Dynamics of Social Balance on Networks

T. Antal, P.L. Krapivsky, S. Redner

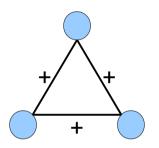
2010 March 04

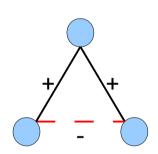
Marco Winkler

Contents

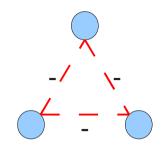
- Definition of Social Balance
- Dynamics
 - Local Triad Dynamics (LTD)
 - Constrained Triad Dynamics (CTD)
- Project

Definition: Social Balance





+ - +



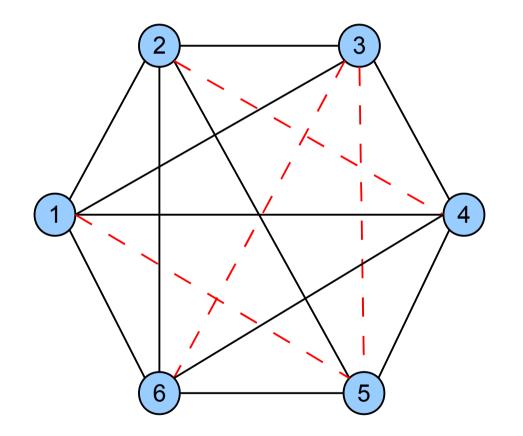
balanced

unbalanced

balanced

unbalanced

Example



Balanced?

Definition: Social Balance

A network is balanced, if **all** of its consisting triangles are balanced.

 \rightarrow How can this be achieved?

<u>Theorem</u>: In a completely connected graph, the only balanced solution is: Two groups X and Y such that for all nodes $x_1, x_2 \in X$ and $y_1, y_2 \in Y$:

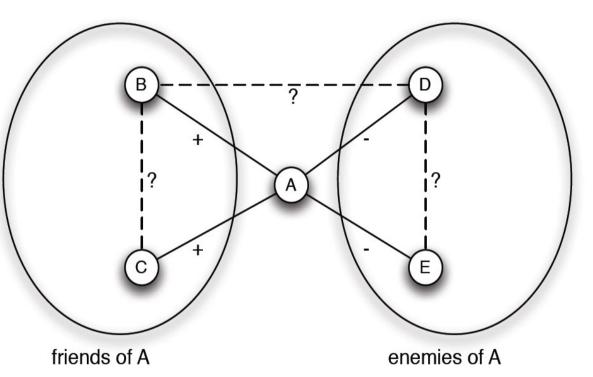
$$(x_1, x_2) = (y_1, y_2) = +1$$
, $(x_1, x_2) = -1$

[4]

Definition: Social Balance

Proof:

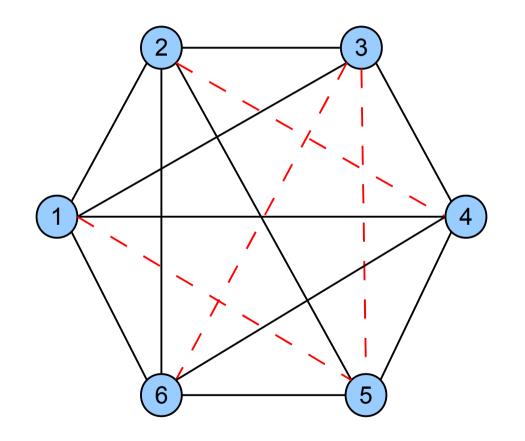
- Pick an arbitrary node A
- Split the graph into the friends and the enemies of A



Consider any of the open links

- [3]
- From trivial conclusions follows, that there are exactly two groups

Example



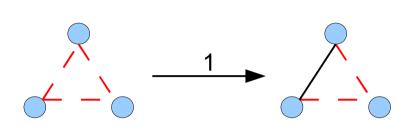
Balanced?

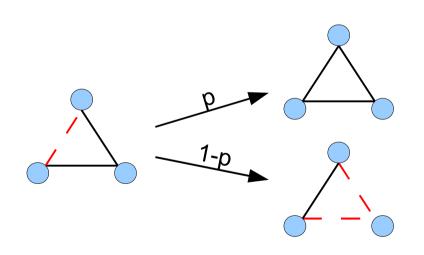
- 123, 126, 456 \rightarrow yes
- 156, 125, 126 \rightarrow no!

