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Abstract
Large graph databases are commonly collected and analyzed
in numerous domains. For reasons related to either space
efficiency or for privacy protection (e.g., in the case of
social network graphs), it sometimes makes sense to replace
the original graph with a summary, which removes certain
details about the original graph topology. However, this
summarization process leaves the database owner with the
challenge of processing queries that are expressed in terms
of the original graph, but are answered using the summary.

In this paper, we propose a formal semantics for an-

swering queries on summaries of graph structures. At its

core, our formulation is based on a random worlds model.

We show that important graph-structure queries (e.g., adja-

cency, degree, and eigenvector centrality) can be answered

efficiently and in closed form using these semantics. Further,

based on this approach to query answering, we formulate

three novel graph partitioning/compression problems. We

develop algorithms for finding a graph summary that least

affects the accuracy of query results, and we evaluate our

proposed algorithms using both real and synthetic data.

1 Introduction

Graph-structured data is commonly collected and ana-
lyzed in a variety of application domains, e.g., the Web,
internet, local-area networks (LANs), social and biolog-
ical networks, and many more. In this paper, we in-
vestigate the problem of probabilistic query answering
using compressed graphs, or graph summaries.

Graph structures are commonly summarized, or
replaced with coarser representations, in at least the
following two important (and very different) scenarios:

Compression, Space Efficiency: Over the past sev-
eral years, particularly with the growth of the World
Wide Web, the number and magnitude of graph-
structured databases have been rapidly increasing, mak-
ing it increasingly difficult and expensive to store the
data contained therein. One common solution to deal-
ing with the size of these databases is by expanding the
amount of computing and storage resources (i.e., hard-
ware and disks). On the other hand, a complementary
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Figure 1: Social network graph

solution deliberately removes some of the detail from
the graphs in order to reduce space consumption.

Privacy and Anonymity for Social Networks:
Privacy and anonymity have emerged as important
problems when publishing social network graphs (e.g.,
describing the “friend” relationships between users on
Facebook or LinkedIn). Recent work has observed that
removing known identifiers (e.g., Name, SSN) is often
not enough to prevent re-identification [7, 20, 26]. As
a simple example, consider the social network graph in
Figure 1, and suppose that we replace it with the graph
in Figure 2(a) (i.e., replace user names with meaningless
integer pseudonyms). Now consider an attacker who
knows that Bob is in the de-identified graph. If the
attacker has some simple information about the graph
topology surrounding Bob (e.g., Bob has 4 neighbors),
then it is easy for the attacker to locate Bob.

In recent work, Hay et al. demonstrated that a
graph summarization approach is sufficient to prevent
this particular attack, even in the case of an adversary
who has strong structural background knowledge (i.e.,
knows the entire network topology surrounding the
target node) [20]. Essentially, by grouping each person
(node) into a super-node containing at least k− 1 other
nodes, it is guaranteed that even a strong adversary
will not be able to pinpoint a target individual beyond
a group containing at least k − 1 others.

While graph-structure summarization is important
in multiple domains, there has not been much work on
how to actually use these summaries for data analysis.
The process of summarization, by definition, removes
some information from the original graph. Intuitively,
this introduces some uncertainty into any query or
analysis that takes the summarized graph as input. To
address this problem, we propose formal probabilistic
semantics for evaluating structural queries on graph
summaries.
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Figure 2: Graph summarization example

Summary of Contributions Our first main contribu-
tion is a formal semantics for query answering on graph
summaries. We provide necessary definitions in Sec-
tion 2, and then describe the query-answering seman-
tics in Section 3. At its core, our approach is based
on a random-worlds framework [6], and queries are an-
swered using an expected value semantics. Interestingly,
we show that several important graph structure queries
(adjacency, degree, and eigenvector centrality) can be
answered quickly and in closed form while still preserv-
ing our rigorous probabilistic semantics. More complex
queries can be answered heuristically (with a high de-
gree of accuracy) using a novel expected adjacency ma-
trix structure.

Motivated by the above, we also study the problem
of finding a “good” graph summary. In our problem set-
ting, the quality of a summary is measured by the extent
to which it alters the results of queries. In Section 4, we
formulate three novel graph summarization problems.
Two of these problems are motivated by compression
and space efficiency; the third is motivated by privacy.
For each of these problems, we describe algorithms for
finding a good graph summary in Section 5. The graph
summarization problems we study here give rise to three
novel graph-partitioning problems that, to the best of
our knowledge, have not been studied before. Finally,
we provide an extensive experimental evaluation of our
techniques in Section 6.

2 Graph Summarization Basics

Throughout this paper, we will consider an input graph
G (V,E) that is simple, undirected, and unweighted; V
denotes the set of n nodes V = {v1, . . . , vn} and E
denotes the set of edges among these nodes. Given an
input graph G (V,E) a summary S (G) consists of

1. A partition of the nodes of V into parts V (V ) =
{V1, . . . , Vk}, such that Vi ⊆ V and Vi ∩Vj = ∅, for
i, j ∈ {1, . . . , k} and i 6= j. We refer to each group
of nodes Vi as a supernode of the summary S.

