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ABSTRACT
In many applications, e.g., recommender systems and traffic
monitoring, the data comes in the form of a matrix that is
only partially observed and low rank. A fundamental data-
analysis task for these datasets is matrix completion, where
the goal is to accurately infer the entries missing from the
matrix. Even when the data satisfies the low-rank assump-
tion, classical matrix-completion methods may output com-
pletions with significant error – in that the reconstructed
matrix differs significantly from the true underlying ma-
trix. Often, this is due to the fact that the information
contained in the observed entries is insufficient. In this work,
we address this problem by proposing an active version of
matrix completion, where queries can be made to the true
underlying matrix. Subsequently, we design Order&Extend,
which is the first algorithm to unify a matrix-completion
approach and a querying strategy into a single algorithm.
Order&Extend is able identify and alleviate insufficient in-
formation by judiciously querying a small number of addi-
tional entries. In an extensive experimental evaluation on
real-world datasets, we demonstrate that our algorithm is
efficient and is able to accurately reconstruct the true ma-
trix while asking only a small number of queries.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining
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1. INTRODUCTION
In many applications the data comes in the form of a

low-rank matrix. Examples of such applications include rec-
ommender systems (where entries of the matrix indicated
user preferences over items), network traffic analysis (where
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the matrix contains the volumes of traffic among source-
destination pairs), and computer vision (image matrices).
In many cases, only a small percentage of the matrix entries
are observed. For example, the data used in the Netflix prize
competition was a matrix of 480K users × 18K movies, but
only 1% of the entries were known.

A common approach for recovering such missing data is
called matrix completion. The goal of matrix-completion
methods is to accurately infer the values of missing entries,
subject to certain assumptions about the complete matrix [2,
3, 5, 7, 8, 9, 19]. For a true matrix T with observed val-
ues only in a set of positions Ω, matrix-completion methods
exploit the information in the observed entries in T (de-

noted TΩ) in order to produce a “good” estimate T̂ of T . In
practice, the estimate may differ significantly from the true
matrix. In particular, this can happen when the observed
entries TΩ are not adequate to provide sufficient information
to produce a good estimate.

In many cases, it is possible to address the insufficiency
of TΩ by actively obtaining additional observations. For
example, in recommender systems, users may be asked to
rate certain items; in traffic analysis, additional monitoring
points may be installed. These additional observations can
lead to an augmented Ω′ such that TΩ′ carries more infor-
mation about T and can lead to more accurate estimates
T̂ . In this active setting, the data analyst can become an
active participant in data collection by posing queries to T .
Of course such active involvement will only be acceptable if
the number of queries is small.

In this paper, we present a method for generating a small
number of queries so as to ensure that the combination of
observed and queried values provides sufficient information

for an accurate completion; i.e., the T̂ estimated using the
entries TΩ′ is significantly better than the one estimated
using TΩ. We call the problem of generating a small num-
ber of queries that guarantee small reconstruction error the
ActiveCompletion problem.

The difference between the classical matrix-completion
problem and our problem is that in the former, the set of
observed entries is fixed and the algorithm needs to find the
best completion given these entries. In ActiveCompletion,
we are asked to design both a completion and a querying
strategy in order to minimize the reconstruction error. On
the one hand, this task is more complex than standard ma-
trix completion – since we have the additional job of design-
ing a good querying strategy. On the other hand, having the
flexibility to ask some additional entries of T to be revealed
should yield lower reconstruction error.



At a high level, ActiveCompletion is related to other
recently proposed methods for active matrix completion,
e.g., [4]. However, existing approaches identify entries to
be queried independently of the method of completion. In
contrast, a strength of our algorithm is that it addresses
completion and querying in an integrated fashion.

The main contribution of our work is Order&Extend, an al-
gorithm that simultaneously minimizes the number of queries

to ask and produces an estimate matrix T̂ that is very close
to the true matrix T . The design of Order&Extend is in-
spired from recent matrix-completion methods that view the
completion process as solving a sequence of (not necessarily
linear) systems [10, 11, 13, 16]. We adopt this general view,
focusing on a formulation that involves only linear systems.
Although existing work uses this insight for simple matrix
completion, we go one step further and observe that there
is a relationship between the ordering in which systems are
solved, and the number of additional queries that need to be
posed. Therefore, the first step of Order&Extend focuses on
finding a good ordering of the set of linear systems. Inter-
estingly, this ordering step relies on the combinatorial prop-
erties of the mask graph, a graph that is associated with the
positions (but not the values) of observed entries Ω.

In the second step, Order&Extend considers the linear sys-
tems in the chosen order, and asks queries every time it
encounters a problematic linear system Ax = b. A linear
system can problematic in two ways: (a) when there are not
enough equations for the number of unknowns, so that the
system does not have a unique solution; (b) when solving
the system Ax = b is numerically unstable given the specific
b involved. Note that, as we explain in the paper, this is not
the same as simply saying that A is ill-conditioned; part of
our contribution is the design of fast methods for detecting
and ameliorating such systems.

Our extensive experiments with datasets from a variety
of application domains demonstrate that Order&Extend re-
quires significantly fewer queries than any other baseline
querying strategy, and compares very favorably to approaches
based on well-known matrix completion algorithms. In fact,
our experiments indicate that Order&Extend is “almost op-
timal” as it gives solutions where the number of entries it
queries is generally very close to the information-theoretic
lower bound for completion.

2. RELATED WORK
To the best of our knowledge we are the first to pose the

problem of constructing an algorithm equipped simultane-
ously with a completion and a querying strategy. However,
matrix completion is a long studied problem, and in this
section we describe the existing work in this area.