•

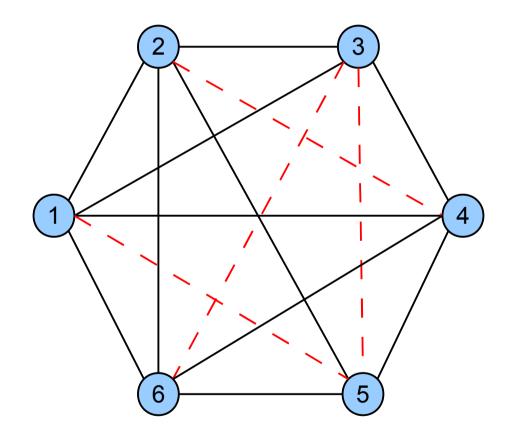
 \rightarrow system will evolve

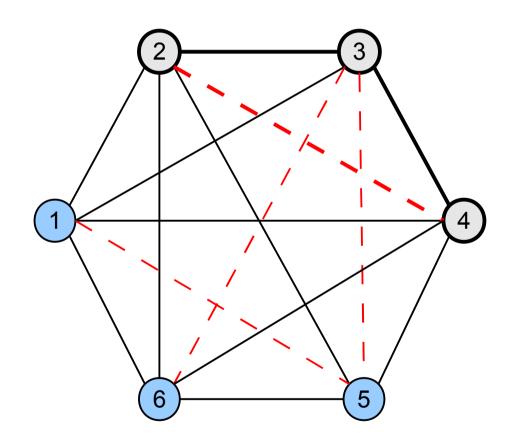
Local Triad Dynamics (LTD)



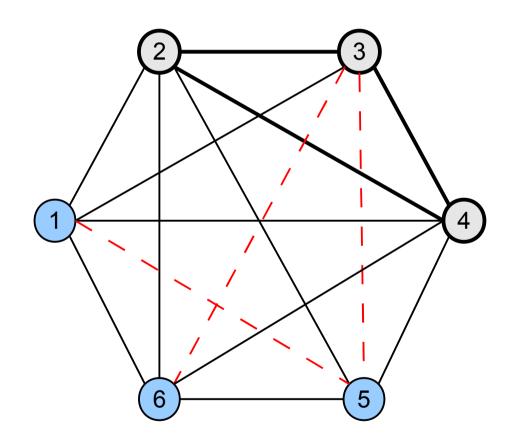


- Update rule:
 - Pick a triangle at random
 - Transforms the selected triad into a balanced one
 - repeat
- p is the control parameter of that model





Switch (2,4) from unfriendly to friendly!



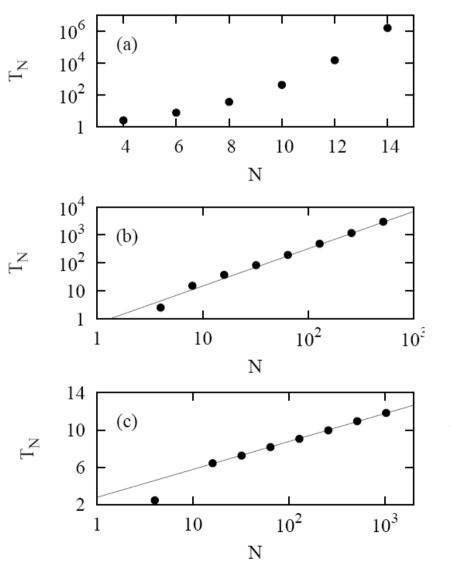
Switch (2,4) from unfriendly to friendly!