2. For every supernode Vi ∈ V, summary S describes
the number of edges within the nodes in the su-
pernode. That is, it counts the number of edges in

the input graph G that have both their endpoints
in the nodes of Vi. For supernode Vi we denote this
number by Ei. That is,

Ei = |{e(u, v) | u, v ∈ Vi, e(u, v) ∈ E}| .

3. For every pair of supernodes Vi, Vj ∈ V, summary
S also gives the number of edges across the two
supernodes. That is, it counts the number of
edges in the input graph G that have one of their
endpoints in a node of Vi and their other endpoint
in a node in Vj . For two supernodes Vi and Vj , we
denote this number by Eij .

Eij = |{e(u, v) | u ∈ Vi, v ∈ Vj , e(u, v) ∈ E}| .

Example 1. Consider the input graph in Figure 2(a).
In this case, the nodes are uniquely named with integer
values. Figure 2(b) shows a possible partition of the
nodes of the input. Figure 2(c) shows the corresponding
summary that consists of two supernodes.

Note that for any input graph G (V,E) there exist
many possible summaries S. In fact, there are as many
as the possible partitions of the nodes in V . We use
S (G) to denote the set of all (exponentially many)
possible summaries that can be extracted from an input
graph G (V,E). In Section 4, we will discuss techniques
for finding the best such partition / summary.

3 Probabilistic Queries on Graph Summaries

Replacing original graph G with summary S introduces
uncertainty with respect to the structure of G. In
this section, we formalize this intuition by defining the
semantics of graph structure queries on summaries.

Our formalism is based on a random-worlds frame-
work [6]. Intuitively, given a summary, there are many
possible original graphs that could have produced the
summary. Following the principle of indifference [6], in
the absence of additional information, it is reasonable to
assume that each such reconstruction is equally likely.
Using this assumption, we define the expected-value re-
sponse for any real-valued query Q(). Further, for sev-
eral important kinds of graph structure queries – adja-
cency, degree, and eigenvector centrality – we show that



the expected value response is easily computed from the
summary in polynomial time.

3.1 Random Worlds and Reconstructions Con-
sider the case where we are given only a summary S, but
we want to find the answer to some structural query Q()
with respect to original graph G. In the absence of ad-
ditional information, there are typically several graphs
that could have produced summary S. We refer to each
such graph as a reconstruction of S.1

Definition 1. (Graph Reconstruction) Let S be
a summary graph consisting of k supernodes V =
{V1, . . . , Vk} and edge counts Ei, Eij for i, j ∈
{1, . . . , k}. The set of valid reconstructions of S, de-
noted by R (S), is the set of graphs G (V,E), such that

• For every i ∈ {1, . . . , k},
|{e(u, v) | u, v ∈ Vi, e(u, v) ∈ E} | = Ni.

• For every i, j ∈ {1, . . . , k} and i 6= j,

|{e(u, v) | u ∈ Vi, v ∈ Vj , e(u, v) ∈ E} | = Nij .

3.2 Expected-Value Semantics To capture the
uncertainty introduced by summarization, the seman-
tics of query Q() on S should be defined, conceptually,
with respect to the set of all valid reconstructions. For
related problems, two main approaches have been pro-
posed: expected value semantics and range semantics
(e.g., [5]).

Intuitively, using expected value semantics, the an-
swer to a query Q() is the expected result, given a dis-
tribution over possible reconstructions. In the absence
of additional information, the principle of indifference
suggests that it is reasonable to assume a uniform dis-
tribution.

Definition 2. (Expected Value Semantics) Let
R (S) denote the set of all valid reconstructions from
summary S, and let Q() denote a query on G with a
boolean or real-valued response.2 Under expected value
semantics, the answer to Q() is defined to be the real
number e such that

e =

∑
G∈R(S) Q(G)

|R(S)|
Note that the above equation assumes uniform

probability distribution over all graphs. Incorporating
prior knowledge about the graph structure (e.g., giving
preference to scale-free graphs) can be easily done by
multiplying Q(G) with the prior probability P(G) of
the graph G.

1To use the terminology of [6], each reconstruction constitutes
a possible world.

2For boolean queries true = 1 and false = 0.

1 2 3 4 5
1 0 1 0 0 0
2 1 0 1 1 1
3 0 1 0 0 0
4 0 1 0 0 1
5 0 1 0 1 0

(a) Adjacency matrix for
graph in Figure 2(a)

1 2 3 4 5
1 0 2/3 2/3 1/3 1/3
2 2/3 0 2/3 1/3 1/3
3 2/3 2/3 0 1/3 1/3
4 1/3 1/3 1/3 0 1
5 1/3 1/3 1/3 1 0

(b) Expected adjacency matrix for sum-
mary in Figure 2(c)

Figure 3: Expected adjacency matrix example

3.3 Adjacency Queries One of the simplest and
most common graph-structure queries is the adjacency
query, which simply asks: Given graph G(V,E) and two
nodes u, v ∈ V , does there exist an edge (u, v) ∈ E?
Given a summary S, the expected adjacency matrix
captures the answers to all possible adjacency queries
under expected value semantics.

