Epidemics in Social Networks

Epidemic Processes

- Viruses, diseases
- Online viruses, worms
- Fashion
- Adoption of technologies
- Behavior
- Ideas

Example: Ebola virus

- First emerged in Zaire 1976 (now Democratic Republic of Kongo)
- Very lethal: it can kill somebody within a few days
- A small outbreak in 2000
- From 10/2000-01/2009 173 people died in African villages

Example: HIV

- Less lethal than Ebola
- Takes time to act, lots of time to infect
- First appeared in the 70s
- Initially confined in special groups: homosexual men, drug users, prostitutes
- Eventually escaped to the entire population

Example: Melissa computer worm

- Started on March 1999
- Infected MS Outlook users
- The user
- Receives email with a word document with a virus
- Once opened, the virus sends itself to the first 50 users in the outlook address book
- First detected on Friday, March 26
- On Monday had infected >100K computers

Example: Hotmail

- Example of Viral Marketing: Hotmail.com
- Jul 1996: Hotmail.com started service
- Aug 1996: 20K subscribers
- Dec 1996: 100K
- Jan 1997: 1 million
- Jul 1998: 12 million

Bought by Microsoft for $\$ 400$ million
Marketing: At the end of each email sent there was a message to subscribe to Hotmail.com "Get your free email at Hotmail"

The Bass model

- Introduced in the 60s to describe product adoption
- Can be applied for viruses
- No network structure

$$
F(t+1)=F(t)+p(1-F(t))+q(1-F(t)) F(t)
$$

- $F(t)$: Ratio of infected at time t
- p : Rate of infection by outside
- q : Rate of contagion

The Bass model

- $F(t)$: Ratio of infected at time t
- p : Rate of infection by outside
- q : Rate of contagion

$$
F(t)=\frac{1-e^{-(p+q) t}}{1+\frac{q}{p} e^{-(p+q) t}}
$$

Explosive

Network Structure

- The Bass model does not take into account network structure
- Let's see some examples

Example: Black Death (Plague)

- Started in 1347 in a village in South Italy from a ship that arrived from China
- Propagated through rats, etc.

Example: Mad-cow disease

- Jan. 2001: First cases observed in UK
- Feb. 2001: 43 farms infected
- Sep. 2001: 9000 farms infected
- Measures to stop: Banned movement, killed millions of animals

Network Impact

- In the case of the plague it is like moving in a lattice
- In the mad cow we have weak ties, so we have a small world
- Animals being bought and sold
- Soil from tourists, etc.
- To protect:
- Make contagion harder
- Remove weak ties (e.g., mad cows, HIV)

Example: Join an online group

Example: Publish in a conference

Example: Use the same tag

Obesity study

Example: obesity study

Christakis and Fowler, "The Spread of Obesity in a Large Social Network over 32 Years", New England Journal of Medicine, 2007.

- Data set of 12,067 people from 1971 to 2003 as part of Framingham Heart Study
- Results
- Having an obese friend increases chance of obesity by 57\%.
- obese sibling $\rightarrow 40 \%$, obese spouse $\rightarrow 37 \%$

Obesity study

Alter Type

Ego-perceived friend
Mutual friend
Alter-perceived friend
Same-sex friend
Opposite-sex friend
Spouse
Sibling
Same-sex sibling
Opposite-sex sibling Immediate neighbor

Models of Influence

- We saw that often decision is correlated with the number/fraction of friends
- This suggests that there might be influence: the more the number of friends, the higher the influence
- Models to capture that behavior:
- Linear threshold model
- Independent cascade model

Linear Threshold Model

- A node v has threshold $\theta_{v} \sim U[0,1]$
- A node v is influenced by each neighbor w according to a weight $b_{v w}$ such that

$$
\sum b_{r, w} \leq 1
$$

w neighbor of v

- A node v becomes active when at least (weighted) θ_{v} fraction of its neighbors are active

$$
\sum \quad b_{v, w} \geq \theta_{v}
$$

w active neighbor of v
Examples: riots, mobile phone networks

Example

Independent Cascade Model

- When node v becomes active, it has a single chance of activating each currently inactive neighbor w.
- The activation attempt succeeds with probability $p_{v w}$.

Example

Stop!

Optimization problems

- Given a particular model, there are some natural optimization problems.

1. How do I select a set of users to give coupons to in order to maximize the total number of users infected?
2. How do I select a set of people to vaccinate in order to minimize influence/infection?
3. If I have some sensors, where do I place them to detect an epidemic ASAP?