Statistical matrix completion: The first methods for
matrix completion to be developed were statistical in na-
ture [1, 2, 3, 5, 7, 8, 9, 14, 19]. Statistical approaches are
typically interested in finding a low-rank completion of the
partially observed matrix. These methods assume a random
model for the positions of known entries, and formulate the
task as an optimization problem. A key characteristic of
statistical methods is that they estimate a completion re-
gardless of whether the information contained in the visible
entries is sufficient for completion. In other words, on any
input they output their best estimate, which can have high
error. Moreover, statistical methods are not equipped with

a querying strategy, nor a mechanism to signal when the
information is insufficient.

Random sampling: Candés and Recht introduced a thresh-
old on the number of entries needed for accurate matrix
completion [2]. Under the assumption of randomly sampled
locations of known entries, they prove that an n1 × n2 ma-

trix of rank r should have at least m > Cn
6
5 r log(n) for

their algorithm to succeed with high probability, where n =
max(n1, n2). Different authors in the matrix-completion lit-
erature develop slightly different thresholds, but all are es-
sentially O(nr log(n)) [9, 15]. We point out that achieving
this bound in the real world often requires a significantly
large number of samples. For example, adopting the rank
r ≈ 40 of top solutions to the Netflix Challenge, over 151
million entries would need to be queried.

Structural matrix completion: Recently, a class of ma-
trix completion has been proposed, which we call structural.
Rather than taking an optimization approach, the meth-
ods of structural completion explicitly analyze the informa-
tion content of the visible entries and are capable of stat-
ing definitively that the observed entries are information-
theoretically sufficient for reconstruction [10, 11, 13, 16].

Structural methods are implicitly concerned with the num-
ber of possible completions that are consistent with the par-
tially observed matrix; this could be infinite, a finite, one, or
none. A key observation shared by all structural approaches
is that the number of possible completions does not depend
on the values of the observed entries, but rather only on
their positions. This statement, proved by Kiraly et al. [10],
means that in our search for good ordering of linear systems
we can work solely with the locations of known entries.

The common characteristic between our method and struc-
tural methods is that they also view matrix completion as a
task of solving a sequence of (not necessarily linear) systems
of equations where the result of one is used as input to an-
other. In fact, Meka et al. [13] adopt the same view as ours.
However, the key difference between these works and ours
is that we are concerned particularly with the active ver-
sion of the problem and we need to effectively design both
a reconstruction and a querying strategy simultaneously.

The active problem: Although active learning has been
studied for some time, work in the active matrix completion
area has only appeared recently [4, 17]. In both these works,
the authors are interested in determining which entries need
to be revealed in order to reduce error in matrix reconstruc-
tion. Their methods choose to reveal entries with the largest
predicted uncertainty based on various measures. Algorith-
mically, the difference with our work is that the previous ap-
proaches construct a querying strategy independently of the
completion algorithm. In fact, they use off-the-shelf matrix
completion algorithms for the reconstruction phase, while
the strength in our algorithm is precisely its integrated na-
ture of querying and completing. These methods appear
to have other drawbacks. In the experiments, Chakraborty
et al. start with partial matrices where 50-60% of entries
are already known – far greater than that required by our
method. Further, their proposed query strategy does not
lead to a significant improvement over pure random query-
ing. While Sutherland et al. report low reconstruction error,
the main experiments are run over 10×10 matrices, provid-
ing no evidence that the methods scale.
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Figure 1: The mask graph GΩ of mask Ω = {(1, 1), (1, 2),
(1, 3), (2, 2), (3, 1)}.

3. PROBLEM DEFINITION
In this section, we describe our setting and provide the

problem definition.

3.1 Notation and setting
Throughout the paper, we assume the existence of a true

matrix T of size n1×n2; T may represent the preferences of
n1 users over n2 objects, or the measurements obtained in
n1 sites over n2 attributes. We assume that the entries of T
are real numbers (Tij ∈ R) and that only a subset of these
entries Ω ⊂ {(i, j) |, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} are observed.
We refer to the set of positions of known entries Ω as the
mask of T . When we are referring to the values of the visible
entries in T we will denote that set as TΩ.

The mask Ω has an associated mask graph, denoted GΩ.
The mask graph is a bipartite graph GΩ = (V1, V2, E), where
V1 and V2 correspond to the set of nodes in the left and right
parts of the graph, with every node i ∈ V1 representing a
row of T and every j ∈ V2 representing a column of T .
The edges in GΩ correspond to the positions Ω, meaning
(i, j) ∈ E ⇐⇒ (i, j) ∈ Ω. An example is shown in Figure 1.

Throughout the paper, we will use T̂Ω to denote the esti-
mate of T that was computed using TΩ as input. Of course,
this estimate depends not only on Ω, but also on the al-
gorithm A used for completion. Therefore, we denote the
estimate obtained by a particular algorithm A on input TΩ

as A(TΩ) = T̂A,Ω. When the algorithm is unspecified or
clear from the context, we will omit it from the subscript.

Finally, we define the reconstruction error of the estimate

T̂Ω of T as:

RelError(T̂Ω) =
‖T − T̂Ω‖F
‖T‖F

. (1)

Recall that for an n1×n2 matrix X, ‖X‖F (or simply ‖X‖)
is the Frobenius norm defined as ‖X‖F =

√∑n1
i=1

∑n2
j=1 X

2
ij .

