Reconstructing randomized graphs

Niko Vuokko

Evimaria Terzi

Objective

- Reconstruct a graph and/or feature set that has been randomized by a known algorithm
- Why
- Attack privacy
- Lossy/Noisy information
- Data analysis - (Congressional voting?)

Problem Definition

- Given an observed graph (G') and feature set (F^{\prime}) try to rebuild the original G and F.
- Possible observed pairs:
- $\mathrm{G}^{\prime}=\mathrm{G}$ and F^{\prime} != F (G is not randomized, F is)
- G^{\prime} != G and $F^{\prime}=F(F$ is not randomized, G is)
- G^{\prime} != G and F^{\prime} != F (both G and F are randomized)
- All possible observations can be solved in Polynomial time!!!!

Preliminaries

- Graph (G) represented by an adjacency matrix
- seen this before 1 represents edge, 0 no edge
- $g_{i j}$ represents edge in G
- Feature set (F) represented by matrix of $0-1$ values
- row represents a node, column represents a feature
- if graph has n nodes and each node has k features there are nk entries in matrix
- f_{i} is a feature vector in $F, f_{i k}$ represents feature

Preliminaries

- Relationship between nodes and features?
- From Plato, "Friends have all things in common."
- Key assumption, relates features and nodes
- Edge exists if two nodes have features in common
- Use a similarity function between feature vectors

Preliminaries

- Similarity Function types used in the paper:
- Dot Product (DP): $\operatorname{sim}\left(\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right)=\sum_{i=1} f_{i l} \cdot f_{j l}$
- $\operatorname{Hamming}(H): \operatorname{sim}\left(\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right)=\sum_{l=1}^{k} 1-\left|f_{i l}-f_{j i}\right|$
- More similar features, more probable an edge

$$
\begin{gathered}
\operatorname{Pr}\left(g_{i j}=1 \mid \boldsymbol{f}_{\boldsymbol{i}}, \boldsymbol{f}_{\boldsymbol{j}}\right)=\frac{1}{Z} \mathrm{e}^{\alpha \operatorname{sim}\left(\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right)} \\
\operatorname{Pr}\left(g_{i j}=0 \mid \boldsymbol{f}_{\boldsymbol{i}}, \boldsymbol{f}_{\boldsymbol{j}}\right)=\frac{1}{Z} \mathrm{e}^{\alpha\left(1-\operatorname{sim}\left(\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right)\right)}
\end{gathered}
$$

Preliminaries

- Assume edges are independent and features define edges

$$
\operatorname{Pr}(G, F)=\operatorname{Pr}(G \mid F)=\prod_{i<j} \operatorname{Pr}\left(g_{i j} \mid \boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right)
$$

- Randomization - From matrix X produce X^{\prime}
- Key probabilities needed:

$$
\begin{aligned}
& \text { - } \operatorname{Pr}\left(x^{\prime}=0 \mid x=0\right) \text { and } \operatorname{Pr}\left(x^{\prime}=1 \mid x=0\right) \\
& \text { - } \operatorname{Pr}\left(x^{\prime}=0 \mid x=1\right) \text { and } \operatorname{Pr}\left(x^{\prime}=1 \mid x=1\right)
\end{aligned}
$$

- Must be able to calculate $\operatorname{Pr}\left(\mathrm{X} \mid \mathrm{X}^{\prime}\right)$

$$
\operatorname{Pr}\left(X \mid X^{\prime}\right)=\frac{\operatorname{Pr}\left(X^{\prime} \mid X\right) \operatorname{Pr}(X)}{\operatorname{Pr}\left(X^{\prime}\right)} \propto \operatorname{Pr}\left(X^{\prime} \mid X\right)=\prod_{i, j} \operatorname{Pr}\left(x^{\prime}{ }_{i j} \mid x_{i j}\right)
$$

Reconstruction

- Uses a maximum likelihood approach
- Given observation which actual is most probable?
- Three types of problems:
- G - reconstruction (when F not altered)
- F - reconstruction (when G not altered)
- GF - reconstruction (when both altered)
- In short want to find $\operatorname{Pr}\left(\mathrm{G}, \mathrm{F} \mid \mathrm{G}^{\prime}, \mathrm{F}^{\prime}\right)$

Reconstruction

- Instead of maximizing $\operatorname{Pr}\left(\mathrm{G}, \mathrm{F} \mid \mathrm{G}^{\prime}, \mathrm{F}^{\prime}\right)$, minimize the $-\log \left(\operatorname{Pr}\left(\mathrm{G}, \mathrm{F} \mid \mathrm{G}^{\prime}, \mathrm{F}^{\prime}\right)\right)$
- How?

