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Growing Privacy Concerns

“Detailed information on an individual’s credit, health, 
and financial status, on characteristic purchasing 
patterns, and on other personal preferences is routinely 
recorded and analyzed by a variety of governmental and 
commercial organizations.”  

- M. J. Cronin, “e-Privacy?” Hoover Digest, 2000.

 Person specific information is being routinely 
collected. 



Proliferation of Graph Data

http://www.touchgraph.com/



Privacy breaches on graph data

• Identity disclosure
– Identity of individuals associated with nodes is 

disclosed

• Link disclosure
– Relationships between individuals are disclosed

• Content disclosure
– Attribute data associated with a node is disclosed



Identity anonymization on graphs

• Question
– How to share a network in a manner that permits useful analysis 

without disclosing the identity of the individuals involved?

• Observations
– Simply removing the identifying information of the nodes before 

publishing the actual graph does not guarantee identity 
anonymization. 

L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579X?: Anonymized social netwoks, 
hidden patterns, and structural steganography,” In WWW 2007.

J. Kleinberg, “Challenges in Social Network Data: Processes, Privacy and Paradoxes, ” KDD 2007 
Keynote Talk.

• Can we borrow ideas from k-anonymity?



What if you want to prevent the 
following from happening

• Assume that adversary A knows that B has 
327 connections in a social network! 

• If the graph is released by removing the 
identity of the nodes

– A can find all nodes that have degree 327

– If there is only one node with degree 327, A can 
identify this node as being B.



Privacy model

[k-degree anonymity] A graph G(V, E) is k-degree anonymous if 
every node in V has the same degree as k-1 other nodes in V.

[Properties] It prevents the re-identification of individuals by 
adversaries with a priori knowledge of the degree of certain 
nodes. 
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Problem Definition

• Symmetric difference between graphs G(V,E) and G’(V,E’) :

Given a graph G(V, E) and an integer k, modify G via a minimal set of edge 
addition or deletion operations to construct a new graph G’(V’, E’) such that 

1) G’ is k-degree anonymous; 

2) V’ = V;

3) The symmetric difference of G and G’ is as small as possible

'\\'),'SymDiff( EEEEGG 



GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k

Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]: 

• Contruct an anonymized degree sequence d’ from the 

original degree sequence d

[Graph Construction]: 

[Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0 is d‘

[Transform]: Transform G0(V, E0) to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 



Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if 
every distinct element value in d appears at least k times.

[degree-sequence anonymization] Given degree sequence d, 
and integer k, construct k-anonymous sequence d’ such that 
||d’-d|| is minimized

[100,100, 100, 98, 98,15,15,15]

Increase/decrease of degrees correspond to additions/deletions of edges



Algorithm for degree-sequence 
anonymization

Original degree sequence

k=2k=4



DP for degree-sequence 
anonymization
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 DA(1, n) : the optimal degree-sequence anonymization cost 

 Dynamic Programming with O(n2)

 C(i, j) : anonymization cost when all nodes i, i+1, …, j are put in the same 
anonymized group, i.e., 

 d (1) ≥ d (2) ≥… ≥ d (i) ≥… ≥ d (n) : original degree sequence.

 d’ (1) ≥ d’ (2) ≥…≥ d’ (i) ≥…≥ d’ (n) : k-anonymized degree sequence.

 Dynamic Programming can be done in O(n) with some additional bookkeeping



GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k

Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]: 

• Contruct an anonymized degree sequence d’ from the 

original degree sequence d

[Graph Construction]: 

[Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0 is d‘

[Transform]: Transform G0(V, E0) to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 



Are all degree sequences realizable?

• A degree sequence d is realizable if there 
exists a simple undirected graph with nodes 
having degree sequence d.

• Not all vectors of integers are realizable 
degree sequences
– d = {4,2,2,2,1} ?

• How can we decide?



Realizability of degree sequences

[Erdös and Gallai] A degree sequence d with d(1) ≥ d(2) ≥… ≥ d(i) ≥… ≥ d(n) 
and Σd(i) even, is realizable if and only if 

1 1

( ) ( 1) min{ , ( )},  for every 1 1.
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Input: Degree sequence d’
Output: Graph G0(V, E0) with degree sequence d’ or NO!

If the degree sequence d’ is NOT realizable?

•Convert it into a realizable and k-anonymous degree sequence



GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k

Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]: 

• Contruct an anonymized degree sequence d’ from the 

original degree sequence d

[Graph Construction]: 

[Construct]: Given degree sequence d', construct a new 

graph G0(V, E0) such that the degree sequence of G0 is d‘

[Transform]: Transform G0(V, E0) to G’(V, E’) so that 

SymDiff(G’,G) is minimized. 



Graph-transformation algorithm 

 GreedySwap transforms G0 = (V, E0) into G’(V, E’) with the same degree 
sequence d’, and min symmetric difference SymDiff(G’,G) .