LTD: Final States

Some results:

- All evolutions end up in a balanced state
- The following measures only depend on p:
 - The time to reach a balanced state
 - The ratio of positive links in the final state (ρ_{∞})
 - The densities of triangles with 0, 1, 2 and 3 negative links $(n_0^{}, n_1^{}, n_2^{}, n_3^{})$

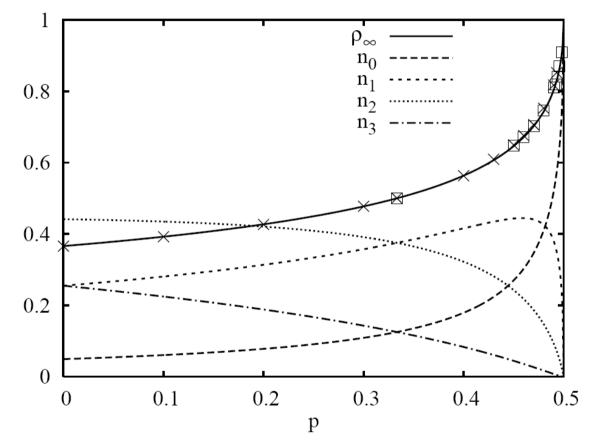
LTD: Final States



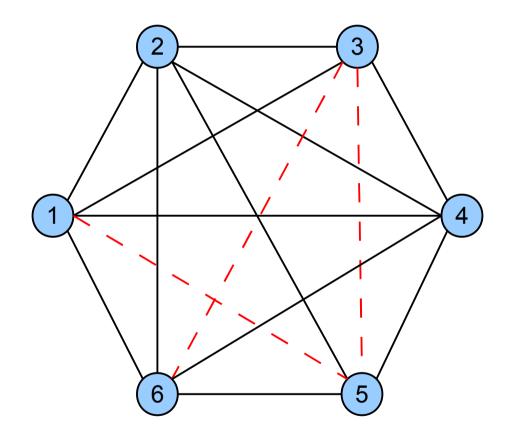
Average time to reach balance as a function of the network size N for an initially antagonistic society ($\rho_0 = 0$) for:

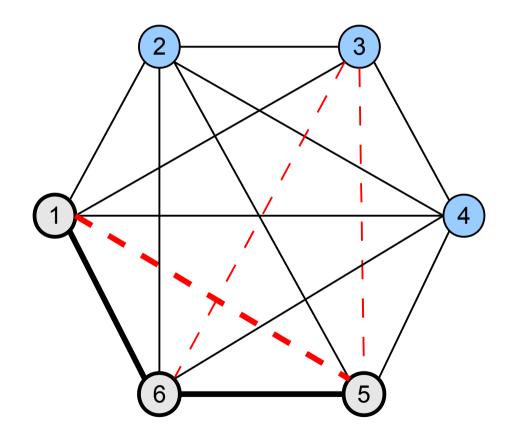
$$T_N \propto \begin{cases} e^{N^2} & p < 1/2 \\ N^{4/3} & p = 1/2 \\ (2p-1)^{-1} \ln N & p > 1/2 \end{cases}$$
[1]

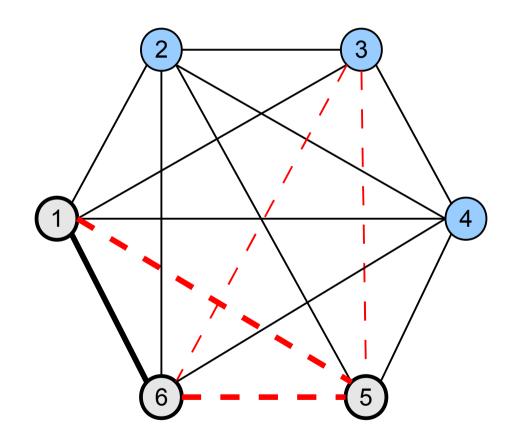
LTD: Final States



The stationary densities $n_k(p)$ of triads with k unfriendly links and the density of friendly links ρ_{∞} as a function of p. Simulation results for ρ_{∞} for N = 64 (crosses) and 256 (boxes) are also shown. [1]







Effects of changing (5,6) from + to – :

