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Abstract

The sequence segmentation problem asks for a partition of the se-
quence into k non-overlapping segments that cover all data points
such that each segment is as homogeneous as possible. This
problem can be solved optimally using dynamic programming in
O(n2

k) time, where n is the length of the sequence. Given that
sequences in practice are too long, a quadratic algorithm is not an
adequately fast solution. Here, we present an alternative constant-
factor approximation algorithm with running time O(n4/3

k
5/3).

We call this algorithm the DNS algorithm. We also consider the
recursive application of the DNS algorithm, that results in a faster
algorithm (O(n log log n) running time) with O(log n) approxima-
tion factor, and study the accuracy/efficiency tradeoff. Extensive
experimental results show that these algorithms outperform other
widely-used heuristics. The same algorithms can speed up solu-
tions for other variants of the basic segmentation problem while
maintaining constant their approximation factors. Our techniques
can also be used in a streaming setting, with sublinear memory re-
quirements.

1 Introduction

Recently, there has been an increasing interest in the data-
mining community for mining sequential data. This is
due to the existence of abundance of sequential datasets
that are available for analysis, arising from applications in
telecommunications, stock-market analysis, bioinformatics,
text processing, click-stream mining and many more . The
main problem associated with the analysis of these datasets is
that they consist of huge number of data points. The analysis
of such data requires efficient and scalable algorithms.

A central problem related to time-series analysis is the
construction of a compressed and concise representation of
the data, so that it is handled efficiently. One commonly used
such representation is the piecewise-constant approximation.
A piecewise-constant representation approximates a time se-
ries T of length n using k non-overlapping and contiguous
segments that span the whole sequence. Each segment is
represented by a single (constant) point, e.g., the mean of the
points in the segment. We call this point the representative
of the segment, since it represents the points in the segment.
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The error in this approximate representation is measured us-
ing some error function, e.g. the sum of squares. Different
error functions may be used depending on the application.
Given an error function, the goal is to find the segmentation
of the sequence and the corresponding representatives that
minimize the error in the representation of the underlying
data. We call this problem a segmentation problem. Seg-
mentation problems, particularly for multivariate time series,
arise in many data mining applications, including bioinfor-
matics [5, 15, 17] and context-aware systems [10].

This basic version of the sequence-segmentation prob-
lem can be solved optimally in time O(n2k) using dynamic
programming [3], where n is the length of the sequence
and k the number of segments. This quadratic algorithm,
though optimal, is not satisfactory for data-mining applica-
tions where n is usually very large. In practice, faster heuris-
tics are used. Though the latter are usually faster (O(n log n)
or O(n)), there are no guarantees on the quality of the solu-
tions they produce.

In this paper, we present a new divide and seg-
ment (DNS) algorithm for the sequence segmentation prob-
lem. The DNS algorithm has sub-quadratic running time,
O(n4/3k5/3), and it is a 3-approximation algorithm for the
segmentation problem. That is, the error of the segmenta-
tion it produces is provably no more than 3 times that of
the optimal segmentation. Additionally, we explore several
more efficient variants of the algorithm and we quantify the
accuracy/efficiency tradeoff. More specifically, we define a
variant that runs in time O(n log log n) and has an O(log n)
approximation ratio. All algorithms can be made to use sub-
linear amount of memory, making them applicable to the
case that the data needs to be processed in an streaming fash-
ion. We also propose an algorithm that requires logarithmic
space, and linear time, albeit, with no approximation guar-
antees.

Extensive experiments on both real and synthetic
datasets demonstrate that in practice our algorithms per-
form significantly better than the worst-case theoretical up-
per bounds. It is often the case that the more efficient variants
of our algorithms are the ones that produce the best results,
even though they are inferior in theory. In many cases our al-
gorithms give results equivalent to the optimal algorithm. We
also compare our algorithms against different popular heuris-
tics that are known to work well in practice. Although these
heuristics output results of good quality our algorithms still



perform consistently better. This can often be achieved with
computational cost comparable to the cost of these heuristics.
Finally, we show that the proposed algorithms can be applied
to variants of the basic segmentation problem, like for exam-
ple the one defined in [7]. We show that for this problem we
achieve similar speedups for the existing approximation al-
gorithms, while maintaining constant approximation factors.