Low effective rank: For the matrix-completion problem
to be well-defined, some restrictions need to be placed on
T . Here, the only assumption we make for T is that it
has low effective rank r (� min(n1, n2)). Were T exactly
rank r, it would have r non-zero singular values; when T is
effectively rank r, it has full rank but its top r singular val-
ues are significantly larger in magnitude than the rest. In
practice, many matrices obtained through empirical mea-
surements are found to have low effective rank.

Rather than stipulating low rank, it is often simpler to
postulate that the effective rank r is known. This assump-
tion is used in obtaining many theoretical results in the
matrix-completion literature [2, 10, 11, 14]. Yet in practice,
the important assumption is that of low effective rank. Even
if r is unknown but required as input to an algorithm, one

could try a several values of r and choose the best perform-
ing. For the rest of the paper, we consider r to be known
and omit reference to it when it is understood from context.

Querying entries: For simplicity of exposition we discuss
our problem and algorithms in the context of unlimited ac-
cess to all unobserved entries of T . However, our results
still apply and our algorithm can still work in the presence
of constraints on which entries of T may be queried.

3.2 The ActiveCompletion problem
Given the above, we define our problem as follows:

Problem 1 (ActiveCompletion). Given an integer
r > 0 that corresponds to the effective rank of T and the
values of T in certain positions Ω, find a set of additional
entries Q to query from T such that for Ω′ = Ω ∪ Q,

RelError(T̂Ω′) as well as |Q| are minimized.

Note that the above problem definition has two minimiza-
tion objectives: (1) the number of queried entries and (2) the
reconstruction error. In practice we can only solve for one
and impose a constraint on the other. For example, we can
impose a query budget b on the number of queries to ask and
optimize for the error. Alternatively, one can use error bud-
get ε to control the error of the output, and then minimize
for the number of queries to ask. In principle our algorithm
can be adjusted to solve any of the two cases. However, since
setting a desired b is more intuitive for our active setting, in
our experiments we do this and optimize for the error. We
will focus on this version of the problem (with the budget
on the queries) for the majority of the discussion.

The exact case: A special case of ActiveCompletion is
when T is exactly rank r, and the maximum allowed error
ε is zero. In this case, the problem asks for the minimum

number of queries required to reconstruct T̂ that is exactly
equal to the true matrix T . This can only be guaranteed by
ensuring that the information observed in TΩ′ is adequate
to restrict the solution space to a single unique completion,
which will then necessarily be identical to T .

Intuitively, one expects that the larger the set of observed
entries Ω, the fewer the number of possible completions of
TΩ. In fact, Kiraly et al. [10] make the fundamental observa-
tion that under certain assumptions, the number of possible
completions of a partially observed matrix does not depend
on the values of the visible entries, but only on the positions
of these entries. This result implies that the uniqueness of
matrices that agree with TΩ is a property of the mask Ω and
not of the actual values TΩ.

Critical mask size: The number of degrees of freedom of
an n1×n2 matrix of rank exactly r is r(n1 +n2− r), which
we denote φ(T, r). Hence, regardless of the nature of Ω, any
solution with ε = 0 must have |Ω′| ≥ φ(T, r). We therefore
call φ(T, r) the critical mask size as it can be considered as
a (rather strict) lower bound on the number of entries that
need to be in Ω′ to achieve small reconstruction error.

Empty masks: For the special case of exact rank and
ε = 0, if the input mask Ω is empty, i.e., Ω = ∅, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require φ(T, r) queries, which will construct a mask Ω′

that determines a unique reconstruction of T . Therefore,
when the initial mask Ω = ∅, the ActiveCompletion prob-
lem can be solved in polynomial time.



4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (effective) rank assumption of T . As it will become clear,
this means that the unobserved entries are related to the ob-
served entries through a set of linear systems. Thus one ap-
proach to matrix completion is to solve a sequence of linear
systems. Each system in this sequence uses observed en-
tries in T , or entries of T reconstructed by previously solved
linear systems to infer more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the or-
der. Thus the order in which systems are solved, and the
nature of these systems are inter-related. A good ordering
will minimize the number of“problematic”systems being en-
countered. However, problematic systems can appear even
in the best-possible order, meaning that good ordering alone
is insufficient for accurate reconstruction.

At a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved affects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1× r and r×n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only effec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it suffices to find such factors X and Y .1

The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering π over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix TΩ.

To explain how Sequential works, consider the example
in Figure 2, where r = 2, T is on the left and GΩ is on the

1Note that X and Y are not uniquely determined; any in-
vertible r× r matrix W yields new factors XW−1 and WY
which also multiply to yield T .
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Figure 2: An intermediate step of Sequential algorithm.

right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of GΩ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i′-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

Tij = xi1y1j + xi2y2j (2)

Ti′j = xi′1y1j + xi′2y2j (3)

Observe that xi and xi′ are known, and that the edges
(xi, yj) and (xi′ , yj) corresponding to Tij and Ti′j exist in
GΩ. The only unknowns in (2) and (3) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above and by assumption, any r-subset of X or Y is
linearly independent; hence one can solve uniquely for y1j

and y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

Axy = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; Ax
is an r × r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If Ax and t are known, and Ax is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.