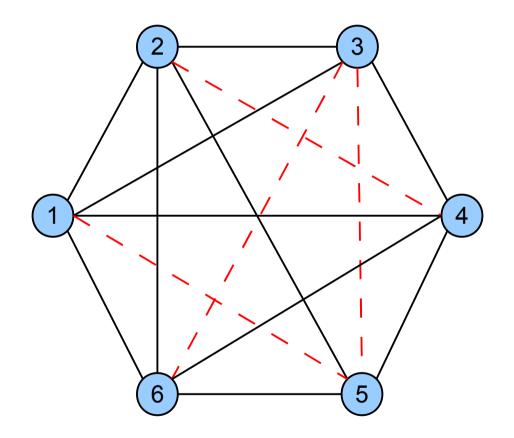
- Unbalanced \rightarrow bal.: (1,5,6)
- Balanced \rightarrow unbal.:

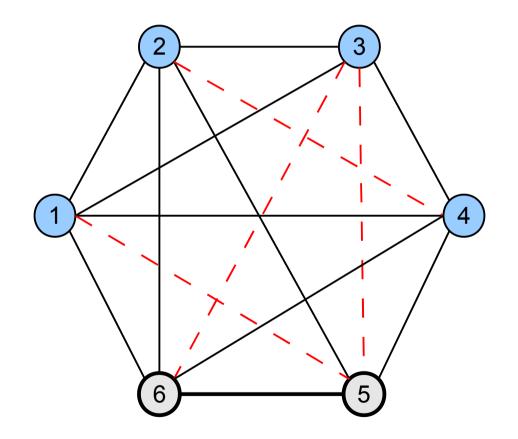
(2,5,6), (3,5,6), (4,5,6)

Constrained Triad Dynamics (CTD)

Update rule:

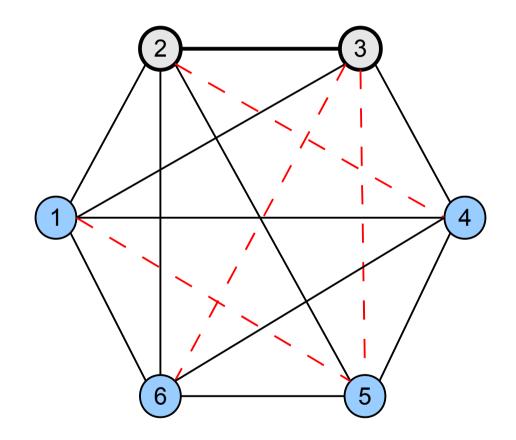
- Randomly pick an edge e_{ii}
- Define:
 - $u_{ij} = #$ of unbalanced triangles e_{ij} is part of b_{ij} analogously
 - Flip that edge, if $u_{ij} > b_{ij}$
 - Flip with probability 50%, if $u_{\parallel} = b_{\parallel}$
 - Else, don't flip
- Repeat





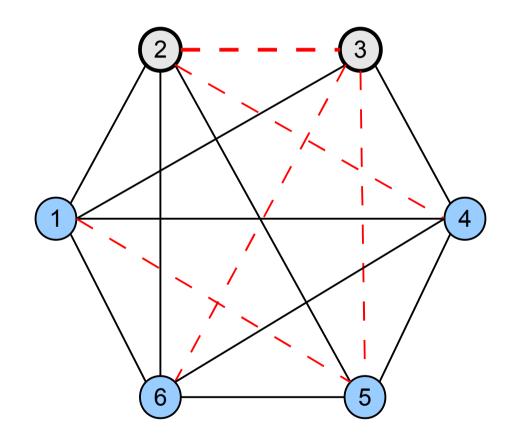
Pick (5,6)

 \rightarrow don't flip!



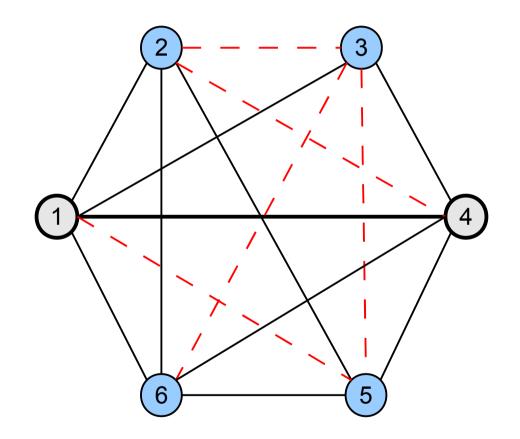
• Pick (2,3)

 \rightarrow flip!