1.1 Related Work. There is a large body of work that pro-
poses and compares segmentation algorithms for sequential
(mainly time-series) data. The papers related to this topic
follow usually one of the following three trends: (i) Pro-
pose heuristic algorithms for solving a segmentation problem
faster than the optimal dynamic-programming algorithm.
Usually these algorithms are fast and perform well in prac-
tice. (ii) Devise approximation algorithms, with provable er-
ror bounds, and (iii) Propose new variations of the basic seg-
mentation problem. These variations usually impose some
constraint on the structure of the representatives of the seg-
ments. Our work lies in the intersection of categories (i) and
(ii) since we provide fast algorithms with bounded approx-
imation factors. At the same time, we claim that our tech-
niques can be used for solving problems proposed in cate-
gory (iii) as well.

The bulk of papers related to segmentations are in cat-
egory (i). Since the optimal algorithm for solving the se-
quence segmentation problem is quadratic, faster heuristics
that work well in practice are valuable. The most popular of
these algorithms are the top-down and the bottom-up greedy
algorithms. The first runs in time O(n) while the second
needs time O(n log n). Both these algorithms work well in
practice. In Section 5.1 we discuss them in detail, and we
evaluate them experimentally. Online versions of the seg-
mentation problems have also been studied [11, 16]. In this
case, new data points are coming in an online fashion. The
goal of the segmentation algorithm is to output a good seg-
mentation (in terms of representation error) at all points in
time. In some cases, like for example in [11], it is assumed
that the maximum tolerable error is also part of the input.

The most interesting work in category (ii) is presented
in [8]. The authors present a fast segmentation algorithm
with provable error bounds. Our work has similar motiva-
tion, but approaches the problem from a different point of
view.

Variations of the basic segmentation problem have been
studied extensively. In [7], the authors consider the problem
of partitioning a sequence into k contiguous segments under
the restriction that those segments are represented using only
h < k distinct representatives. We will refer to this problem
as the (k, h)-segmentation problem. Another restriction that
is of interest particularly in paleontological applications, is
unimodality. In this variation the representatives of the
segments are required to follow a unimodal curve, that is,

a curve that changes curvature only once. The problem of
finding unimodal segmentations is discussed in [9]. This
problem can be solved optimally in polynomial time, using
a variation of the basic dynamic-programming algorithm.

1.2 Roadmap. The rest of the paper is structured as fol-
lows. Section 2 provides the necessary definitions, and the
optimal dynamic-programming algorithm. In Section 3 we
describe the basic DNS algorithm, and we analyze its run-
ning time and approximation ratio. In Section 4 we consider
a recursive application of our approach, resulting in more ef-
ficient algorithms. Section 5 includes a detailed experimen-
tal evaluation of our algorithms, and comparisons with other
commonly used heuristics. Section 6 considers applications
of our techniques to other segmentation problems. We con-
clude the paper in Section 7.

2 Preliminaries

Let T = (t1, t2, . . . , tn) be a d-dimensional sequence of
length n with ti ∈ R

d, i.e., ti = (ti1, ti2, . . . , tid).
A k-segmentation S of a sequence of length n is a

partition of {1, 2, . . . , n} into k non-overlapping contiguous
subsequences (segments), S = {s1, s2, . . . , sk}. Each
segment si consists of |si| points. The representation of
sequence T when segmentation S is applied to it, collapses
the values of the sequence within each segment s into
a single value µs (e.g., the mean). We call this value
the representative of the segment, and each point t ∈
s is “represented” by the value µs. Collapsing points
into representatives results in less accuracy in the sequence
representation. We measure this loss in accuracy using
the error function Ep. Given a sequence T , the error of
segmentation S is defined as

Ep(T, S) =

(
∑

s∈S

∑

t∈s

|t − µs|p
) 1

p

.

