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Objective

● Reconstruct a graph and/or feature set that has 
been randomized by a known algorithm

● Why
● Attack privacy 
● Lossy/Noisy information
● Data analysis – (Congressional voting?)



  

Problem Definition

● Given an observed graph (G') and feature set 
(F') try to rebuild the original G and F.

● Possible observed pairs:
● G' = G and F' != F (G is not randomized, F is)
● G' != G and F' = F (F is not randomized, G is)
● G' != G and F' != F (both G and F are randomized)

● All possible observations can be solved in 
Polynomial time!!!! 



  

Preliminaries

● Graph (G) represented by an adjacency matrix
● seen this before 1 represents edge, 0 no edge

● g
ij
 represents edge in G  

● Feature set (F) represented by matrix of 0 – 1 values 
● row represents a node, column represents a feature
● if graph has n nodes and each node has k features there 

are nk entries in matrix

● f
i
 is a feature vector in F, f

ilk 
represents feature 



  

Preliminaries

● Relationship between nodes and features?
● From Plato, “Friends have all things in common.”
● Key assumption, relates features and nodes

● Edge exists if two nodes have features in 
common
● Use a similarity function between feature vectors



  

Preliminaries

● Similarity Function types used in the paper:
● Dot Product (DP): 

 
● Hamming (H):

● More similar features, more probable an edge

sim  f i , f j=∑
l=1

k

f il⋅f jl

sim f i , f j =∑
l=1

k

1−∣f il−f jl∣

Pr gij=1∣f i , f j =
1
Z

e sim f i , f j

Pr gij=0∣f i , f j =
1
Z

e1−sim  f i , f j 



  

Preliminaries

● Assume edges are independent and features 
define edges

● Randomization – From matrix X produce X'
● Key probabilities needed:

– Pr(x'=0|x=0) and Pr(x'=1|x=0)
– Pr(x'=0|x=1) and Pr(x'=1|x=1)

● Must be able to calculate Pr(X|X') 

Pr X∣X ' =
Pr X '∣X Pr X 

Pr X ' 
∝Pr X '∣X =∏

i , j

Pr x ' ij∣x ij

Pr G ,F =Pr G∣F =∏
i j

Pr gij∣f i , f j 



  

Reconstruction

● Uses a maximum likelihood approach
● Given observation which actual is most probable?

● Three types of problems:
● G – reconstruction (when F not altered)
● F – reconstruction (when G not altered)
● GF – reconstruction (when both altered)

● In short want to find Pr(G,F | G',F')

  



  

Reconstruction

● Instead of maximizing Pr(G, F | G', F'), minimize 
the -log(Pr(G,F | G', F'))

● How? 

  

Pr G, F∣G' , F ' =
Pr G' , F '∣G, F Pr G ,F 

Pr G ' , F ' 

Pr G ,F∣G' ,F ' ∝Pr G' ,F '∣G, F Pr G , F =Pr G'∣G Pr F '∣F Pr G , F 

Energy Function for minimization - 

E G, F =−log Pr G ,F∣G' F ' =−log Pr G '∣G−log Pr F '∣F −log Pr G ,F 



  

Reconstruction

● GF – reconstruction energy function:

● G – reconstruction energy function:

● F – reconstruction energy function:

  

E G, F =−log Pr G ,F∣G' F ' =−log Pr G '∣G−log Pr F '∣F −log Pr G ,F 

E G=−log Pr G '∣G−log Pr G , F =∑
i j

−log Pr g' ij∣gij−logPr gij∣f ' i , f ' j

E F =−log Pr F '∣F −log Pr G , F =∑
i=1

n

∑
l=1

k

−logPr  f 'il∣f il−log Pr g 'ij∣f i , f j



  

Algorithms

● G – reconstruction, rebuild edges
● For every two nodes, calculate the energy of an 

edge using E(G).  
● If E(edge) < E(no edge) then add an edge else no 

edge, remember we are trying to minimize energy
● Optimal algorithm but not guaranteed to rebuild the 

original graph
● Running time: O T s n

2



  

Algorithms

● F – reconstruction, label feature values 0-1 
● Optimal algorithm from computer vision

– Uses Min cut algorithm in a unique way (very cool!!)
– Polynomial solution but expensive for computation time 

and space requirements
● Naïve suboptimal algorithm

– Performs labeling in greedy fashion
– Makes assignment that best minimizes E in that move
– Iteration based...