$$
\begin{gathered}
\operatorname{Pr}\left(G, F \mid G^{\prime}, F^{\prime}\right)=\frac{\operatorname{Pr}\left(G^{\prime}, F^{\prime} \mid G, F\right) \operatorname{Pr}(G, F)}{\operatorname{Pr}\left(G^{\prime}, F^{\prime}\right)} \\
\operatorname{Pr}\left(G, F \mid G^{\prime}, F^{\prime}\right) \propto \operatorname{Pr}\left(G^{\prime}, F^{\prime} \mid G, F\right) \operatorname{Pr}(G, F)=\operatorname{Pr}\left(G^{\prime} \mid G\right) \operatorname{Pr}\left(F^{\prime} \mid F\right) \operatorname{Pr}(G, F)
\end{gathered}
$$

Energy Function for minimization -
$E(G, F)=-\log \operatorname{Pr}\left(G, F \mid G^{\prime} F^{\prime}\right)=-\log \operatorname{Pr}\left(G^{\prime} \mid G\right)-\log \operatorname{Pr}\left(F^{\prime} \mid F\right)-\log \operatorname{Pr}(G, F)$

Reconstruction

- GF - reconstruction energy function:

$$
E(G, F)=-\log \operatorname{Pr}\left(G, F \mid G^{\prime} F^{\prime}\right)=-\log \operatorname{Pr}\left(G^{\prime} \mid G\right)-\log \operatorname{Pr}\left(F^{\prime} \mid F\right)-\log \operatorname{Pr}(G, F)
$$

- G - reconstruction energy function:

$$
E(G)=-\log \operatorname{Pr}\left(G^{\prime} \mid G\right)-\log \operatorname{Pr}(G, F)=\sum_{i<j}\left(-\log \operatorname{Pr}\left(g_{i j}^{\prime} \mid g_{i j}\right)-\log \operatorname{Pr}\left(g_{i j} \boldsymbol{f}_{i}^{\prime}, \boldsymbol{f}_{j}^{\prime}\right)\right)
$$

- F - reconstruction energy function:
$E(F)=-\log \operatorname{Pr}\left(F^{\prime} \mid F\right)-\log \operatorname{Pr}(G, F)=\sum_{i=1}^{n} \sum_{l=1}^{k}\left(-\log \operatorname{Pr}\left(f^{\prime}{ }_{i l} \mid f_{i l}\right)-\log \operatorname{Pr}\left(g^{\prime}{ }_{i j} \mid f_{i}, f_{j}\right)\right)$

Algorithms

- G - reconstruction, rebuild edges
- For every two nodes, calculate the energy of an edge using $\mathrm{E}(\mathrm{G})$.
- If E (edge) < E (no edge) then add an edge else no edge, remember we are trying to minimize energy
- Optimal algorithm but not guaranteed to rebuild the original graph
- Running time: $O\left(T_{s} n^{2}\right)$

Algorithms

- F - reconstruction, label feature values 0-1
- Optimal algorithm from computer vision
- Uses Min cut algorithm in a unique way (very cool!!)
- Polynomial solution but expensive for computation time and space requirements
- Naïve suboptimal algorithm
- Performs labeling in greedy fashion
- Makes assignment that best minimizes E in that move
- Iteration based...

Algorithms

- Optimal F - reconstruction
- Intuition, assign labels (1/0) to nk features
- First rewrite E(F):

$$
E(F)=\sum_{i=1}^{n} \sum_{i=1}^{k}\left(-\log \operatorname{Pr}\left(f^{\prime}{ }_{i}^{\prime} \mid f_{i j}\right)-\log \operatorname{Pr}\left(g_{i j}^{\prime} \mid f_{i}, f_{j}\right)\right)=\sum_{i=1}^{n} \sum_{i=1}^{k}\left(\gamma\left(f_{i j}\right)-\delta\left(f_{i}, f_{j}\right)\right)
$$

- Next build a flow-graph where each f_{i} is a node $v_{i j}$ and add two terminals \mathbf{s}, \mathbf{t}.