We consider the cases where p = 1, 2. For simplicity, we
will sometimes write Ep(S) instead of Ep(T, S), when the
sequence T is implied.

The segmentation problem asks for the segmentation
that minimizes the error Ep. The representative of each
segment depends on p. For p = 1 the optimal representative
for each segment is the median of the points in the segment;
for p = 2 the optimal representative of the points in a
segment is their mean. Depending on the constraints one
imposes on the representatives, one can consider several
variants of the segmentation problem. We first consider
the basic k-segmentation problem, where no constraints are
imposed on the representatives of the segments. In Section 6
of the paper we consider the (k, h)-segmentation problem, a
variant of the k-segmentation problem defined in [7], where
only h distinct representatives can be used, for some h < k.



2.1 The segmentation problem. We now give a formal
definition of the segmentation problem, and we describe the
optimal algorithm for solving it. Let Sn,k denote the set
of all k-segmentations of sequences of length n. For some
sequence T , and for error measure Ep, we define the optimal
segmentation as

Sopt(T, k) = arg min
S∈Sn,k

Ep(T, S) .

That is, Sopt is the k-segmentation S that minimizes the
Ep(T, S). For a given sequence T of length n the formal
definition of the k-segmentation problem is the following:

PROBLEM 1. (OPTIMAL k-SEGMENTATION) Given a se-
quence T of length n, an integer value k, and the error func-
tion Ep, find Sopt(T, k).

Problem 1 is known to be solvable in polynomial time [3].
The solution consists of a standard dynamic-programming
(DP) algorithm and can be computed in time O(n2k). The
main recurrence of the dynamic-programming algorithm is
the following:

Ep(Sopt(T [1 . . . n] , k)) =(2.1)

minj<n {Ep (Sopt(T [1 . . . j] , k − 1))

+Ep (Sopt(T [j + 1, . . . , n] , 1))} .

where T [i . . . , j] denotes the subsequence of T that contains
all points in positions from i to j, with i, j included. We
note that the dynamic-programming algorithm can also be
used in the case of weighted sequences, where each point is
associated with a weight. Then the representatives (mean
or median) are defined to be the weighted representatives
(weighted mean or median).

3 Divide and Segment for the k-segmentation problem

3.1 DIVIDE&SEGMENT algorithm. In this section we de-
scribe the DIVIDE&SEGMENT (DNS) algorithm for Prob-
lem 1. The algorithm is faster than the standard dynamic-
programming algorithm and its approximation factor is con-
stant. The main idea of the algorithm is to divide the problem
into smaller subproblems, solve the subproblems optimally
and combine their solutions to form the final solution. The
recurrence 2.1 is a building component of DNS. The output
of the algorithm is a k-segmentation of the input sequence.
Algorithm 1 shows the outline of DNS. In step 1, the in-
put sequence T is partitioned into χ disjoint subsequences.
Each one of them is segmented optimally using dynamic pro-
gramming. For subsequence Ti, the output of this step is a
segmentation Si of Ti and a set Mi of k weighted points.
These are the representatives of the segments of segmenta-
tion Si, weighted by the length of the segment they repre-
sent. All the χk representatives of the χ subsequences are

concatenated to form the (weighted) sequence T ′. Then the
dynamic-programming algorithm is applied on T ′. The k-
segmentation of T ′ is output as the final segmentation.

Algorithm 1 The DNS algorithm
Input: Sequence T of n points, number of segments k,

value χ.
Ouput: A segmentation of T into k segments.

1: Partition T into χ disjoint intervals T1, . . . , Tχ.
2: for all i ∈ {1, . . . , χ} do
3: (Si, Mi) = DP(Ti, k)
4: end for
5: Let T ′ = M1 ⊕M2 ⊕· · ·⊕Mχ be the sequence defined

by the concatenation of the representatives, weighted by
the length of the interval they represent.