Influence Maximization Problem

- Influence of node set S : $f(S)$
- expected number of active nodes at the end, if set S is the initial active set
- Problem:
- Given a parameter k (budget), find a k-node set S to maximize f(S)
- Constrained optimization problem with $f(S)$ as the objective function

$\mathrm{f}(\mathrm{S})$: properties (to be demonstrated)

- Non-negative (obviously)
- Monotone: $f(S+v) \geq f(S)$
- Submodular:
-Let N be a finite set
-A set functio $\mathfrak{\hbar}^{f}: 2^{N} \mapsto \Re$ is submodular iff

$$
\begin{aligned}
& \forall S \subset T \subset N, \forall v \in N \backslash T, \\
& f(S+v)-f(S) \geq f(T+v)-f(T)
\end{aligned}
$$

(diminishing returns)

Bad News

- For a submodular function f, if f only takes nonnegative value, and is monotone, finding a k element set S for which $f(S)$ is maximized is an NP-hard optimization problem[GFN77, NWF78].
- It is NP-hard to determine the optimum for influence maximization for both independent cascade model and linear threshold model.

Good News

- We can use Greedy Algorithm!
- Start with an empty set S
- For k iterations: Add node v to S that maximizes $f(S+v)-f(S)$.
- How good (bad) it is?
- Theorem: The greedy algorithm is a ($1-1 / e$) approximation.
- The resulting set S activates at least (1-1/e) > 63% of the number of nodes that any size-k set S could activate.

Key 1: Prove submodularity

$$
\begin{aligned}
& \forall S \subset T \subset N, \forall v \in N \backslash T \\
& f(S+v)-f(S) \geq f(T+v)-f(T)
\end{aligned}
$$

Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.

Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.
- Can pre-flip all coins and reveal results immediately.

- Active nodes in the end are reachable via green paths from initially targeted nodes.
- Study reachability in green graphs

Submodularity, Fixed Graph

- Fix "green graph" G. $g(S)$ are nodes reachable from S in G.
- Submodularity: $g(T+V)$ $g(T) \subseteq g(S+v)-g(S)$ when $S \subseteq T$.

- $g(S+v)-g(S)$: nodes reachable from $S+v$, but not from S.
- From the picture: $g(T+v)-g(T) \subseteq g(S+v)-g(S)$ when S $\subseteq T$ (indeed!).

Submodularity of the Function

Fact: A non-negative linear combination of submodular functions is submodular

$$
f(S)=\sum_{G} \operatorname{Prob}(G \text { is green graph }) \cdot g_{G}(S)
$$

- $g_{G}(S)$: nodes reachable from S in G.
- Each $\mathrm{g}_{\mathrm{G}}(\mathrm{S})$: is submodular (previous slide).
- Probabilities are non-negative.

Submodularity for Linear Threshold

- Use similar "green graph" idea.
- Once a graph is fixed, "reachability" argument is identical.
- How do we fix a green graph now?
- Each node picks at most one incoming edge, with probabilities proportional to edge weights.
- Equivalent to linear threshold model (trickier proof).

Key 2: Evaluating f(S)

Evaluating $f(S)$

- How to evaluate $f(S)$?
- Still an open question of how to compute efficiently
- But: very good estimates by simulation - repeating the diffusion process often enough (polynomial in $n ; 1 / \varepsilon$)
- Achieve $\left(\begin{array}{ll}1 & \varepsilon\end{array}\right)$-approximation to $f(S)$.
- Generalization of Nemhauser/Wolsey proof shows: Greedy algorithm is now a (1-1/e- ε^{\prime})-approximation.

Experiment Data

- A collaboration graph obtained from coauthorships in papers of the arXiv highenergy physics theory section
- co-authorship networks arguably capture many of the key features of social networks more generally
- Resulting graph: 10748 nodes, 53000 distinct edges

Experiment Settings

- Linear Threshold Model: multiplicity of edges as weights
- weight $(v \rightarrow \omega)=C_{v w} / d v$, weight $(\omega \rightarrow v)=C_{w v} / d w$
- Independent Cascade Model:
- Case 1: uniform probabilities p on each edge
- Case 2: edge from v to ω has probability $1 / d \omega$ of activating ω.
- Simulate the process 10000 times for each targeted set, re-choosing thresholds or edge outcomes pseudo-randomly from [0, 1] every time
- Compare with other 3 common heuristics
- (in)degree centrality, distance centrality, random nodes.

Outline

- Models of influence
- Linear Threshold
- Independent Cascade
- Influence maximization problem
- Algorithm
- Proof of performance bound
- Compute objective function
- Experiments
- Data and setting
- Results

Results: linear threshold model

Independent Cascade Model Case 1

$\mathrm{P}=1 \%$

$\mathrm{P}=10 \%$

Independent Cascade Model -

 Case 2

Reminder: linear threshold model