In the x-steps Sequential evaluates a row of X using an
r × r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes Ayx = t′. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

The completion on the mask graph: The execution of
Sequential is also captured in the mask graph shown in
the right part of Figure 2. In the beginning, no rows or
columns have been recovered and all nodes of GΩ are white
(unknown). As the algorithm proceeds they become black
(known), and this transformation occurs in the order sug-
gested by the input reconstruction order π. Thus a black
node denotes a row of X or column of Y that has been com-
puted. In our example, the fact that we can solve for the
j-th column of Y (using Equations (2) and (3)) is captured



V1 V2

xi

yj

Tij
Ti’j

x`

x`0

xi0

xi yk x`0x`yjxi0

yk

xi01xi02

xi2xi1

Ti0j

Tij

y2j

y1j

Figure 3: The direction on the edges imposed by the order-
ing of nodes shown in Figure 2.

by yj ’s two connections to black/known nodes (recall r = 2).
For general rank r, the j-th column of Y can be estimated
by a linear system, if in the mask graph yj is connected to
at least r already computed (black) nodes. This is sym-
metric for the i-th row of X and node xi. Intuitively, this
transformation of nodes from black to white is reminiscent
of an information-propagation process. This analogy was
first drawn by Meka et al. [13].

Incomplete and unstable linear systems: As it has al-
ready been discussed in the literature [13], the performance
of an algorithm like Sequential is heavily dependent on the
input reconstruction order. Meka et al. [13] have discussed
methods for finding a good reconstruction order in the spe-
cial case where the mask graph has a power-law degree distri-
bution. However, even with the best possible reconstruction
order Sequential may still encounter linear systems which
are either incomplete or unstable. Incomplete linear systems
are those for which the vector t has some missing values
and therefore the system Axy = t cannot be solved. Unsta-
ble linear systems are those in which all the entries in t are
known, but the resulting expression A−1

x t may be very sen-
sitive to small changes in t. These systems raise a numerous
problems in the case where the input T is a noisy version of
a rank r matrix, i.e., it is a matrix of effective rank r.

In the next two sections we describe how Order&Extend

deals with such systems.

4.2 Ordering and fixing incomplete systems
First, Order&Extend devises an order that minimizes the

number of incomplete systems encountered in the comple-
tion process.

Let us consider again the execution of Sequential on the
mask graph, and the sequential transformation of the nodes
in GΩ = (V1, V2, E) from white to black. Recall that in this
setting, an incomplete system occurs when the node in GΩ

that corresponds to y is connected to less than r black nodes.
Consider an order π of the nodes V1 ∪V2. This order con-

ceptually imposes a direction on the edges of E; if x is before
y in that order, then π(x) < π(y), and edge (x, y) becomes
directed edge (x → y). Figure 3 shows this transforma-
tion for the mask graph in Figure 2 and the order implied
there. For fixed π, a node becomes black if it has at least
r incoming edges, i.e., indegree at least r. In this view, an
incomplete system manifests itself by the existence of a node
that has indegree less than r. Clearly, if an order π guaran-
tees that all nodes have r incoming edges, then there are no
incomplete systems, and π is a perfect reconstruction order.

In practice such perfect orders are very hard to find; in
most of the cases they do not exist. The goal of the first
step of Order&Extend is to find an order π that is as close
as possible to a perfect reconstruction order. It does so by
constructing an order that minimizes the number of edges
that need to be added so that the indegree of any node is r.

To achieve this, the algorithm starts by choosing the node
from GΩ = (V1, V2, E) with the lowest degree. This node is
placed last in π, and removed from GΩ = (V1, V2, E) along
with its incident edges. Of the remaining nodes, the one
with minimum degree is placed in the next-to-last position
in π, and again removed fromGΩ = (V1, V2, E). This process
repeats until all nodes have been assigned a position in π.

Next, the algorithm makes an important set of adjust-
ments to π by examining each node u in the order it occurs
in π. For a particular u the adjustments can take two forms:

1. if u has degree ≤ r: it is repositioned to appear imme-
diately after the neighbor v with the largest π(v).

2. if u has degree > r: it is repositioned to appear imme-
diately after the neighbor its neighbor v with the the
r-th smallest π(v).

These adjustments aim to construct a π such that when
the implied directionality is added to edges, each node has
indegree as close to r as possible. While it is possible to iter-
ate this adjustment process to further improve the ordering,
in our experiments this showed little benefit.

Once the order π is formed as described above, then the in-
complete systems can be quickly identified: as Order&Extend
traverses the nodes of GΩ in the order implied by π, every
time it encounters a node u with in-degree less than r, it
adds edges so that u’s indegree becomes r; by definition,
the addition of a new edge (x, u) corresponds to querying a
missing entry Txu of T .

4.3 Finding and alleviating unstable systems
The incomplete systems are easy to identify – they cor-

respond to nodes in GΩ with degree less than r. However,
there are other “problematic” systems which do not appear
to be incomplete, yet they are unstable. Such systems arise
due to noise in the data matrix or to an accumulation of
error that happens through the sequential system-solving
process. These systems are harder to detect and alleviate.
We discuss our methodology for this below.

Understanding unstable linear systems: Recall that a
system Axy = t is unstable if its solution is very sensitive
to the noise in t. To be more specific, consider the system
Axy = t, where Ax has full rank and t is fully known. Recall
that the solution of this system, y = A−1

x t, will be used as
part of a subsequent system: Ayx = t′, where y will become
a row of matrix Ay. Let Ax = UΣV T be the singular value
decomposition of Ax with singular values σ1 ≥ . . . ≥ σr.
Now if there is a σj such that σj is very small, then the
solution to the linear system will be very unstable when
the singular vector vj corresponding to σj has a large pro-
jection on t. This is because in A−1

x , the small σj will be
inverted to a very large 1/σj . Thus the inverse operation
will cause any component of t that is in the direction of
vj to be disproportionally-strongly expressed, and any small
amount of noise in t to be amplified in y. Thus, unstable
systems may be catastrophic for the reconstruction error of
Sequential as a single such system may initiate a sequence
of unstable systems, which can amplify the overall error.