6: Return the optimal segmentation of (S,M ) of T ′ using
the dynamic programming algorithm.

The following example illustrates the execution of DNS.

EXAMPLE 1. Consider the time series of length n = 20 that
is shown in Figure 3.1. We show the execution of the DNS
algorithm for k = 2 and using χ = 3. In step 1 the sequence
is divided into three disjoint and contiguous intervals T1, T2

and T3. Subsequently, the dynamic-programming algorithm
is applied to each one of those intervals. The result of this
are the six weighted points on which dynamic-programming
is applied again. For this input sequence, the output 2-
segmentation found by the DNS algorithm is the same as the
optimal segmentation.

The running time of the algorithm is easy to analyze.

THEOREM 3.1. The running time of the DNS algorithm is
at most O(n4/3k5/3) for χ = (n

k )2/3.

Proof. Assume that DNS partitions T into χ equal-length
intervals. The running time of the DNS algorithm as a
function of χ is

R(χ) = χ

(
n

χ

)2

k + (χk)2k

=
n2

χ
k + χ2k3.

The minimum of function R(χ) is achieved when χ0 =
(

n
k

) 2

3 and this gives R(χ0) = 2n4/3k5/3. �

Throughout this paper we assume that the representative
of each segment can be computed in constant time in the
dynamic-programming subroutine of the algorithm. For the
E2-error function, it is possible to compute the mean in
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Figure 1: Illustration of the DNS algorithm

constant time by storing the partial sums of squares and
squares of partial sums. For the E1-error function, we are
not aware of any method that computes the median of the
segment in constant time. In the sequel, we assume that in
this case a preprocessing step of computing medians of all
possible segments is performed.

We note that the DNS algorithm can also be used in
the case where the data must be processed in a streaming
fashion. Assuming that we have an estimate of the size of
the sequence n, then the algorithm processes the points in
batches of size n/χ. For each such batch it computes the
optimal k-segmentation, and stores the representatives. The
space required is M(χ) = n/χ + χk. This is minimized for
χ =

√
n/k, resulting in space M = 2

√
nk.

3.1.1 Analysis of the DNS algorithm. For the proof of the
approximation factor of the DNS algorithm we first make the
following observation.

OBSERVATION 1. Let Si = Sopt(Ti, k) for i = 1, . . . χ, and
Sopt = Sopt(T, k). If t is the representative assigned to point
t ∈ T by segmentation Si after the completion of the for loop
(Step 2) of the DNS algorithm, then we have

∑

t∈T

dp(t, t)
p =

χ∑

i=1

Ep (Ti, Si)
p ≤ Ep (T, Sopt)

p .

Proof. For each interval Ti consider the segmentation points
of Sopt that lie within Ti. These points together with the
starting and ending points of interval Ti define a segmen-
tation of Ti into k′

i segments with k′
i ≤ k. Denote this

segmentation by S ′
i. Then for every interval Ti and its cor-

responding segmentation S ′
i defined as above we have that:

Ep(Ti, Si) ≤ Ep(Ti, S
′
i). This is true since Si is the optimal

k-segmentation for subsequence Ti and k′
i ≤ k. Thus we

have

Ep (Ti, Si)
p ≤ Ep (Ti, S

′
i)

p
.

Summing over all Ti’s we get

∑

t∈T

dp(t, t)
p =

χ∑

i=1

Ep (Ti, Si)
p

≤
χ∑

i=1

Ep (Ti, S
′
i)

p

= Ep (T, Sopt)
p .

�

We now prove the approximation factors for E1 and E2

error measures.



THEOREM 3.2. For a sequence T and error measure E1

let OPT1 = E1(Sopt(T, k)) be the E1-error for the optimal
k-segmentation. Also let DNS1 be the E1-error for the k-
segmentation output by the DNS algorithm. We have that
DNS1 ≤ 3 · OPT1.