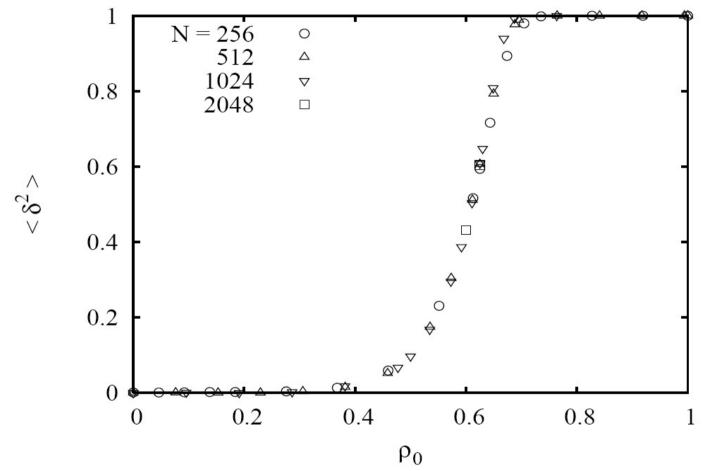
• Pick (2,3)

 \rightarrow flip!



Pick (1,4)

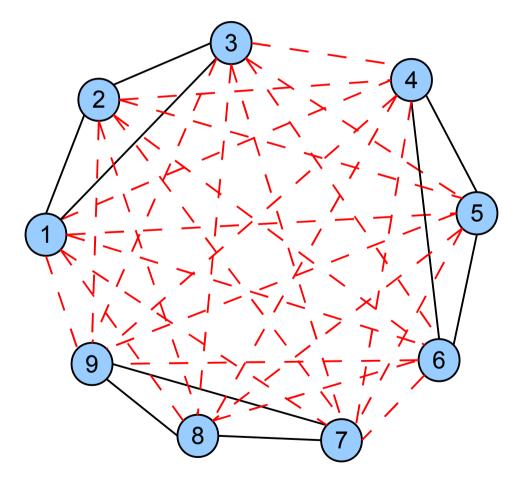
CTD: Final States



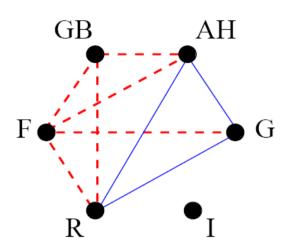
Asymmetry of the final state as a function of the initial friendship density ρ_0 for several network sizes.

 δ : size difference between the two groups in the final state

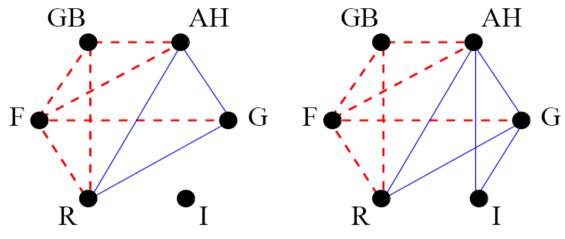
Constrained Triad Dynamics (CTD)



- CTD-dynamics may be trapped forever in 'jammed states'
- No local move can be made according to the update rules