Unstable vs ill-conditioned systems: It is important to
contrast the notion of an unstable system with that of an ill-
conditioned system, which is widely used in the literature.
Recall, that system Axy = t is ill-conditioned if there exists
a vector s and a small perturbation s′ of s, such that the



results of systems Axy = s and Axy
′ = s′ are significantly

different. Thus, whether or not a system is ill-conditioned
depends only on Ax, and not on its relationship with any
target vector t in particular. An ill-conditioned system is
also characterized by a large condition number κ(Ax) = σ1

σn
.

This way of stating ill-conditioning emphasizes that κ(Ax)
measures a property of Ax and does not depend on t. Con-
sequently (as we will document in Section 5.3) the condition
number κ(Ax) generates too many false positives to be used
for identifying unstable systems.

Identifying unstable systems: To provide a more pre-
cise measure of whether a system Axy = t is unstable, we
compute the following quantity:

`(Ax, t) = ‖A−1
x ‖
‖t‖
‖y‖ . (5)

We call this quantity the local condition number, which was
also discussed by Trefethen and Bau [18]. The local con-
dition number is more tailored to our goal as we want to
quantify the proneness of a system to error with respect to
a particular target vector t. In our experiments, we char-
acterize a system Axy = t as unstable if `(Ax, t) ≥ θ. We
call the threshold θ the stability threshold and in our experi-
ments we use θ = 1. Loosely, one can think of this threshold
as a way to control for the error allowed in the entries of
reconstructed matrix. Although it is related, the value of
this parameter does not directly translate into a bound on
the RelError of the overall reconstruction.

Selecting queries to alleviate unstable systems: One
could think of dealing with an unstable system via regular-
ization, such as ridge regression (Tikhonov Regularization)
which was also suggested by Meka et al. [13]. However,
for systems Axy = t, such regularization techniques aim to
dampen the contribution of the singular vector that corre-
sponds to the smallest singular value, as opposed to boosting
the contribution of the singular vectors that are in the di-
rection of t. Further, the procedure can be expressed in
terms of only Ax without taking t into account; as we have
discussed this is not a good measure for our approach.

The advantage of our setting is that we can actively query
entries from T . Therefore, our way of dealing with this prob-
lem is by adding a direction to Ax (or as many as are needed
until there are r strong ones). We do that by extending our

system from Axy = t to

[
Ax
α

]
ỹ =

[
t
τ

]
. Of course, in doing

so we implicitly shift from looking for an exact solution to
the system, to looking for a least-squares solution.

Clearly α cannot be an arbitrary vector. It must be an
already computed row of X, it should be independent of Ax,
and it must boost a direction in Ax which is poorly expressed
and also in the direction of t. Given the intuition we devel-
oped above, we iterate over all previously computed rows of
X that are not in Ax, and set each row as a candidate α.
Among all such α’s we pick α∗ as the one with the smallest

`(Ax, t), and use it to extend Ax to

[
Ax
α∗

]
.

Querying T judiciously: Although the above procedure is
conceptually clear, it raises a number of practical issues. If
the system Axy = t solves for the j-th column of matrix Y ,
then every time we try a different α, which suppose is the
already-computed X(i, :), then the corresponding τ must
be the entry Tij . Since Tij is not necessarily an observed
entry, this would require a query even for rows α 6= α∗,

Algorithm 1 The local_condition routine

Input: C,Ax, α, t

D = C − CαTαC
1+αCαT

Ãx =

[
Ax
α

]
τ = Random (T (i, :), T (:, j))

t̃ =

[
t
τ

]
ỹ = DÃxt̃

return ‖DÃx‖ ‖t̃‖‖ỹ‖

Algorithm 2 The Stabilize routine

Input: Ax, t, θ
j : the column of Y being computed
C = (ATxAx)−1

for i ∈ {Computed rows of X} do
αi = X(i, :)
if X(i, :) not in Ax then

c(i) = local_condition(C,Ax, αi, t, τ)

i∗ = arg mini c(i), α
∗ = X(i∗, :)

if c(i∗) < θ then
return (i∗, j), α∗

return null

which is clearly a waste of queries since we will only pick one
α∗. Therefore, instead of querying the unobserved values of
τ , Order&Extend simply uses random values following the
distribution of the values observed in the i-th row and j-th
column of T . Once α∗ is identified, we only query the value
of τ corresponding to row α∗ and column j.

If there is no α∗ that leads to a system with local condi-
tion number below our threshold, we postpone solving this
system by moving the corresponding node of the mask graph
to the end of the order π.

Computational speedups: From the computational point
of view, the above approach requires computing a matrix
inversion per α. With a cubic algorithm for matrix inversion,
this could induce significant computational cost. However,
we observe that this can be done efficiently as all the matrix
inversions we need to perform are for matrices that differ
only in their last row – the one occupied by α.

Recall that the least-squares solution of the system Axy =
t is y = (ATxAx)−1ATx t. Now in the extended system[
Ax
α

]
ỹ =

[
t
τ

]
or Ãxỹ = τ̃ , the corresponding solution is

ỹ = (Ãx
T
Ãx)−1Ãx

T
t̃. Observe that we can write:

Ãx
T
Ãx =

[
ATx αT

] [A
α

]
= ATxAx + αTα.

Thus, Ãx
T
Ãx can be seen as a rank-one update to ATxAx.