Proof. Let S be the segmentation of sequence T output by
the DNS(T, k, χ) algorithm, and let µt be the representative
assigned to some point t ∈ T in S. Also, let λt denote the
representative of t in the optimal segmentation Sopt(T, k).
The E1-error of the optimal segmentation is

OPT1 = E1(Sopt(T, k)) =
∑

t∈T

d1(t, λt) .

The E1 error of the DNS algorithm is given by

DNS1 = E1(T, S) =
∑

t∈T

d1(t, µt).

Now let t be the representative of the segment to which point
t is assigned after the completion of the for loop in Step 2 of
the DNS algorithm. Due to the optimality of the dynamic-
programming algorithm in Step 4 of the algorithm we have

∑

t∈T

d1(t, µt) ≤
∑

t∈T

d1(t, λt) .(3.2)

We can now obtain the desired result as follows

DNS1 =
∑

t∈T

d1(t, µt)

≤
∑

t∈T

(
d1(t, t) + d1(t, µt)

)
(3.3)

≤
∑

t∈T

(
d1(t, t) + d1(t, λt)

)
(3.4)

≤
∑

t∈T

(
d1(t, t) + d1(t, t) + d1(t, λt)

)
(3.5)

≤ 2 ·
∑

t∈T

d1(t, λt) +
∑

t∈T

d1(t, λt)(3.6)

= 3 · OPT1 .

Inequalities 3.3 and 3.5 follow from the triangular inequality,
inequality 3.4 follows from Equation 3.2, and inequality 3.6
follows from Observation 1. �

Next we prove the 3-approximation result for E2. For
this, we need the following simple fact.

FACT 3.1. (DOUBLE TRIANGULAR INEQUALITY) Let d be
a distance metric. Then for points x, y and z and p ∈ N

+ we
have

d(x, y)2 ≤ 2 · d(x, z)2 + 2 · d(z, y)2 .

THEOREM 3.3. For a sequence T and error measure E2

let OPT2 = E2(Sopt(T, k)) be the E2-error for the optimal
k-segmentation. Also let DNS2 be the E2-error for the k-
segmentation output by the DNS algorithm. We have that
DNS2 ≤ 3 · OPT2.

Proof. Consider the same notation as in Theorem 3.2. The
E2 error of the optimal dynamic-programming algorithm is

OPT2 = E2(Sopt(T, k)) =

√∑

t∈T

d2(t, λt)2 .

Let S be the output of the DNS(T, k, χ) algorithm. The error
of the DNS algorithm is given by

DNS2 = E2(T, S) =

√∑

t∈T

d2(t, µt)2 .

The proof continues along the same lines as the proof
of Theorem 3.2 but uses Fact 3.1 and Cauchy-Schwartz
inequality.

Using the triangular inequality of d2 we get

DNS2
2 =

∑

t∈T

d2(t, µt)
2

≤
∑

t∈T

(
d2(t, t) + d2(t, µt)

)2

=
∑

t∈T

d2(t, t)
2 +

∑

t∈T

d2(t, µt)
2

+2 ·
∑

t∈T

d2(t, t) · d2(t, µt) .

From Observation 1 we have that

∑

t∈T

d2(t, t)
2 ≤

∑

t∈T

d2(t, λt)
2 = OPT2

2 .

Using the above inequality, the optimality of dynamic pro-
gramming in Step 4 of the algorithm, and Fact 3.1 we have

∑

t∈T

d2(t, µt)
2 ≤

∑

t∈T

d2(t, λt)
2

≤ 2 ·
∑

t∈T

(
d2(t, t)

2 + d2(t, λt)
2
)

≤ 4 ·
∑

t∈T

d2(t, λt)
2

= 4 · OPT2
2 .



Finally using the Cauchy-Schwartz inequality we get

2 ·
∑

t∈T

d2(t, t) · d2(t, µt) ≤ 2 ·
√∑

t∈T

d2(t, t)2

·
√∑

t∈T

d2(t, µt)2

≤ 2 ·
√

OPT2
2 ·
√

4 · OPT2
2

= 4 · OPT2
2 .