  

Algorithms

● Optimal F – reconstruction
● Intuition, assign labels (1/0) to nk features
● First rewrite E(F):

● Next build a flow-graph where each f
il
 is a node v

ij
 

and add two terminals s, t.  

E F =∑
i=1

n

∑
l=1

k

−logPr  f 'il∣f il−log Pr g 'ij∣f i , f j=∑
i=1

n

∑
l=1

k

 f il− f i , f j



  

Algorithms

S T

 f il=1 f il=0  f il=0 f il=1

 f il=1− f il=0  f il=0− f il=1

If: 

With weight:

If: 

With weight:

If edge in G,
Edge with weight:
0,0 1,1−0,1−1,0 /2

After adding edges run 
Min Cut Algorithm 

and label
S = 0, T = 1

is an f
il



  

Algorithms

Connection to terminals
● To s if         

– with weight
● To t if  

– with weight

Connection to other nodes
● When edge in G, add edge to flow graph

– with weight

 f il=1 f il=0

 f il=0 f il=1

 f il=1− f il=0

 f il=0− f il=1

0,0 1,1−0,1−1,0/2



  

Algorithms

● Perform min cut of flow graph
● Nodes attached to s are labeled 0
● Nodes attached to t are labeled 1

● Pretty Cool?  Huh?  

● More Info V. Komogorov, R. Zabih What Energy 
Functions Can Be Minimized via Graph Cuts?



  

Algorithms

● GF - reconstruction
● Similar to F – reconstruction
● Naïve Algorithm

– Assigns values that minimize energy 
based on current move; greedy, 
suboptimal

● Optimal Algorithm
– Same as F-reconstruction but with a few 

modifications



  

Algorithms

● Optimal GF - reconstruction
● Intuition – assign labels (1/0) to nk feature 

nodes, nC2 edges, and k(nC2) triples 
representing edge feature relationship

● Requires manipulations of E(G,F), not 
presented in paper but explained as 'simple'

● Limited to DP similarity functions only
– Restriction based on behavior of energy 

function



  

Algorithms

● Manipulations result in three new edge 
evaluations

● For g
ij
:

● For f
il
:

● For g
ij
, f

il
, f

jl
 tuples:

● Evaluations of edges occurs identically to the 
optimal F – reconstruction algorithm

 ggij= kgij−log Pr g' ij∣gij

 f f il=−log Pr  f ' il∣f il

 gij , f il , f jl=1−2gijsim  f il , f jl



  

Algorithms

● Computational speedups
● Optimal F and GF and naïve  are very 

expensive

● Solution is to divide the input space up, solve 
each subdivision, and aggregate results

● Proposed algorithm uses a BFS tree 



  

Experimental Results

● Tested algorithms against 3 datasets
● A synthetic built dataset with n=200 and k=20

– Controlled edge probability for 557 edges
● DBLP dataset of author publications n=4981, 

k=19, and 20670 edges
● Terror dataset 

– Nodes are attacks, features are attack 
characteristics, and edge exists if attack 
occurred at same location

– N=645, k=94, and edges=3172



  

Experimental Results

● G – reconstruction
● Used DBLP dataset

● Tested against data subjected to increasing 
randomization amounts 

● Optimal algorithm performs pretty well in the 
presence of noisy data.  
– Error rate stabilizes at .625 as randomization 

increases



  

Experimental Results

● F – reconstruction
● Used synthetic dataset
● Tested against data subjected to increasing 

randomization amounts
● Bounded naïve algorithm iterations to “clock 

time” of optimal solution
● For small amounts of randomization naïve 

and optimal are close in error rate, for larger 
levels naïve performs worse than optimal



  

Experimental Results

● GF – reconstruction
● Used all 3 datasets, only reported findings of Terror
● Tested against data subjected to increasing 

randomization amounts

● Various results:

– For DP sim: OptBoth with split better than naïve both 
and split naïve both

– For H sim: naïve both better than naïve both with split



  

Experimental Results

● DP sim function “lures” the reconstruction 
methods to fill up entries with 1s.  Can 
corrected for by proper tuning of edge 
probability function

● Also noted that the objective function might 
result in (G,F) with high likelihood but low 
structural similarity to the data



  

Project Details

● In General 
● Rebuilding friendships from group information 

on Facebook
● Are groups enough on Facebook to define 

friendships? Do we need more?
● Challenges are getting a comprehensive 

dataset with enough group information for 
analysis

● Thoughts?



  

The End

● Questions?

● Thank you 
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