In such a setting the Sherman-Morrison Formula [6] pro-

vides a way to efficiently calculate D = (Ãx
T
Ãx)−1 given

C = (ATxAx)−1. The details are shown in Algorithm 1.
Using the Sherman-Morrison Formula we can find ỹ via
matrix multiplication, which requires O(r2) for at most
n = max{n1, n2} candidate queries. Since the values of r
we encounter in real datasets are small constants (in the
range of 5-40), this running time is small.



The pseudocode of this process is shown in Algorithm 2.
The process of selecting the right entry to query is sum-
marized in the Stabilize routine. Observe that Stabilize

either returns the entry to be queried, or if there is no en-
try that can lead to a stable systems it returns null. In the
latter case the system is moved to the end of the order.

4.4 Putting everything together
Given all the steps we described above we are now ready

to summarize Order&Extend in Algorithm 3.

Algorithm 3 The Order&Extend algorithm

Input: TΩ, r, θ
Compute GΩ

Find ordering π (as per Section 4.2)
for Axy = t (corresponding to the j-th column of Y )
encountered in π do

solve system = true
if Axy = t is incomplete then

Query T and complete Axy = t

while local_condition(Ax, t) > θ do
if {(i∗, j), α∗} = Stabilize(Ax, t, θ) 6= null then

Ax =

[
Ax
α∗

]
t =

[
t

T (i∗, j)

]
else

move Axy = t to the end of π
solve system = false
break

if solve system then
Y (:, j) = y = A†xt (using least squares)

return T̂= XY

Order&Extend constructs the rows of X and columns of
Y in the order prescribed by π – the pseudocode shows the
construction of columns of Y , but it is symmetric for the
rows of X. For every linear system the algorithm encoun-
ters, it completes the system if it is incomplete and tries to
make it stable if it is unstable. When a complete and stable
version of the system is found, the system is solved using
least squares. Otherwise, it is moved to the end of π.

Running time: The running time of Order&Extend con-
sists of the time to obtain the initial ordering, which us-
ing the algorithm of Matula and Beck [12] is O (n1 + n2),
plus the time to detect and alleviate incomplete and un-
stable systems. Recall that for each unstable system
we compute an inverse O

(
r3
)

and check n candidates

O
(
r3 + r2n

)
. Thus the overall running time of our algo-

rithm is O
(
(n1 + n2) +N × (r3 + r2n)

)
, where N is the

number of unstable system the algorithm encounters. In
practice, the closer a matrix is to being of rank exactly r,
the smaller the number of error prone systems it encounters
and therefore the faster its execution time.2

Partial completions: If the budget b of allowed queries is
not adequate to resolve the incomplete or the unstable sys-

tems, then Order&Extend will output T̂ with only a portion
of the entries completed. The entries that remain unrecov-
ered are those for which the algorithm claims inability to

2Code and information are available at http://cs-people.
bu.edu/natalir/matrixComp

produce a good estimate. From the practical viewpoint this
is extremely useful information as the algorithm is able to
inform the data analyst which entries it was not able to re-
construct from the observations in TΩ.

5. EXPERIMENTS
In this section we experimentally evaluate the perfor-

mance of Order&Extend both in terms of reconstruction error
as well as the number of queries it makes. Our experiments
show that across all datasets Order&Extend requires very few
queries to achieve a very low reconstruction error. All other
baselines we compare against require many more queries for
the same level of error, or can ever achieve the same level of
reconstruction error.

Datasets: We experiment on the following nine real-world
datasets, taken from a variety of applications.

MovieLens: This dataset contains ratings of users for
movies as appearing in the MovieLens website.3 The original
dataset has size 6 040× 3 952 and only 5% of its entries are
observed. For our experiments we obtain a denser matrix of
size 4 832× 3 162.

Netflix: This dataset also contains user movie-ratings,
but from the Netflix website. The dataset’s original size
is 480 189 × 17 770 with 1% of observed entries. Again we
focus on a submatrix with higher percentage of observe en-
tries and size 48 019× 8 885.

Jester: This dataset corresponds to a collection of user
joke ratings obtained for joke recommendation on the Jester
website.4 For our experiments we use the whole dataset with
size 23 500× 100 with 72% of its entries being observed.

Boat: This dataset corresponds to a fully-observed black
and white image of size 512× 512.

Traffic: This is a set of four datasets; each is part of a
traffic matrix from a large Internet Service Provider where
rows and the columns are source and destination prefixes
(i.e., groups of IP addresses), and each entry is the volume
of traffic between the corresponding source-destination pair.
The largest dataset size 7 371× 7 430 and 0.1% of its entries
are observed; we call this TrafficSparse. The other two are
fully-observed of sizes 2 016 × 107, and 2 016 × 121; we call
these Traffic1 and Traffic2.5

Latency: Here we use two datasets consisting of Internet
network delay measurements. Rows and columns are hosts,
and each entry indicates the minimum ping delay among
a particular time window. The datasets are fully-observed
and of sizes 116× 116, and 869× 19; we call these Latency1
and Latency2.5

Baseline algorithms: We compare the performance of our
algorithm to two state-of-the-art matrix-completion algo-
rithms, OptSpace and LmaFit .
OptSpace: An SVD-based algorithm introduced by Ke-

shavan et al.[8]. The algorithm centers around a convex-
optimization step that aims to minimize the disagreement

of the estimate T̂ on the initially observed entries TΩ. We
use the original implementation of OptSpace.6

LmaFit: A popular alternating least-squares method for
matrix completion [19]. In our experiments we use the orig-

3Source http://www.grouplens.org/node/73.
4Source http://goldberg.berkeley.edu/jester-data/
5Source https://www.cs.bu.edu/~crovella/links.html
6http://web.engr.illinois.edu/~swoh/software/
optspace/code.html
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Figure 4: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with approximate rank;
x-axis: query budget b; y-axis: RelError of the completion.

inal implementation of this algorithm provided by Wen et.
al. 7, and in particular the version where the rank r is pro-
vided, as we observed it to perform best.