Combining all the above we conclude that

DNS2
2 ≤ 9 · OPT2

2 .

�

4 Recursive DNS algorithm

The DNS algorithm applies the “divide-and-segment” idea
once, splitting the sequence into subsequences, partitioning
each of subsequence optimally, and then merging the results.
We now consider the recursive DNS algorithm (RDNS)
which recursively splits each of the subsequences, until no
further splits are possible. Algorithm 2 shows the outline of
the RDNS algorithm.

Algorithm 2 The RDNS algorithm
Input: Sequence T of n points, number of segments k,

value χ.
Ouput: A segmentation of T into k segments.

1: if |T | ≤ B then
2: Return the optimal partition (S,M ) of T using the

dynamic-programming algorithm.
3: end if
4: Partition T into χ intervals T1, . . . , Tχ.
5: for all i ∈ {1, . . . , χ} do
6: (Si, Mi) = RDNS(Ti, k, χ)
7: end for
8: Let T ′ = M1 ⊕M2 ⊕· · ·⊕Mχ be the sequence defined

by the concatenation of the representatives, weighted by
the length of the interval they represent.

9: Return the optimal partition (S,M ) of T ′ using the
dynamic-programming algorithm.

The value B is a constant that defines the base case for
the recursion. Alternatively, one could directly determine
the depth ` of the recursive calls to RDNS. We will refer to
such an algorithm, as the `-RDNS algorithm. For example,
the simple DNS algorithm, corresponds to the 1-RDNS
algorithm. We also note that at every recursive call of the
RDNS algorithm the number χ of intervals into which we
partition the sequence may be a function of sequence length.
However, for simplicity we use χ instead of χ(n).

As a first step in the analysis of the RDNS we consider
the approximation ratio of the `-RDNS algorithm. We can
prove the following theorem.

THEOREM 4.1. The `-RDNS algorithm is an O(2`) approx-
imation algorithm for the E1-error function, and an O(6`/2)
approximation algorithm for the E2-error function, with re-
spect to Problem 1.

Proof. (Sketch) The proof in both cases follows by induction
on the value of `. The exact approximation ratio is 2`+1 − 1

for E1, and
√

9

5
6` − 4

5
for E2. We will sketch the proof for

E1. The proof for E2 follows along the same lines.
From Theorem 3.2, we have that the theorem is true

for ` = 1. Assume now that it is true for some ` ≥ 1.
We will prove it for ` + 1. At the first level of recursion
the (` + 1)-RDNS algorithm, breaks the sequence T into χ
subsequences T1, . . . , Tχ. For each one of these we call the
`-RDNS algorithm, producing a set R of χk representatives.
Similar to the proof of Theorem 3.2, let t̄ ∈ R denote the
representative in R that corresponds to point t. Consider also
the optimal segmentation of each of these intervals, and let
O denote the set of χk representatives. Let t̃ ∈ O denote the
representative of point t in O. From the inductive hypothesis
we have that

∑

t∈T

d1(t, t̄) ≤
(
2`+1 − 1

)∑

t∈T

d1(t, t̃)

Now let µt be the representative of point t in the
segmentation output by the (` + 1)-RDNS algorithm. Also
let λt denote the representative of point t in the optimal
segmentation. Let RDNS1 denote the E1-error of the (`+1)-
RDNS algorithm, and OPT1 denote the E1-error of the
optimal segmentation. We have that

RDNS1 =
∑

t∈T

d1(t, µt) and OPT1 =
∑

t∈T

d1(t, λt)

From the triangular inequality we have that

∑

t∈T

d1(t, µt) ≤
∑

t∈T

d1(t, t̄) +
∑

t∈T

d1(t̄, µt)

≤
(
2`+1 − 1

)∑

t∈T

d1(t, t̃) +
∑

t∈T

d1(t̄, µt)