Definition 3. (Expected Adjacency Matrix )
Let S be a summary graph. The expected adjacency
matrix A for S is a |V | × |V | matrix, where all entries
are real numbers in the range [0, 1] defined as follows:

A(u, v) =

∣∣ {G(V,E) | G ∈ R (S) , (u, v) ∈ E}
∣∣∣∣R (S)

∣∣
Given a graph summary, each of the entries in the
expected adjacency matrix is easily computed in closed
form.

Theorem 3.1. Given summary S, the entries of the
expected adjacency matrix A given S can be computed
as follows:

1. If u, v ∈ V are distinct nodes in the same supernode
Vi, then

A(u, v) =
2Ei

|Vi|(|Vi| − 1)
(3.1)

2. If u, v ∈ V are distinct nodes in different supern-
odes, Vi and Vj, then

A(u, v) =
Eij

|Vi| × |Vj |
(3.2)

3. Otherwise (if u = v),

A(u, v) = 0(3.3)



The proof of the above theorem is based on basic
probability manipulations and is omitted for space.

Example 2. Figure 3(a) shows the adjacency matrix
for the graph in Figure 2(a), and Figure 3(b) shows
the expected adjacency matrix given the summary in
Figure 2(c).

3.4 Degree Queries A degree query is another sim-
ple query of the form: Given a node v ∈ V , how many
edges in E touch v? Under expected value semantics,
we can define the answers to these queries using the
expected adjacency matrix.

Theorem 3.2. The expected degree of a node v ∈ V is
computed by d(v) =

∑|V |
j=1 A(v, j)

Proof. Suppose that there are m valid reconstructions,
and the degree of node v in reconstruction i is given
by di(v). Then, the expected degree of v is by defi-
nition d(v) =

Pm
i=1 di(v)

m . Let Ai(u, v) denote the ad-
jacency matrix entry for nodes u and v in the ith re-
construction. Of course, the degree of a node v can
be computed using a graph’s adjacency matrix. Thus,

di(v) =
∑|V |

j=1 Ai(v, j) and d(v) =
Pm

i=1
P|V |

j=1 Ai(v,j)

m =∑|V |
j=1 A(v, j).

Example 3. Using the expected adjacency matrix in
Figure 3(b), which is constructed for the summary in
Figure 2(c), we have d(1) = 2, d(2) = 2, d(3) = 2,
d(4) = 2, and d(5) = 2.

3.5 Eigenvector-Centrality Queries Eigenvector
centrality is one common way of measuring the impor-
tance of a node in a network.

Definition 4. (Eigenvector centrality)
Consider G (V,E). The eigenvector centrality score
of node vi, denoted p(vi), is the probability of being
at node vi after infinite steps of a random walk on
G. Alternatively, consider A to be the adjacency
matrix of G and D a diagonal matrix of the degrees
D = diag (d(v1), . . . , d(vn)) of the n nodes in G. Also,
let matrix M = D−1A. Then the eigenvector centrality
p(vi) of vi is the i-th element of the left eigenvector of
the matrix M that corresponds to the largest eigenvalue.

Note that for the eigenvector centrality to be de-
fined, the Markov chain that corresponds to G needs to
be connected and aperiodic. Therefore, the theoretical
analysis that follows refers to only such graphs. In prac-
tice, we can guarantee aperiodicity, with small impact
on the final centrality scores, by adding self-loops with
very small weights to each input node.

Theorem 3.3. The expected eigenvector centrality
score of a node v ∈ V is computed in closed form by
p(v) = d(v)

2|E|

Proof. Recall that in undirected graph G(V,E), the
eigenvector centrality score p(v) of v ∈ V can be
computed based on the degree of v as p(v) = d(v)

2|E| , where
d(v) is the degree of v in G (for details see [25] Chapter
6). Now, suppose that there are m valid reconstructions
given a summary S. If the degree (centrality score) of
node v in reconstruction i is denoted by di(v) (pi(v)),

then we have p(v) =
Pm

i=1 pi(v)

m =
Pm

i=1
di(v)
2|E|

m = d(v)
2|E|

Example 4. For the graph summary in Figure 2(c), we
have p(1) = 1/5, p(2) = 1/5, p(3) = 1/5, p(4) = 1/5,
and p(5) = 1/5.

3.6 Complex Queries In the previous three subsec-
tions, we have demonstrated that three simple kinds of
queries (adjacency, degree, and eigenvector centrality)
can be answered in closed form using expected value se-
mantics. While strict adherence to the formal semantics
is a worthy goal, and it is useful to continue to search
for closed-form solutions to other queries, we observe
that many queries can be answered heuristically, with
reasonable accuracy, by viewing the expected adjacency
matrix as a weighted graph. For example, in Section 6,
we provide some experimental results for PageRank, in-
dicating that this approach works fairly well.

4 Summarization Problems

In this section, we will turn our attention to the
problem of finding a good summary, either when the
goal is compression (or space efficiency), or when the
goal is privacy protection. In both cases, we will
measure the quality of a summary based on how well
well the summary S (G) describes the input graph
G. Given an input graph G, we want to find the
summary S (G) such that G’s adjacency matrix A and
the expected adjacency matrix A of summary S (G) are
as similar as possible. This intuition is captured by
the reconstruction error. Intuitively, the reconstruction
error measures the average absolute error (resulting
from using summary S rather than G) across all possible
adjacency queries.