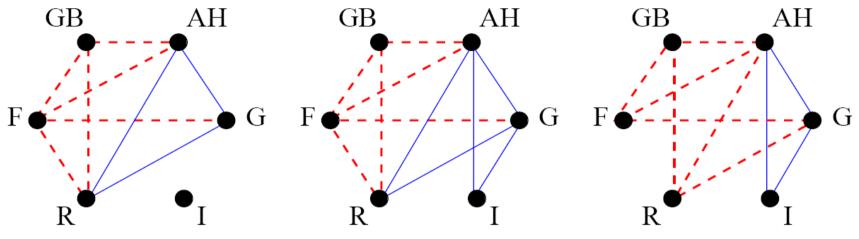


3 Emperor's league 1872-81



3 Emperor's league 1872-81

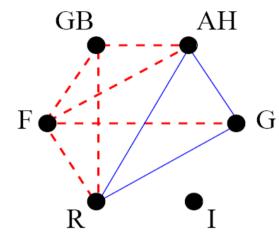
Triple Alliance 1882



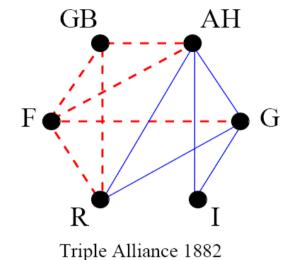
3 Emperor's league 1872-81

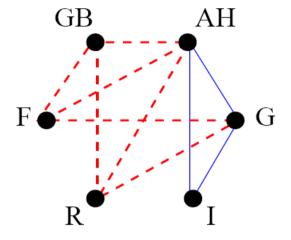
Triple Alliance 1882

German–Russian Lapse 1890

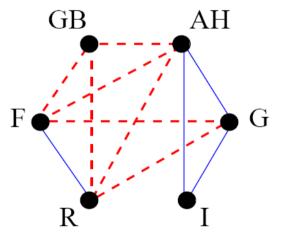


3 Emperor's league 1872-81

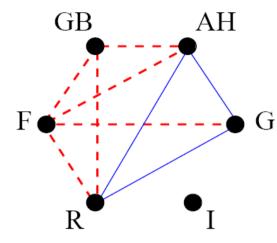




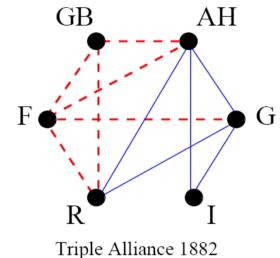
German–Russian Lapse 1890

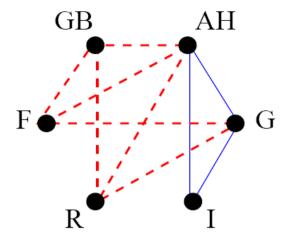


French-Russian Alliance 1891-94

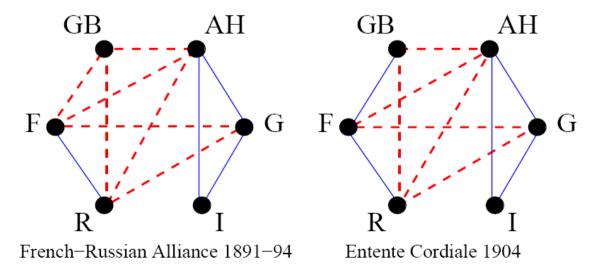


3 Emperor's league 1872-81

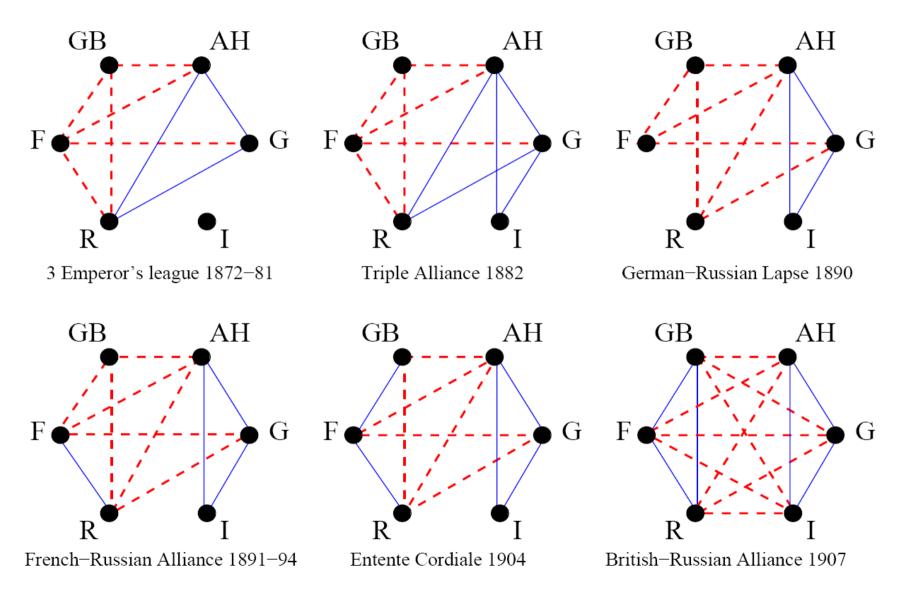




German–Russian Lapse 1890



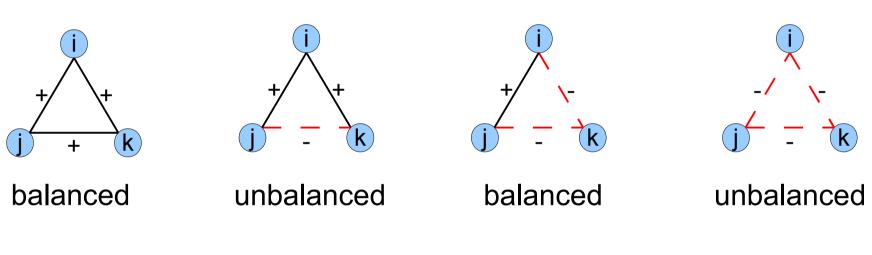
[2]



Project

- Generalization to neutral edges
- Introduction of an 'energy' U and a 'temperature' T on the network
- Definition of a dynamic that flips between positive, negative and neutral edges such that every state of the system is taken on with a probability corresponding to the energy of that state

Definition: Social Balance

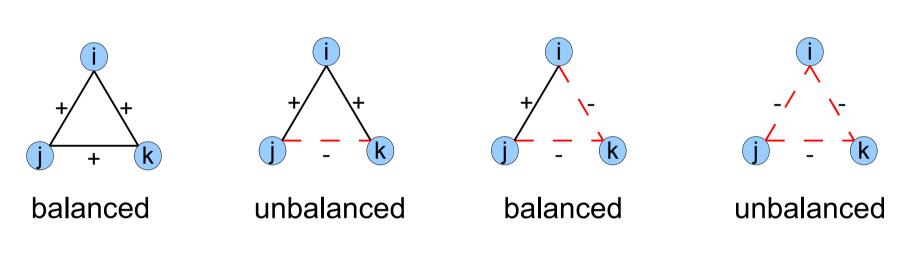


Note:

• For balanced triangles, it is: e e

 $e_{ij} e_{jk} e_{ki} = +1$

Definition: Social Balance



Note:

- For balanced triangles, it is:
- For unbalanced triangles, it is:

$$e_{ij} e_{jk} e_{ki} = +1$$
$$e_{ij} e_{jk} e_{ki} = -1$$

Project

• Energy of edge e_{ij} :

$$U_{ij} = -\frac{1}{N-2} \sum_{k=1(k \neq i,j)}^{N} e_{jk} \cdot e_{ki}$$

• Probabilities:

$$egin{aligned} P\left(e_{ij}=+1
ight)&=rac{e^{rac{-U_{ij}}{T}}}{e^{rac{-U_{ij}}{T}}+e^{rac{0}{T}}+e^{rac{U_{ij}}{T}}}\ P\left(e_{ij}=0
ight)&=rac{1}{e^{rac{-U_{ij}}{T}}+1+e^{rac{U_{ij}}{T}}}\ e^{rac{U_{ij}}{T}}+1+e^{rac{U_{ij}}{T}}\ e^{rac{U_{ij}}{T}}+1+e^{rac{U_{ij}}{T}} \end{aligned}$$

Project

Update rule:

- Pick one edge e_{ii} at a time
- Evaluate $U_{ij} = -\frac{1}{N-2} \sum_{k=1(k \neq i,j)}^{N} e_{jk} \cdot e_{ki}$
- Set e_{ij} according to the probabilities
- repeat

References

- [1] T. Antal, P.L. Krapivsky, S. Redner, *Dynamics of Social Balance on Networks*, Phys. Rev. E 72, 036121 (2005)
- [2] T. Antal, P.L. Krapivsky, S. Redner, Social Balance of Networks: The Dynamics of Friendship and Enmity, Physica D 224,pp. 130– 136 (2006)
- [3] D. Easley, J. Kleinberg, *Networks, Crowds, and Markets -Reasoning About a Highly Connected World*, Cambridge University Press (2010)
- [4] F. Harary, R.Z. Norman, D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley & Sons (1965)
- [5] F. Heider, *Social Perception and Phenomenal Causality*, Psychological Rev., vol. 51, no. 6, pp. 358–374 (1944)