From Observation 1, and Equation 3.2, we have that

∑

t∈T

d1(t, t̃) ≤
∑

t∈T

d1(t, λt)

∑

t∈T

d1(t̄, µt) ≤
∑

t∈T

d1(t̄, λt)



Using the above inequalities and the triangular inequality we
obtain

RDNS1 =
∑

t∈T

d1(t, µt)

≤
(
2`+1 − 1

)∑

t∈T

d1(t, λt) +
∑

t∈T

d1(t̄, λt)

≤
(
2`+1 − 1

)∑

t∈T

d1(t, λt)

+
∑

t∈T

d1(t, t̄) +
∑

t∈T

d1(t, λt)

≤ 2`+1
∑

t∈T

d1(t, λt) +
(
2`+1 − 1

)∑

t∈T

d1(t, t̃)

≤
(
2`+2 − 1

)∑

t∈T

d1(t, λt)

=
(
2`+2 − 1

)
OPT1

The proof for the E2 follows similarly. Instead of using
the binomial identity as in the proof of Theorem 3.3, we
obtain a more clean recursive formula for the approximation
error by applying the double triangular inequality. �

We now consider possible values for χ. First, we set χ
to be a constant. We can prove the following theorem.

THEOREM 4.2. For any constant χ the running time of the
RDNS algorithm is O(n), where n is the length of the input
sequence. The algorithm can operate on data that arrive in
streaming fashion using O(log n) space.

Proof. (Sketch) The running time of the RDNS algorithm is
given by the following recursion

R(n) = χR

(
n

χ

)
+ (χk)2k.

Solving the recursion we get that R(n) = O(n).
In a case that the data arrive in a stream, the algorithm

can build the recursion tree online, in a bottom-up fashion.
At each level of the recursion tree, we only need to maintain
at most χk entries that correspond to the leftmost branch of
the tree. The depth of the recursion is O(log n), resulting in
O(log n) space overall. �

Therefore, for constant χ, we obtain an efficient algo-
rithm, both in time and space. Unfortunately, we do not
have any approximation guarantees, since the best approx-
imation bound we can prove using Theorem 4.1 is O(n). We
can however obtain significantly better approximation guar-
antees if we are willing to tolerate a small increase in the
running time. We set χ =

√
n, where n is the length of

the input sequence at each specific recursive call. That is, at
each recursive call we split the sequence into

√
n pieces of

size
√

n.

THEOREM 4.3. For χ =
√

n the RDNS algorithm is an
O(log n) approximation algorithm for Problem 1 for both
E1 and E2 error functions. The running time of the algo-
rithm is O(n log log n), using O(

√
n) space, when operating

in a streaming fashion.

Proof. (Sketch) It is not hard to see that after ` recursive calls
the size of the input segmentation is O(n1/2

`

). Therefore,
the depth of the recursion is O(log log n). From Theorem 4.1
we have that the approximation ratio of the algorithm is
O(log n). The running time of the algorithm is given by the
recurrence

R(n) =
√

nR
(√

n
)

+ nk3.

Solving the recurrence we obtain running time
O(n log log n). The space required is bounded by the
size of the top level of the recursion, and it is O(

√
n). �

The following corollary is an immediate consequence
of the proof of Theorem 4.3 and it provides an accu-
racy/efficiency tradeoff.

COROLLARY 4.1. For χ =
√

n, the `-RDNS algorithm is
an O(2`) approximation algorithm for the E1-error function,
and an O(6`/2) approximation algorithm for the E2-error
function, with respect to Problem 1. The running time of the
algorithm is O(n1+1/2

`

+ n`).

5 Experiments

5.1 Segmentation heuristics. Since sequence segmenta-
tion is a basic problem particularly in time-series analysis
several algorithms have been proposed in the literature with
the intention to improve the running time of the optimal
dynamic-programming algorithm. These algorithms have
been proved very useful in practice, however no approxi-
mation bounds are known for them. For completeness we
briefly describe them here.