Definition 5. (Reconstruction Error (Re)) Let
G (V,E) be an input graph described by a (|V | × |V |)
adjacency matrix A. Let S be a summary of G, and let
A be the expected adjacency matrix for S. We define
the (normalized) reconstruction error of S with respect
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(b) Optimal partition (k = 2)

Figure 4: Novel partitioning problem

to G as follows:

Re
(
A | A

)
=

1
|V |2

|V |∑
i=1

|V |∑
j=1

∣∣A(i, j)−A(i, j)
∣∣ .

In the rest of this section we formally define the
optimization problems that we study in the rest of
the paper. Namely, we define three problems: k-
Graph Summarization (k-Gs), Graph Summariza-
tion (Gs), and k-Capacitated Graph Summariza-
tion (k-CGs). k-Gs and Gs are inspired by the space
efficiency problem; k-CGs is inspired by the privacy
problem.

4.1 Space Efficiency Problems (k-Gs and Gs) In
the k-Gs problem, the maximum number of supernodes
k in the output summary is specified as a constraint.
Then, for a given input graph, the goal is to find the best
summary graph with at most k supernodes. In contrast,
in the Gs problem, we adopt a Minimum Description
Length (MDL) formulation, rather than assuming that
a fixed k is specified in advance. In that case, the goal
is to find the best summary graph S so that exactly
the right number of supernodes are included in the
summary. The right number of supernodes is defined
using information-theoretic arguments, and it depends
on the complexity of the summary and the error that
the summary introduces in the description of the data.

In the rest of the section we formally define each
one of the above problems.

Problem 1. Given input graph G(V,E) and integer k,
find a summary graph S for G with at most k supernodes
V (|V| ≤ k), such that Re (G | S) is minimized.

Note that Problem 1 is a novel graph-partitioning
problem. Although other variants of graph partitioning
have been extensively studied (see Section 7), their
focus has been on finding dense graph components, or
(approximately) disconnected parts in the graph. Our
problem has a different flavor; the nodes that belong to
a partition (supernode) need not necessarily be densely

connected; being disconnected is equally good. The
special nature of the problem is illustrated by the
following example.

Example 5. Consider the star-shaped graph shown in
Figure 4(a). The optimal partitioning solution to Prob-
lem 1 for k = 2 is shown in Figure 4(b). The summary
graph resulting from this partitioning would have recon-
struction error Re = 0. Such a partitioning is not op-
timal with respect to any other graph-partition problem.

We devote the rest of this subsection to describing
a variant of Problem 1 where the maximum number
of supernodes k is not given as part of the input, but
rather the objective function is such that it decides by
itself the optimal number of supernodes. We achieve
this balance by using the MDL principle to guide our
problem formulation.

The Minimum Description Length (MDL) prin-
ciple: The MDL principle states the following: assume
two parties P and P ′ want to communicate with one an-
other. More specifically, assume that P wants to send a
graph G to P ′ using as few bits as possible. In order for
P to minimize the communication cost, she has to select
the model S from the class of models S, and use S to
describe her data. Then, she can send P ′ model S, plus
the additional information required to describe G, given
the transmitted model. In our case, the class of mod-
els were are considering is the class of summary graphs;
thus, P has to encode the summary graph, plus the data
given the summary graph. The quality of the selected
model (summary graph) can be evaluated based on the
total number of bits required to encode the model and
the data given the model.

MDL discourages complex models with small data
cost and simple models with large data cost. Intu-
itively, it strikes a balance between these two extremes.
Clearly, the MDL principle is more general than our
graph summarization problem. In the past, it has
been successfully applied in a variety of settings that
include decision-tree classifiers [24], genetic-sequence
modelling [23], patterns in sets of strings [22], and
many more. We now describe our instantiation of the
MDL principle.

Cost of the data given the model: Our input data is
graph G (V,E), while our model is the summary S of the
graph. Let A and A be the adjacency matrix of G and
the expected adjacency matrix given S, respectively.

For now, assume that the permutations of the rows
(and columns) of A and A are the same. That is, the i-th
row (column) of A corresponds to the i-th row (column)
of A. Recall that the value of A (i, j) corresponds to the



probability of the existence of an edge between nodes i
and j of the original graph. Then, the probability of
A (i, j) = 1 is

Pr
[
A (i, j) = 1

]
= A (i, j) ,

while the probability of A (i, j) = 0 is

Pr
[
A (i, j) = 0

]
= 1−A (i, j) .

Therefore, given model S described with the ex-
pected adjacency matrix A, the probability of observing
the original graph G, with adjacency matrix A is

Pr
[
A | A

]
=

∏
i,j

(
A (i, j)A(i,j)×

(
1−A (i, j)

)(1−A(i,j)
))

.

Subsequently, the number of bits required to de-
scribe A given A is − log Pr

[
A | A

]
3 and thus

B
`
A | A

´
= − log Pr

ˆ
A | A

˜
=

X
i,j

“
− A (i, j) log A (i, j) −

−
`
1 − A (i, j)

´
log

`
1 − A (i, j)

´”
.