 GreedySwap is a greedy heuristic with several iterations.

 At each step, GreedySwap swaps a pair of edges to make the graph more 
similar to the original graph G, while leaving the nodes’ degrees intact.



Valid swappable pairs of edges

A swap is valid if the resulting graph is simple



GreedySwap algorithm

Input: A pliable graph G0(V, E0) , fixed graph G(V,E)

Output: Graph G’(V, E’) with the same degree sequence as G0(V,E0)

i=0

Repeat 

find the valid swap in Gi that most reduces its symmetric difference 

with G , and form graph Gi+1

i++



Experiments

• Datasets: Co-authors, Enron emails, 
powergrid, Erdos-Renyi, small-world and 
power-law graphs

• Goal: degree-anonymization does not destroy 
the structure of the graph
– Average path length

– Clustering coefficient

– Exponent of power-law distribution  



Experiments: Clustering coefficient 
and Avg Path Length

 Co-author dataset

 APL and CC do not change dramatically even for large values of k



Experiments: Edge intersections

Synthetic datasets

Small world graphs* 0.99 (0.01)

Random graphs 0.99 (0.01)

Power law graphs** 0.93 (0.04)

Real datasets

Enron 0.95 (0.16)

Powergrid 0.97 (0.01)

Co-authors 0.91(0.01)

(*) L. Barabasi and R. Albert: Emergence of  scaling in random networks. Science 1999.

(**) Watts, D. J. Networks, dynamics, and the small-world phenomenon. American Journal of Sociology 
1999

Edge intersection achieved 
by the GreedySwap
algorithm for different 
datasets.

Parenthesis value indicates 
the original value of edge 
intersection



Experiments: Exponent of power law 
distributions

Original 2.07

k=10 2.45

k=15 2.33

k=20 2.28

k=25 2.25

k=50 2.05

k=100 1.92

Co-author dataset

Exponent of the power-
law distribution as a 
function of k
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What is privacy risk score and why is it useful?

• What? 
– It is a credit-score-like indicator to measure the potential 

privacy risks of online social-networking users. 

• Why? 
– It aims to boost public awareness of privacy, and to reduce 

the cognitive burden on end-users in managing their 
privacy settings.
• privacy risk monitoring & early alarm

• comparison with the rest of population

• help sociologists to study online behaviors, information 
propagation



26 IBM Almaden Research Center --
http://www.almaden.ibm.com/cs/projects/iis/ppn/

Privacy Score Overview 

Privacy Risk Monitoring

privacy score of 
the user

Privacy Settings Recommendation

Privacy Score 
Calculation

Utilize Privacy Scores

Comprehensive Privacy Report 

Privacy Settings

Privacy Score measures the potential privacy risks of online social-networking users. 



27 IBM Almaden Research Center --
http://www.almaden.ibm.com/cs/projects/iis/ppn/

How is Privacy Score Calculated? – Basic Premises

• Sensitivity: The more sensitive the 
information revealed by a user, the higher his 
privacy risk.

• Visibility: The wider the information about a 
user spreads, the higher his privacy risk. 

mother’s maiden name is more sensitive than mobile-phone number

home address known by everyone poses higher risks than by friends only



28 IBM Almaden Research Center --
http://www.almaden.ibm.com/cs/projects/iis/ppn/

Privacy Score Calculation

Privacy Score of User j due to Profile Item i

PR( , )= ( , ).ii j V i j

sensitivity of profile item i visibility of profile item i

name, or gender, birthday, address, 
phone number, degree, job, etc.
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http://www.almaden.ibm.com/cs/projects/iis/ppn/

Privacy Score Calculation

Privacy Score of User j due to Profile Item i

PR( , )= ( , ).ii j V i j

sensitivity of profile item i visibility of profile item i

Overall Privacy Score of User j

PR( ) PR( , ) ( , ).i

i i

j i j V i j

name, or gender, birthday, address, 
phone number, degree, job, etc.



30 IBM Almaden Research Center --
http://www.almaden.ibm.com/cs/projects/iis/ppn/

The Naïve Approach

R(n, N)R(n, 1)

R(i, j)

R(1, N)R(1, 2)R(1, 1)

User_1 User_j User_N

Profile Item_1
(birthday)

Profile Item_i
(cell phone #)

Profile Item_n

share, R(i, j) = 1

not share,  R(i, j) = 0
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http://www.almaden.ibm.com/cs/projects/iis/ppn/

The Naïve Approach

R(n, N)R(n, 1)

R(i, j)

R(1, N)R(1, 2)R(1, 1)

User_1 User_j User_N

Profile Item_1
(birthday)

Profile Item_i
(cell phone #)

Profile Item_n

share, R(i, j) = 1

not share,  R(i, j) = 0

| | ( , )i

j

R R i j

| |i
i

N R

N
Sensitivity:
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The Naïve Approach