As neither OptSpace nor LmaFit are algorithms for active
completion, we set up our experiment as follows: first, we
run Order&Extend on TΩ0 , which asks a budget of b queries.
Before feeding TΩ0 to LmaFit and OptSpace we extend it
with b randomly chosen queries. In this way both algorithms
query the same number of additional entries. A random dis-
tribution of observed entries has been proved to be (asymp-
totically) optimal for statistical methods like OptSpace and
LmaFit [2, 8, 19]. Therefore, picking randomly distributed
b additional entries is the best querying strategy for these
algorithms, and we have also verified that experimentally.

5.1 Methodology
For all our experiments, the ground-truth matrix T is

known but not fully revealed to the algorithms. The input to
the algorithms consists of an initial mask Ω0, the observed
matrix TΩ0 , and a budget b on the number of queries they

can ask. Each algorithm A outputs an estimate T̂A,Ω0 of T .

Selecting the input mask Ω0: The initial mask Ω0, with
cardinality m0 is selected by picking m0 entries uniformly at
random from the ground-truth matrix T .8 The cardinality
m0 is selected so that m0 > 0 and m0 < φ(T, r); usually we
chose m0 to be ≈ 30−50% of φ(T, r). The former constraint
guarantees that the input is not trivial, while the latter guar-
antees that additional queries are definitely needed.

Range for the query budget b: We vary the number of
queries,b, an algorithm can issue among a wide range of val-
ues. Starting with b < φ(T, r) −m0, we gradually increase

7http://lmafit.blogs.rice.edu/
8We also test other sampling distributions, but the results
are the same as the ones we report here and thus omitted.

it until we see that the performance of our algorithms stabi-
lize (i.e., further queries do not decrease the reconstruction
error). Clearly, the smaller the value of b the larger the
reconstruction error of the algorithms.

Reconstruction error: Given a ground-truth matrix T
and input TΩ0 , we evaluate the performance of a reconstruc-

tion algorithm A, by computing the relative error of T̂A,Ω0

with respect to T , using the RelError function defined in
Equation (1). This measure takes into consideration all en-
tries of T , both the observed and the unobserved. The closer

T̂A,Ω is to T the smaller the value of RelError(T̂A,Ω). In

general, RelError(T̂A,Ω) ∈ [0,∞) and at perfect recon-

struction RelError(T̂A,Ω) = 0.
Although our baseline algorithms always produce a full es-

timate (i.e., they estimate all missing entries), Order&Extend
may produce only partial completions (see Section 4.4 for a
discussion in this). In these cases, we assign value 0 to the
entries it does not estimate.

5.2 Evaluating Order&Extend

Experiments with real noisy data: For our first experi-
ment, we use datasets for which we know all off the entries.
This is true for six out of our nine datasets: Traffic1 ,Traf-
fic2, Latency1, Latency2, Jester, Boat. Note that Jester is
missing 30% of the entries, but we treat them as true zero-
values ratings; the remaining datasets are fully known and
able to be queried as needed. As these are real datasets they
are not exactly low rank, but plotting their singular values
reveals that they have low effective rank. By inspecting their
singular values, we chose: r = 7 for the Traffic and Latency
datasets, r = 10 for Jester and r = 40 for Boat.

Figure 4 shows the results for each dataset. The x-axis is
the query budget b; note that while LmaFit and OptSpace

always exhaust this budget, for Order&Extend it is only an
upper bound on the number of queries made. The y-axis is
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Figure 5: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with exact rank; x-axis:
query budget b; y-axis: RelError of the completion.

the RelError(T, T̂A,Ω). The black vertical line marks the
number of queries needed to reach the critical mask size;
i.e., it corresponds to budget of (φ(T, r)−m0). One should
interpret this line as a very conservative lower bound on the
number of queries that an optimal algorithm would need to
achieve errorless reconstruction in the absence of noise.

From the figure, we observe that Order&Extend exhibits
the lowest reconstruction error across all datasets. More-
over, it does so with a very small number of queries, com-
pared to LmaFit and OptSpace; the latter algorithms achieve
errors of approximately the same magnitude in all datasets.
On some datasets LmaFit and OptSpace come close to the
relative error of Order&Extend though with significantly
more queries. For example for the Latency1 dataset, Or-

der&Extend achieves error of 0.24 with b = 2K queries;
LmaFit needs b = 4K to exhibit an error of 0.33, which
is still more than that of Order&Extend. In most datasets,
the differences are even more pronounced; e.g., for Traffic2,
Order&Extend achieves a relative error of 0.50 with about
b = 13K queries; OptSpace and LmaFit achieve error of
more than 0.8 even after b = 26K queries. Such large dif-
ferences between Order&Extend and the baselines appear in
all datasets, but Boat. For that dataset, Order&Extend is
still better, but not as significantly as in other cases – likely
an indication that the dataset is more noisy. We also point
out that the value of b for which the relative error of Or-

der&Extend exhibits a significant drop is much closer to the
indicated lower bound by the black vertical line. Again this
phenomenon is not so evident for Boat probably because this
datasets is further away from being low rank.