Cost of describing the model: Our model is the
summary S that is, in principle, described by the
expected adjacency matrix A. Here we will describe the
cost (in bits) of describing the model A. Assume that
the summary graph S has k supernodes, then matrix A
is of size n × n (|V | = n), but the n rows and columns
can be rearranged so that all the nodes that belong to
the same supernode in S are close to each other. Such
a rearrangement will produce a matrix that consists
of k × k blocks. Notice that the entries of matrix A
within every such block are constant; that is, there is a
single value that can describe the probability of an edge
between nodes in the block. In order to encode this
matrix we need to encode the following information:

1. We need to encode the permutation of the rows
(and columns) used for the rearrangement in ma-
trix A. Since there are n = |V | rows, n log n bits
are needed to encode this permutation.

2. We need to specify the partitioning of the rows
(and columns) of A into k groups. Given the
permutation, it is enough to specify the indices of
the rows where a new block starts. For k blocks,
k − 1 indices need to be specified which require a
total of (k − 1) log n bits. Note that we do not

3Recall that the number of bits needed to describe event e that
occurs with probability pe is − log pe

need to specify the indices of the columns since the
permutation of the rows and the columns of matrix
A are identical.

3. Each one of the k × k blocks of matrix A is char-
acterized by a single parameter, namely the proba-
bility of an edge between any two nodes in the su-
pernode(s) associated with the block. This param-
eter is a real number, and by standard information-
theoretic arguments we need 1

2 log n2 = log n bits to
encode it. Since there are k2 such parameters, the
cost of their description sums up to k2 log n bits.

Therefore, the total number of bits required to
encode the model is

B
(
A

)
= n log n + (k − 1) log n + k2 log n

= (n + k2 + k − 1) log n.(4.4)

Putting it all together: Using the standard MDL
methodology, we define our problem as that of finding
the model S (or A) such that the minimum total number
of bits is used. This is formalized in the following
problem definition.

Problem 2. Given input graph G(V,E) with adjacency
matrix A, find a summary S of this graph with expected
adjacency matrix A such that the total number of bits

Tb
(
A

)
= B

(
A

)
+ B

(
A|A

)
(4.5)

is minimized.

4.2 Privacy Problem (k-CGs) In the k-CGs prob-
lem we still want to find the graph summary that mini-
mizes the reconstruction error. However, the difference
between this and the k-Gs problem is that we restrict
the graph summary so that all supernodes in the sum-
mary must contain at least k nodes from the original
graph.4

The k-CGs problem is formalized as follows. This
formalizes the k-anonymity requirement [30, 31] on
graphs; every node in the original graph must be hidden
in the anonymity of the supernode to which it belongs.
At the same time, we seek to maximize the utility of the
anonymized graph.

Problem 3. Given input graph G(V,E) and integer k,
find a summary graph S for G with supernodes V such
that Re (G | S) is minimized and for every V ′ ∈ V
|V ′| ≥ k.

4The parameter k is given as input to the problem; note that
the semantics is different from the semantics of parameter k in
the k-Gs problem!



5 Algorithms

In this section we give algorithms for Problems 1, 2
and 3. Note that for Problems 1 and 2 we are going
to use the same Greedy algorithm. On the other hand,
our algorithmic solution to Problem 3 is different.

5.1 Solving the k-Gs and Gs problems We start
by describing a natural greedy algorithm for Problems 1
and 2. The Greedy algorithm starts with a summary
graph in which each node is placed in a separate su-
pernode. In each step, it merges the two supernodes
that cause the largest reduction in the objective func-
tion. The algorithm repeats until a stopping condition
is met. For the k-Gs problem the stopping condition is
that the summary graph contains k super-nodes, while
for the Gs version of the problem the stopping condi-
tion states that there is no merging of super-nodes that
can improve the objective function Tb (Equation 4.5).

We give a detailed description of Greedy for when
the goal is to minimize the Re objective function. The
algorithm is identical when used to optimize objective
function Tb. As we mentioned before, the algorithm
proceeds in iterations. Originally, the summary graph
S0 is identical to the input graph. At the t-th step,
t super-nodes have been merged and summary graph
St with n − t + 1 nodes has been created. At each
step t the algorithm needs to perform two tasks: (a)
find the pair of super-nodes in St−1 such that summary
graph St generated after their merge has the property
that Re

(
A|At−1

)
− Re

(
A|At

)
is maximum and (b)

actually perform the merge of the right pair of nodes
and update summary St−1 to summary St.

Step (a) requires going through all pairs of nodes
in St−1 and computing from scratch the reduction in
Re that their merge would cause.5 This can be naively
done in O(n3) time, since one has to go through all pairs
of super-nodes (O(n2)) and for each such pair compute
the total reduction in cost function Re. This latter
step can be done, with the right bookkeeping, in O(n)
time. Step (b) requires updating St−1 to St by simply
removing the two individual super-nodes that have been
merged and adding the new super-node that results
form the merging. Thus, the time required for step
(b) is just O(n) since both the old super-nodes that are
removed and the new super-node that is added can have
at most O(n) neighbors. Therefore, the total running
time of the above implementation of steps (a) and (b)
is O(n3 + n) = O(n3). For the k-Gs problem, steps (a)
and (b) need to be repeated n−k+1 times, so the total
running time of the algorithm is O(n4). Apparently,

5The reduction in the value of Re can be both positive or
negative.

this running time is prohibitive for large datasets. The
algorithms described in the next two subsections aim at
reducing this running time.