R(n, N)R(n, 1)

R(i, j)

R(1, N)R(1, 2)R(1, 1)

User_1 User_j User_N

Profile Item_1
(birthday)

Profile Item_i
(cell phone #)

Profile Item_n

share, R(i, j) = 1

not share,  R(i, j) = 0

| | ( , )i

j

R R i j

| | ( , )j

i

R R i j

| |i
i

N R

N
Sensitivity:

( , ) Pr{ ( , ) 1}V i j R i jVisibility:
| | | | | |

Pr{ ( , ) 1} (1 )
j j

i
ij i

R R R
P R i j

N n n
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Advantages and Disadvantages of Naïve 

• Computational Complexity O (Nn) – best one can hope

• Scores are sample dependent 
– Studies show that Facebook users reveal more identifying 

information than MySpace users

– Sensitivity of the same information estimated from 
Facebook and from MySpace are different 

• What properties do we really want?
– Group Invariance: scores calculated from different social 

networks and/or user base are comparable. 

– Goodness-of-Fit: mathematical models fit the observed 
user data well.



34 IBM Almaden Research Center --
http://www.almaden.ibm.com/cs/projects/iis/ppn/

Item Response Theory (IRT)

• IRT (Lawley,1943 and Lord,1952) has its origin in 
psychometrics.

• It is used to analyze data from questionnaires and tests.

• It is the foundation of Computerized Adaptive Test like GRE, 
GMAT 

Ability
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Item Characteristic Curve (ICC)

• (ability): is an unobserved hypothetical variable such as intelligence, scholastic ability, 
cognitive capabilities, physical skills, etc.

• (difficulty):  is the location parameter, indicates the point on the ability scale at which the 
probability of correct response is .50

• (discrimination): is the scale parameter that indexes the discriminating power of an item

i

i

j

( )

1
ICC: Pr{ ( , ) 1}

1 i j i
ijP R i j

e
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Mapping from PRS to IRT

R(n, N)…………………………………………R(n, 1)

R(i, j)

R(1, N)……………………………………R(1, 2)R(1, 1)

Student_1

Question Item_1

Question Item_i

Question Item_n

wrong answer,   R(i, j) = 0

correct answer,  R(i, j) = 1

Student_ j Student_N

R(n, N)…………………………………………R(n, 1)

R(i, j)

R(1, N)……………………………………R(1, 2)R(1, 1)

User_1 User_j User_N

Profile Item_1

Profile Item_i

Profile Item_n

share, R(i, j) = 1

not share,  R(i, j) = 0

( )

1
Pr{ ( , ) 1}

1 i j i
ijP R i j

e

discrimination  discrimination

ability  attitude/privacy concerns

difficulty  sensitivity

Prob of correct answer   Prob of share the profile
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Computing PRS using IRT

i
Sensitivity: Visibility:

Overall Privacy Risk Score of User j

PR( ) ( , ).i

i

j V i j

( , ) 1 (1 ) 0 , where Pr{ ( , ) 1}ij ij ij ijV i j P P P P R i j

( )

1
Pr{ ( , ) 1}

1 i j i
ijP R i j

e

Byproduct: profile item’s discrimination and user’s attitude
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Calculating Privacy Score using IRT

i
Sensitivity: Visibility:

Overall Privacy Score of User j

PR( ) ( , ).i

i

j V i j

( , ) Pr{ ( , ) 1}V i j R i j

( )

1
Pr{ ( , ) 1}

1 i j i
ijP R i j

e

byproducts: profile item’s discrimination and user’s attitude

All the parameters can be estimated using Maximum Likelihood Estimation and EM.
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Advantages of the IRT Model

• The mathematical model fits the observed data well

• The quantities IRT computes (i.e., sensitivity, attitude and 
visibility) have intuitive interpretations

• Computation is parallelizable using e.g. MapReduce

Privacy scores calculated within different social networks are 
comparable
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Estimating the Parameters of a Profile Item

r_i1 f_1 – r_i1

r_i2 f_2 – r_i2

r_i3 f_3 – r_i3

…… ……

r_ig f_g – r_ig

…… ……

…… ……

r_iK f_g – r_iK

Share Not share

θ_1

θ_2

θ_3

……

θ_g

……

……

θ_K

Attitude level 

f_1

f_2

f_3

……

f_g

……

……

f_K

# of users at this attitude level

1

K

g

g

f N

1

Log likelihood: log 1 ,
ig g ig

K
r f rg

ig ig

igg

f
L P P

r
( )

1
where 

1 i g i
igP

e

1 2where ,  ,
i i

L L
L L

2 2 2

11 22 12 212 2
,  ,  .

i i i i

L L L
L L L L

1

11 12 1

21 22 21

Newton-Raphson: ,
i i

i i t tt t

L L L

L L L

Known Input:
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Experiments – Interesting Results



42


