Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns and Structural Steganegraphy

Lars Backstrom, Cynthia Dwork, Jon Kleinberg

Anonymized Networks

1. For researchers, names are meaningless
2. Users also need privacy

Anonymized Network(cont')

Release just a big random labeled graph with millions of edges!
No other conceptual data released!

Attack Scenario

1. Attacker may add a few new nodes prior to release.

- Would like to add as few as possible

2. Attacker may add edges from these few nodes to any nodes in the network

- May link to any person whose 'name' he knows

3. Goal of the attack is to discover if two named users are connected, i.e. their connections

Attack Structure

Before release of the network,
the attacker finds some targeted users (named users)

Attack Structure(cont')

Attack Structure(cont')

H

Network is released to public!

Attack Structure(cont')

H

Attacker
locates
the inserted H

Attack Structure(cont')

Follow links to identify named users

Attack Structure(cont')

Follow links to identify named users

Attacker then determines which pairs are connected! Done!

How can the attacker locates the inserted H

Walk-Based Attack

1. Attacker chooses k named users $W=\{w 1, w 2, \ldots, w k\}$

Walk-Based Attack

Walk-Based Attack

1. Attacker chooses k named users
$W=\{w 1, w 2, \ldots, w k\}$
2. Creates k new nodes
$X=\{x 1, x 2, \ldots, x k\}$
3. Creates edges (xi,wi)

Walk-Based Attack

1. Attacker chooses k named users
$W=\{w 1, w 2, \ldots, w k\}$
2. Creates k new nodes
$x=\{\times 1, \times 2, \ldots, x k\}$
3. Creates edges (xi,wi)
4. Creates each edge ($x i, x i+1$) - Hamiltonian Path and each other edge with probability 0.5

Is the attacker able to locate
the inserted H now

This might not work!

Why this might not work?

H?

Why this might not work?
More than one matches!
No way to differentiate!

Success Conditions

Uniqueness

- No S!= X such that G[S]
and $G[X]=H$ are isomorphic
- H has no non-trivial
automorphisms

Intuitively,
Isomorphism: without labeling, two graphs are actually the same
Automorphism: a graph has internal symmetry
(relabeling its nodes preserves graph's structure)

Success Conditions(cont')

Uniqueness

- No S!= X such that G[S]
and $G[X]=H$ are isomorphic
- H has no non-trivial automorphisms

Recoverability

- Find H efficiently, given G

Uniqueness Proof

Intuition:

- Erdös showed that a random graph will not contain certain non-random subgraphs
- We need to show that a non-random graph will not have a certain random subgraph

Uniqueness Proof

Proof technique:

1. Count the number of
size k subgraphs in $G^{\prime}=G-H$

Uniqueness Proof

Proof technique:

1. Count the number of
size k subgraphs in $G^{\prime}=G-H$
2. Find probability that each one is a match

Uniqueness Proof

Proof technique:

1. Count the number of size k subgraphs in $G^{\prime}=G-H$
2. Find probability that each one is a match
3. Take union-bound to show that there is no match with high probability

$$
P\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} P\left(A_{i}\right) .
$$

Uniqueness Proof(cont')

1. In G^{\prime}, number of labeled subgraph of size k,

$$
\binom{n-k}{k} k!\leq n^{k}
$$

2. Probability that a particular labeled subgraph matches H is no more than

$$
\operatorname{Pr}\left[\mathcal{E}_{S}\right]=2^{-\binom{k}{2}+(k-1)}=2^{-\binom{k-1}{2}}
$$

3. Probability that there is at least a match in these subgraphs is (use union bound) $\mathcal{E}=\cup_{S} \mathcal{E}_{S}$

$$
\begin{aligned}
\operatorname{Pr}[\mathcal{E}] & <n^{k} \cdot 2^{-\binom{k-1}{2}} & & \text { It goes to } 0 \text { e } \\
& \leq 2^{\left[-\delta k^{2} / 2(2+\delta)\right]+3 k / 2+1} & & \text { quickly in } \mathrm{k}!
\end{aligned}
$$

Uniqueness Proof(cont')

We choose $k=(2+\delta) \log n$ for a small constant $\delta>0$

Uniqueness Proof(cont')

Showed that G^{\prime} has no copies of H (with high probability).

However,
attaching H to G^{\prime} may make a copy in G.

Uniqueness Proof(cont')

Replace a few nodes from H
-> nodes from G^{\prime} must have correct connections to H
-> Unlikely

Uniqueness Proof(cont')

Analysis uses similar techniques, but is more complex!

How to find the unique H in G ?

How to find the unique H in G ?

Recovery Algorithm

> Brute force with pruning

Recovery Algorithm

1. Start from root, pick all the nodes that have the degree of $\times 1$, to be root's children

Recovery Algorithm

1. Start from root, pick all the nodes that have the degree of $\times 1$, to be root's children
2. Find neighbors of nodes in level 1 , which have degree of $\times 2$, to be their corresponding children

Recovery Algorithm

1. Start from root, pick all the nodes that have the degree of $\times 1$, to be root's children
2. Find neighbors of nodes in level 1 , which have degree of $\times 2$, to be their corresponding children
3. Continue until level of k. If there's only one path from root, success; Otherwise, H is not unique.

Try once more!

Recovery Runtime

Maximum degree of $\mathrm{H}-\mathrm{O}(\log n)$ keeps number of feasible paths relatively small since H is small

Analysis more complex, but in expectation, the number of feasible paths:

$$
O\left(2^{O(\log \log n)^{2}}\right)
$$

Thus, total number of paths is only slightly superlinear, and so we can find H efficiently !

Experimental Results

- Simulated attack on LiveJournal - 4.4 million nodes, 77 million edges
- Constructed H with degrees
 randomly selected in [10, 20] or $[20,60$], while varying k

Experimental Results

-With 7 nodes, d in $[20,60]$, successfut over 90%; compromises an average of 70 喑 users

-Recovery typically takes less
than a second; size of search
tree about 90,000

Comparison of Attack

Walk-Based Attack

- Adds $O(\log n)$ new nodes
- Can compromise $O\left(\log ^{2} n\right)$ nodes at most
- Simple to execute, difficult to detect

Cut-Based Attack (Using Gomory-Hu tree)

- Adds $O(\sqrt{\log n})$ new nodes - theoretical minimum for any attack of this style
- Attacks $O(\sqrt{\log n})$ nodes
- Easy for curator to detect on real data
- Both attacks work no matter how many people execute them

Conclusion

- Doesn't apply to networks that are already public
- Cannot rely on anonymization to ensure privacy in

Networks

- Further directions

1) Design a general interactive method whereby researchers may make queries about the network
2) Non-interactive methods where the released data is perturbed in such a way that it is still useful to researchers, but provably anonymized

Thank You... You made my day!