5.1.1 The SamplePairs algorithm As for the
Greedy algorithm, we describe the SamplePairs algo-
rithm for the k-Gs problem and the Re optimization
function.

In fact, the SamplePairs algorithm is an instance
of the Greedy algorithm. Thus, SamplePairs also
proceeds in rounds. At every round t a summary St

is constructed by merging two supernodes of the St−1

summary. The pair of supernodes to be merged are the
ones that after merging, they cause the smallest increase
(or the largest reduction) in the objective function. The
only difference here is that not all pairs of supernodes
are checked for the impact that their merge causes in
the optimization function. Instead, in every iteration
t, a sample P (t) of the supernode pairs are selected
uniformly at random. The pair in P (t) that increases
the least (or decreases the most) the objective function
is picked. The next iteration is executed analogously by
picking a new set of candidate supernodes for merging.

By following the same line of thought as before
in the running-time analysis we have that the running
time of the SamplePairs algorithm is O

(
|P (t)|n2

)
.

Therefore, if we pick a constant number of pairs in
every round K, the running time of the SamplePairs
algorithm is quadratic to the number of nodes in the
input graph.

Alternatively, at every iteration t we may sample
pairs P (t) with cardinality proportional to the number
of supernodes n(t) in the graph summary at iteration
t: |P (t)| = c · (n(t)). In this case, the running time
is O

(
n3

)
, which is still an improvement to the Greedy

algorithm.

5.1.2 The LinearCheck algorithm The
LinearCheck algorithm is similar in spirit to the
SamplePairs algorithm. Recall that in SamplePairs,
at every iteration t, P (t) pairs of supernodes were sam-
pled as candidates for merging. In the LinearCheck
algorithm, at every iteration t, a single supernode Vt is
picked uniformly at random among all the supernodes
in summary St−1. Then, the gain in the objective
function obtained by merging Vt with any of the
supernodes in St−1 is evaluated. The merge with the
best gain is picked and the summary St is constructed.

By following the analysis of the previous two al-
gorithms it is easy to see that the worst-case running
time of the LinearCheck algorithm is O

(
n3

)
. However,

note that in this case, as well as in the Greedy and
SamplePairs algorithms these are all worst-case run-



ning times. In practice, depending on the number of
neighbors of each node in the graph the running time
of the algorithms is much less than the corresponding
worst-case bounds.

5.2 Solving the k-CGs problem The algorithm we
use for solving the k-CGs problem is again an iterative
algorithm; we will call the algorithm Condense due to
its similarity to the condensation algorithm proposed by
Aggarwal and Yu for (non-graphical) tabular data [3].

Let Si be the summary graph when iteration i
starts. Also let V i be the set of original nodes that
have not yet been assigned to a supernode in Si. In
iteration i, the Condense algorithm randomly selects
a node v from V i, and forms a “ball” around v. This
ball, denoted by B(v), consists of k−1 other nodes from
V i, that are chosen so that when combined with v in a
supernode they cause the least increase in the current
value of the reconstruction error. On each iteration,
nodes B(v) ∪ {u} are added to the summary graph Si

as a new supernode.
At every step of the Condense algorithm the supern-

odes that are added to the summary have size exactly k.
If in the last iteration fewer than k nodes remain with-
out being assigned to a supernode, we assign them to
already existing supernodes. Tha assignment is done se-
quantially (in random order) so that the representation
error is minimized at each step.

Finally, on each iteration, we must find the ball
B(v) around node v that minimizes the increase in re-
construction error. This may not be a computationally
easy task. Thus, we use a simple greedy process for
forming balls around the nodes in the original graph.

6 Experimental Evaluation

6.1 Datasets We evaluated our proposed algorithms
using both real and synthetic graph data. The real data
sets were as follows:

• Authors: The first data set is an undirected co-
authorship graph. We studied the bibliographies
for VLDB, SIGMOD, and PODS available at the
Collection of Computer Science Bibliographies6 and
extracted the lists of authors from each paper. A
selection of papers with at least 2 authors yielded
3109 papers with a total of 9538 authors (nodes in the
graph). However, in some experiments, we reduced
the size of the graph by sampling a smaller subset of
the nodes.

• Italian Wikipedia: The second graph was extracted
from the link structure of the Italian-language version

6http://liinwww.ira.uka.de/bibliography/

of Wikipedia, and the full graph contains 15,000
nodes. While the original graph is directed, in all
of our experiments, we view the graph as undirected.

In addition, we constructed a synthetic data gen-
erator, which generates undirected graphs according to
two distributions:

• Uniform(n, d): The edges in these graphs are chosen
according to a uniform distribution based on a density
parameter d. That is, suppose we want to generate
a uniform graph with n nodes. Each of the n(n −
1) possible edges (no self-edges) is selected with
probability d.

• Barabasi-Albert(n, m0,m): These graphs are gen-
erated according to the procedure proposed by
Barabasi and Albert [8]. The graph begins with an
initial network of m0 nodes, and new nodes are added
one at a time. Each node is connected to m of the
existing nodes with probability proportional to the
number of links the node already has.