Algorithms

After adding edges run Min Cut Algorithm and label
 $$
S=0, T=1
$$

If: $\gamma\left(f_{i l}=1\right)>\gamma\left(f_{i l}=0\right)$

With weight:

$$
\gamma\left(f_{i l}=1\right)-\gamma\left(f_{i l}=0\right)
$$

If: $\gamma\left(f_{i l}=0\right)>\gamma\left(f_{i l}=1\right)$
With weight:

$$
\gamma\left(f_{i l}=0\right)-\gamma\left(f_{i l}=1\right)
$$

If edge in G, Edge with weight:

$$
(\delta(0,0)+\delta(1,1)-\delta(0,1)-\delta(1,0)) / 2
$$

Algorithms

Connection to terminals

- To s if $\gamma\left(f_{i l}=1\right)>\gamma\left(f_{i l}=0\right)$
- with weight $\gamma\left(f_{i l}=1\right)-\gamma\left(f_{i l}=0\right)$
- Tot if $\gamma\left(f_{i l}=0\right)>\gamma\left(f_{i l}=1\right)$
- with weight $\gamma\left(f_{i l}=0\right)-\gamma\left(f_{i l}=1\right)$

Connection to other nodes

- When edge in G, add edge to flow graph
- with weight $(\delta(0,0)+\delta(1,1)-\delta(0,1)-\delta(1,0)) / 2$

Algorithms

- Perform min cut of flow graph
- Nodes attached to s are labeled 0
- Nodes attached to \mathbf{t} are labeled 1
- Pretty Cool? Huh?
- More Info V. Komogorov, R. Zabih What Energy Functions Can Be Minimized via Graph Cuts?

Algorithms

- GF - reconstruction
- Similar to F - reconstruction
- Naïve Algorithm
- Assigns values that minimize energy based on current move; greedy, suboptimal
- Optimal Algorithm
- Same as F-reconstruction but with a few modifications

Algorithms

- Optimal GF - reconstruction
- Intuition - assign labels (1/0) to nk feature nodes, nC 2 edges, and $\mathrm{k}(\mathrm{nC} 2)$ triples representing edge feature relationship
- Requires manipulations of $\mathrm{E}(\mathrm{G}, \mathrm{F})$, not presented in paper but explained as 'simple'
- Limited to DP similarity functions only
- Restriction based on behavior of energy function

Algorithms

- Manipulations result in three new edge evaluations
- For $g_{i j}: \sigma_{g}\left(g_{i j}\right)=\alpha k g_{i j}-\log \operatorname{Pr}\left(g^{\prime}{ }_{i j} \mid g_{i j}\right)$
- $\operatorname{For}_{i j}: \quad \sigma_{f}\left(f_{i l}\right)=-\log \operatorname{Pr}\left(f^{\prime}{ }_{i l} \mid f_{i l}\right)$
- For $g_{i j}, f_{i j}, f_{j}$ tuples: $\sigma\left(g_{i j}, f_{i l}, f_{j l}\right)=\alpha\left(1-2 g_{i j}\right) \operatorname{sim}\left(f_{i l}, f_{j l}\right)$
- Evaluations of edges occurs identically to the optimal F - reconstruction algorithm

Algorithms

- Computational speedups
- Optimal F and GF and naïve are very expensive
- Solution is to divide the input space up, solve each subdivision, and aggregate results
- Proposed algorithm uses a BFS tree

Experimental Results

- Tested algorithms against 3 datasets
- A synthetic built dataset with $\mathrm{n}=200$ and $\mathrm{k}=20$
- Controlled edge probability for 557 edges
- DBLP dataset of author publications $\mathrm{n}=4981$, k=19, and 20670 edges
- Terror dataset
- Nodes are attacks, features are attack characteristics, and edge exists if attack occurred at same location
- $\mathrm{N}=645$, $\mathrm{k}=94$, and edges=3172

Experimental Results

- G - reconstruction
- Used DBLP dataset
- Tested against data subjected to increasing randomization amounts
- Optimal algorithm performs pretty well in the presence of noisy data.
- Error rate stabilizes at . 625 as randomization increases

Experimental Results

- F - reconstruction
- Used synthetic dataset
- Tested against data subjected to increasing randomization amounts
- Bounded naïve algorithm iterations to "clock time" of optimal solution
- For small amounts of randomization naïve and optimal are close in error rate, for larger levels naïve performs worse than optimal

Experimental Results

- GF - reconstruction
- Used all 3 datasets, only reported findings of Terror
- Tested against data subjected to increasing randomization amounts
- Various results:
- For DP sim: OptBoth with split better than naïve both and split naïve both
- For H sim: naïve both better than naïve both with split

Experimental Results

- DP sim function "lures" the reconstruction methods to fill up entries with 1s. Can corrected for by proper tuning of edge probability function
- Also noted that the objective function might result in (G,F) with high likelihood but low structural similarity to the data

Project Details

- In General
- Rebuilding friendships from group information on Facebook
- Are groups enough on Facebook to define friendships? Do we need more?
- Challenges are getting a comprehensive dataset with enough group information for analysis
- Thoughts?

The End

- Questions?
- Thank you

