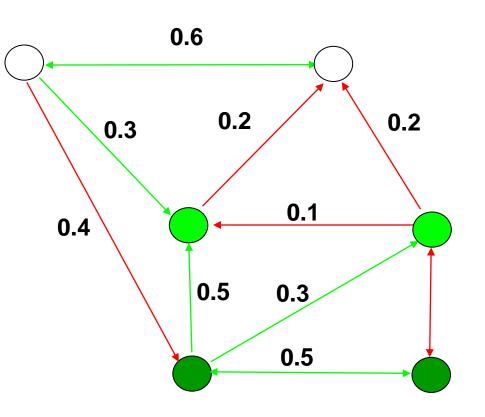
Submodularity for Independent Cascade

 Coins for edges are flipped during activation attempts.



Submodularity for Independent Cascade

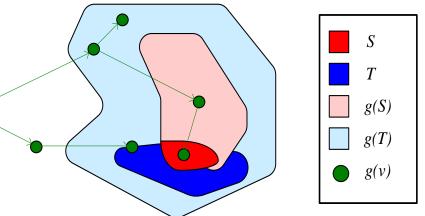
- Coins for edges are flipped during activation attempts.
- Can pre-flip all coins and reveal results immediately.



- Active nodes in the end are reachable via green paths from initially targeted nodes.
- Study reachability in green graphs

Submodularity, Fixed Graph

- Fix "green graph" *G. g(S)* are nodes reachable from *S* in *G*.
- Submodularity: g(T + v) $g(T) \subseteq g(S + v) - g(S)$ when $S \subseteq T$.



- g(S+v) g(S): nodes reachable from S + v, but not from S.
- From the picture: $g(T+v) g(T) \subseteq g(S+v) g(S)$ when $S \subseteq T$ (*indeed!*).

Submodularity of the Function

Fact: A non-negative linear combination of submodular functions is submodular

$$f(S) = \sum_{G} \operatorname{Prob}(G \text{ is green graph}) \cdot g_{G}(S)$$

- $g_G(S)$: nodes reachable from S in G.
- Each $g_G(S)$: is submodular (previous slide).
- Probabilities are non-negative.

Submodularity for Linear Threshold

- Use similar "green graph" idea.
- Once a graph is fixed, "reachability" argument is identical.
- How do we fix a green graph now?
- Each node picks at most one incoming edge, with probabilities proportional to edge weights.
- Equivalent to linear threshold model (trickier proof).

Key 2: Evaluating f(S)

Evaluating *f*(*S*)

- How to evaluate f(S)?
- Still an open question of how to compute efficiently
- But: very good estimates by simulation

 repeating the diffusion process often enough
 (polynomial in *n*; 1/ε)
 - Achieve (1 ϵ)-approximation to f(S).
- Generalization of Nemhauser/Wolsey proof shows: Greedy algorithm is now a (1-1/e- ε')-approximation.

Experiment Data

- A collaboration graph obtained from coauthorships in papers of the arXiv highenergy physics theory section
- co-authorship networks arguably capture many of the key features of social networks more generally
- Resulting graph: 10748 nodes, 53000
 distinct edges

Experiment Settings

 Linear Threshold Model: multiplicity of edges as weights

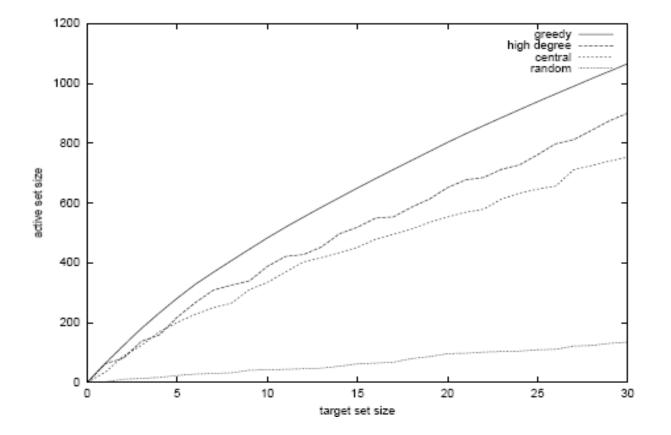
- weight(v $\rightarrow \omega$) = C_{vw} / dv , weight($\omega \rightarrow v$) = C_{wv} / dw

- Independent Cascade Model:
 - Case 1: uniform probabilities *p* on each edge
 - Case 2: edge from v to ω has probability 1/ d ω of activating ω .
- Simulate the process 10000 times for each targeted set, re-choosing thresholds or edge outcomes pseudo-randomly from [0, 1] every time
- Compare with other 3 common heuristics
 - (in)degree centrality, distance centrality, random nodes.

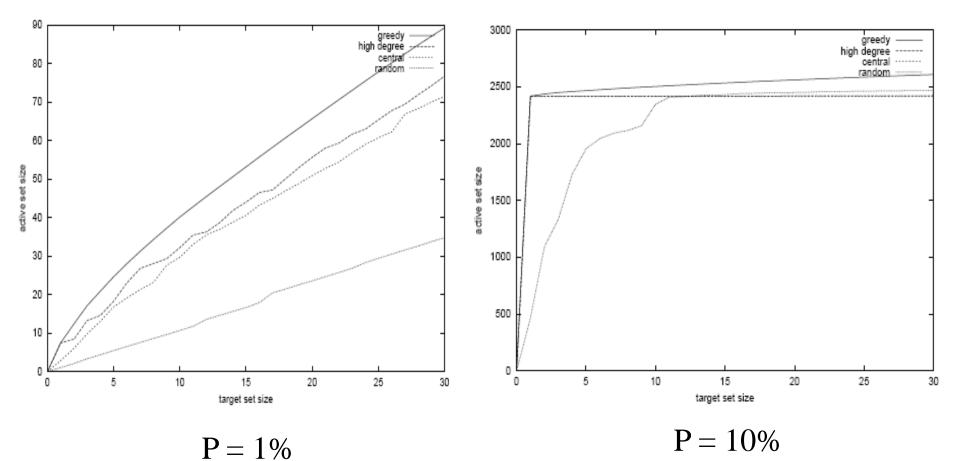
Outline

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Results: linear threshold model



Independent Cascade Model – Case 1



Independent Cascade Model – Case 2 Reminder: linear