6.2 Algorithms for k-Gs and Gs Our first set of
experiments evaluates the algorithms that we proposed
for the k-Gs and Gs problems. (These problems
are the space-limited and MDL problem formulations,
respectively.)

6.2.1 Comparing Algorithms Our first set of
experiments compares the algorithms proposed for
these problems in Section 5.1 – SamplePairs, and
LinearCheck – in terms of resulting reconstruction er-
ror. Note that due to the high time complexity of the
Greedy algorithm, we did not run experiments using the
full enumeration of possible merges. However, we do
observe that as we increase parameter c, the results for
SamplePairs appear to converge. In addition, for the
sake of comparison, we include two other algorithms:
the first is a naive Random algorithm, which operates
in a bottom-up manner, and at each iteration selects
a random pair of nodes to merge. The second is a
state-of-the-art community detection algorithm called
FastGreedy [12]. This latter algorithm is designed to
solve a different problem; the one of detecting dense,
and relatively isolated components of the input graph.

Figures 5, 6, and 7 show our results for the Authors
data set (samples of size 500 and 5,000), and Italy data
set (sample of size 5000). Recall that the reconstruction
error intuitively measures the average absolute error
over all possible adjacency queries. As expected, the
LinearCheck and SamplePairs algorithms significantly
outperform Random, and within SamplePairs, as we
increase the value of c, the overall quality of the results
improve, appearing to near a point of convergence.
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Figure 5: k-Gs, Authors(500)
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Figure 6: k-Gs, Authors(5000)
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Figure 7: k-Gs, Italy(5000)
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Figure 8: k-Gs, Authors(500)
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Figure 9: k-Gs, Authors(500)
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Figure 10: k-Gs, Authors(500)

It is also interesting to observe that LinearCheck
and SamplePairs (c = 1) have the same time complex-
ity. However, in all of our experiments, SamplePairs
significantly outperformed LinearCheck. By not fixing
either of the supernodes to participate in the merge,
and instead selecting pairs at random, it appears that
we achieve a better (though still incomplete) exploration
of the space of possible merges during each iteration.

Finally, it is important to observe that our
algorithms yield smaller reconstruction errors than
FastGreedy, which indicates that it is important to con-
sider the problem formulation based on reconstruction
error in the case where the goal is accurate query an-
swering.

6.2.2 Querying Graph Summaries In addition to
reconstruction error, we conducted additional experi-
ments to understand the effects of summarization on
other kinds of queries and analyses.

The first set of experiments measured the average
absolute degree error across all nodes in the original
graph G(V,E). That is, if d(v) and d(v) denote the orig-
inal and expected responses, respectively, to the query
requesting the degree of node v, then we measure aver-
age error as 1

|V |
∑

vi∈V |d(vi)−d(vi)|. Figure 8 shows our
results for Authors(500). Clearly, SamplePairs reduces
the degree error substantially compared to Random. (We
also obtained similar results for the Italy dataset, but
they are omitted in the interest of space.)

The second set of experiments measured the average
absolute error in centrality score, also across all nodes
in G(V,E). Figure 9 shows results for Authors(500);
as expected, the results are proportional to those for
degree error.

Finally, while we have a closed-form solution for
computing the expected centrality score (Theorem 3.3),
we also consider (empirically) computing the related
PageRank score.7 An intuitive heuristic for computing
the expected PageRank score is to view the expected
adjacency matrix as a weighted graph, and, conceptu-
ally, use this as input. Figure 10 shows that, despite
the heuristic query evaluation semantics, use of clever
summarization algorithms is effective in reducing the
average PageRank error. (In Figure 10, we compute
PageRank for β = 0.85.)

6.2.3 Graph Compressibility Our final set of ex-
periments is intended to understand the degree to which
different kinds of graphs can be compressed using our
summarization scheme (Section 2). For these experi-
ments, we used synthetic data with varied generative
models and parameters.

The first experiment used uniform graphs with
varied density values. Intuitively, we expect that very
sparse graphs and very dense graphs will be the most
easily compressed. For example, consider a set of nodes

7PageRank [10] introduces an additional damping factor β.
PageRank is equivalent to eigenvector centrality when β = 1.0.
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Figure 11: k-Gs, Uniform(500)
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that constitute a connected component (or independent
set). If these edges are grouped together in the same
supernode, then there is no reconstruction error within
this supernode. Similarly, consider the nodes in two
supernodes s1 and s2. If every node in s1 is connected
to every node in s2 (or every node in s1 is not connected
to any node in s2), then there is no between-supernode
reconstruction error.

We confirmed this intuition experimentally. For
synthetic graphs consisting of 500 nodes each, Fig-
ures 11 and 12 show the reconstruction error for var-
ied numbers of supernodes. Each of these lines was
obtained using the SamplePairs algorithm (c = 5.0).
Clearly, the very sparse (density = 1%) and very dense
(density = 99%) graphs produce the least reconstruc-
tion error. (In fact, the symmetric pairs 1% and 10%;
25% and 75%; 10% and 90% were so similar that we
had to display the results in two separate graphs.) In
addition, Figure 13 shows, for varied density, the min-
imum value of TB (Equation 4.5), which measures the
cost in bits of encoding the summary and the data given
the summary. This also indicates that sparse and dense
graphs are the most compressible.