Extremely sparse real-world data: For the purpose of
experimentation our algorithm needs to have access to all the
entries of the ground truth matrix T – in order to be able to
reveal the values of the queried entries. Unfortunately, the
Movielens, Netflix, and TrafficSparse datasets consist mostly
of missing entries, therefore we cannot query the majority
of them. To be able to experiment with these datasets, we
overcome this issue by approximating each dataset with its
closest rank r matrix Tr. The approximation is obtained by
first assigning 0 to all missing entries of the observed T , and
then taking the singular value decomposition and setting all
but the largest r singular values to zero. This trick grants
us the ability to study the special case discussed in Section 3
where the matrix is of exact rank r.

Using r = 40, the results for these datasets are depicted in
Figure 5 with the same axes and vertical line as in Figure 4.

Again, we observe a clear dominance of Order&Extend. In
this case the differences in the relative error it achieves are
much more striking. Moreover, Order&Extend achieves al-
most 0 relative error for extremely small number of queries
b; in fact the error of Order&Extend consistently drops to an
extremely small value for b very close to the lower bound of
the optimal algorithm (as marked by the black vertical line
shown in the plot). On the other hand LmaFit and OptSpace

are far from exhibiting such a behavior. This signals that
Order&Extend devises a querying strategy that is almost op-
timal. Interestingly the performance of OptSpace changes
dramatically in these cases as compared to the approximate
rank datasets. In fact on TrafficSparse and Netflix the error
is so high it does not appear on the plot.

Note that the striking superiority of Order&Extend in the
case of exact-rank matrices is consistent across all datasets
we considered, including others not shown here.
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Figure 6: Recovery process using LmaFit, and Or-

der&Extend. Each column is a particular b, increasing from
left to right.

Running times: Though the algorithmic composition is
quite different, we give some indicative running times for our
algorithm as well as LmaFit and OptSpace. For example, in
the Netflix dataset the running times were in the order of
11 000 seconds for LmaFit, 80 000 seconds for Order&Extend,
and 200 000 seconds for OptSpace. These numbers indicate
that Order&Extend is efficient despite the fact that in addi-
tion to matrix completion it also identifies the right queries;
the running times of LmaFit and OptSpace simply corre-
spond to running a single completion on the extended mask
that is randomly formed. Note that these running times are



computed using an unoptimized and serial implementation
of our algorithm; improvements can be achieved easily e.g.,
by parallelizing the local condition number computations.

Partial completion of Order&Extend: As a final experi-
ment, we provide anecdotal evidence that demonstrates the
difference in the philosophy behind Order&Extend and other
completion algorithms. Figure 6 provides a visual compar-
ison of the recovery process of Order&Extend and LmaFit

for different values of query budget b. For small values of
b, Order&Extend does not have the sufficient information to
resolve all incomplete and unstable systems. Therefore the
algorithm does not estimate the entries of T corresponding
to these systems, which renders the white areas in the two
left-most images of Order&Extend . In contrast LmaFit out-
puts full estimates, though with significant error. This can
be seen by incremental sharpening of the image, compared
to the piece-by-piece reconstruction of Order&Extend.

5.3 Discussion
Here we discuss some alternatives we have experimented

with, but omitted due to significantly poorer performance.

Alternative querying strategies: Order&Extend uses a
rather intricate strategy for choosing its queries to T . A
natural question is whether a simpler strategy would be suf-
ficient. To address this we experimented with versions of Se-
quential that considered the same order as Order&Extend

but when stuck with a problematic system they queried ei-
ther randomly, or with probability proportional (or inversely
proportional) to the number of observed entries in a cell’s
row or column. All these variants were significantly and
consistently worse than the results we reported above.

Condition number: Instead of detecting unstable systems
using the local condition number we also experimented with
a modified version of Order&Extend, which characterized a
system Axy = t as unstable if its condition number κ(Ax)
was above a threshold. For values of threshold between 5
and 100 the results were consistently and significantly worse
than the results of Order&Extend that we report here, both
in terms of queries and in terms of error. Further, there was
no threshold of the condition number that would perform
comparably to Order&Extend for any dataset.

6. CONCLUSIONS
In this paper we posed the ActiveCompletion problem,

an active version of matrix completion, and designed an effi-
cient algorithm for solving it. Our algorithm, which we call
Order&Extend, approaches this problem by viewing querying
and completion as two interrelated tasks and optimizing for
both simultaneously. In designing Order&Extend we relied
on a view of matrix completion as the solution of a sequence
of linear systems, in which the solutions of earlier systems
become the inputs for later systems. In this process, recon-
struction error depends both on the order in which systems
are solved and on the stability of each solved system. There-
fore, a key idea of Order&Extend is to find an ordering for the
systems in which as many as possible give good estimates of
the unobserved entries. However, even in the perfect order
problematic systems arise; Order&Extend employs a set of
techniques for detecting these systems and alleviating them
by querying a small number of additional entries from the
true matrix. In a wide set of experiments with real data we

demonstrated the efficiency of our algorithm and its superi-
ority both in terms of the number of queries it makes, and
the error of the reconstructed matrices it outputs.
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[17] D. J. Sutherland, B. Póczos, and J. Schneider. Active
learning and search on low-rank matrices. In ACM
SIGKDD, 2013.

[18] L. N. Trefethen and D. Bau III. Numerical linear
algebra. SIAM Press, 1997.

[19] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank
factorization model for matrix completion by a
nonlinear successive over-relaxation algorithm. Math.
Program. Comput., 2012.