Finally, Figure 14 shows results comparing
Barabasi-Albert graphs and Uniform graphs. (Notice
that Barabasi(5) and Uniform(1%), Barabasi(50) and
Uniform(10%) each contain the same total number of
edges.) Our empirical results indicate that the uniform
graphs are somewhat more easily compressed.

6.3 Algorithms for k-CGs In this section, we eval-
uate our proposed algorithm for the k-CGs problem.
This problem is inspired by the k-anonymity require-
ment for graphs. Our proposed algorithm – Condense
– is described in Section 5.2.

To gage the effectiveness of our algorithm, we com-
pared it to a strawman. In this case, the strawman it-
eratively chooses a random group of k nodes from G,
and assigns these nodes to a single supernode. (At
the end, the final supernode will contain between k
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and 2k − 1 nodes from the original graph.) Figures 15
and 16 compare this strawman algorithm (Random) with
the Condense algorithm using the Authors(500) and
Italy(500) data sets, respectively. In each comparison,
we use several different values of k, which is the re-
quired minimum occupancy for a supernode. Clearly,
Condense outperforms Random.

7 Related work

Graph-partitioning and dense subgraph prob-
lems: Closely related to our work are problems asso-
ciated with graph partitioning, where an input graph
G(V,E) must be partitioned into k disjoint parts, ac-
cording to a certain optimization criterion. Several ver-
sions of this problem have been studied.8 The use of
eigenvectors for the purposes of partitioning was first
introduced by Donath and Hoffman in [14] and has been
studied extensively since. Although our problem seems
similar to existing graph-partitioning problems, our op-
timization function (reconstruction error) is different
from the standard optimization functions of previous
work.

Given G (V,E) the densest subgraph problem asks
for a subset V ′ ⊆ V of arbitrary size such that the
vertex-induced subgraph has maximum average degree.

8See http://en.wikipedia.org/wiki/Graph partitioning for
a short overview of such problems and references
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This problem can be solved in polynomial time using
flow techniques [17]. When the cardinality of the vertex
set |V ′| ≤ k is determined as part of the input, the
problem is NP-hard [15]. The fundamental difference
between this problem and our problem is that we want
to partition the graph rather than find a single subgraph
with maximum edge density.

Discovering communities: In practice, several in-
stances of graph-partitioning and dense-subgraph prob-
lems have arisen in the context of social networks and
the Web. The goal there has been to identify online
communities. For example, a practical algorithm for
finding large, dense subgraphs is presented in [19]. The
algorithm is based on shingles and has been success-
fully applied for studying the subgraph structure of the
Web. Algorithms for identifying communities have also
been proposed in [16, 18]. This line of research is rather
orthogonal to ours since either the communities identi-
fied by these algorithms do not define a partition of the
nodes or the optimization function different. A recent
line of research is related to a novel graph clustering in-
dex called modularity that has been recently proposed
in [28]. Algorithms for optimizing modularity of a par-
titioning have been proposed in [12, 29, 33, 35].

Graph compression: The problem of graph summa-
rization has also been considered recently [27, 32]. Al-
though the motivation of [27] is also to create condensed
representations of a graph using the MDL principle,
our setting is rather different. We deal with arbitrary
graphs, while [27] only compresses bipartite graphs.
The objective function in [27] is also different from ours.
Tian et al. [32] proposed two database-style aggregation
operations for specifying graph summaries, but did not
consider the problem of answering queries using these
summaries. Thus, the objective function in [32] is also
different from ours.

The most extensive literature for graph compression
comes from the studies related to the Web graph (see

for example [2, 9]: the goal in this work focuses on
finding compact Web-graph representations to be used
to compute PageRank [10] or other measures. Most of
this work, however, focuses on reducing the number of
bits required to encode a link between two pages and
not on constructing graph summaries that can be used
for structural discovery instead of the original graph.

Querying uncertain, incomplete and imprecise
data: Finally, significant classical and recent work
has focused on problems related to querying data that
is uncertain, incomplete, or imprecise [1, 4, 6, 11,
13, 21, 34]. A common approach to handling this
ambiguity is to define the semantics of important queries
in terms of possible worlds [1, 6]. For example, work
in probabilistic databases extends the relational data
model by associating an inclusion probability with each
tuple t, which is interpreted to mean that t appears
in this proportion of true database instances. A big
challenge is evaluating queries expressed in terms of this
and related data models [13, 34]. Other recent work
aims to capture data uncertainty and imprecision in
the OLAP data model and evaluating aggregate queries
[11].

8 Conclusion

In this paper, we proposed probabilistic semantics for
answering structural queries atop “coarsened” graph
summaries. Using this as motivation, we proposed
algorithms for finding high-quality, space-efficient and
privacy-preserving summaries.

There are several interesting opportunities for fu-
ture work. In particular, we are considering various
approaches for scaling our summarization algorithms to
large datasets and techniques for incrementally main-
taining a high-quality summary when new nodes are
inserted into underlying graph G. In addition, we are
considering extensions to our query answering semantics
that incorporate attribute values in addition to simple



graph topologies.
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