The TOP-DOWN greedy algorithm (TD) starts with
the unsegmented sequence (initially there is just a single
segment) and it introduces a new boundary at every greedy
step. That is, in the i-th step it introduces the i-th segment
boundary by splitting one of the existing i segments into two.
The new boundary is selected in such a way that it minimizes
the overall error. No change is made to the existing i − 1
boundary points. The splitting process is repeated until the
number of segments of the output segmentation reaches k.
This algorithm, or variations of it with different stopping
conditions are used in [4, 6, 14, 18]. The running time of
the algorithm is O(nk).

In the BOTTOM-UP greedy algorithm (BU) initially
each point forms a segment on its own. At each step, two
consecutive segments that cause the smallest increase in the
error are merged. The algorithm stops when k segments
are formed. The complexity of the bottom-up algorithm is



O(n log n). BU performs well in terms of error and it has
been used widely in time-series segmentation [9, 16].

The LOCAL ITERATIVE REPLACEMENT (LiR) and
GLOBAL ITERATIVE REPLACEMENT (GiR) are randomized
algorithms for sequence segmentations proposed in [10].
Both algorithms start with a random k-segmentation. At
each step they pick one segment boundary (randomly or in
some order) and search for the best position to put it back.
The algorithms repeat these steps until they converge, i.e.,
they cannot improve the error of the output segmentation.
The two algorithms differ in the types of replacements of the
segmentation boundaries they are allowed to do. Consider
a segmentation s1, s2, . . . , sk. Now assume that both (LiR)
and (GiR) pick segment boundary si for replacement. LiR is
only allowed to put a new boundary between points si−1 and
si+1. On the other hand, GiR is allowed to put a new seg-
ment boundary anywhere on the sequence. Both algorithms
run in time O(In), where I is the number of iterations nec-
essary for convergence.

Although extensive experimental evidence shows that
these algorithms perform well in practice, there is no known
guarantee of their worst-case error ratio.

5.2 Experimental setup. We show the qualitative perfor-
mance of the proposed algorithms via an extensive experi-
mental study. For this, we compare the family of “divide-
and-segment” algorithms with all the heuristics described in
the previous subsection. We also explore the quality of the
results given by RDNS compared to DNS for different pa-
rameters of the recursion (i.e., number of recursion levels,
value of χ).

For the study we use two types of datasets: (a) synthetic
and (b) real data. The synthetic data are generated as follows:
First we fix the dimensionality d of the data. Then we
select k segment boundaries, which are common for all the
d dimensions. For the j-th segment of the i-th dimension
we select a mean value µij , which is uniformly distributed
in [0, 1]. Points are then generated by adding a noise value
sampled from the normal distribution N (µij , σ

2). For the
experiments we present here we have fixed the number of
segments k = 10. We have generated datasets with d =
1, 5, 10, and standard deviations varying from 0.05 to 0.9.

The real datasets were downloaded from the UCR time-
series data mining archive [12]1.

5.3 Performance of the DNS algorithm. Figures 2 and 3
show the performance of different algorithms for the syn-
thetic datasets. In particular we plot the error ratio A

OPT
for

A being the error of the solutions found by the algorithms
DNS, BU, TD, LiR and GiR. OPT represents the error of the

1The interested reader can find the datasets at
http://www.cs.ucr.edu/∼eamonn/TSDMA/.

optimal solution. The error ratio is shown as a function of the
number of segments (Figure 2), or the variance of the gen-
erated datasets (Figure 3). In all cases, the DNS algorithm
consistently outperforms all other heuristics, and the error it
achieves is very close to that of the optimal algorithm. Note
that in contrast to the steady behavior of DNS the quality of
the results of the other heuristics varies for the different pa-
rameters and no conclusions on their behavior on arbitrary
datasets can be drawn.

This phenomenon is even more pronounced when we
experiment with real data. Figure 4 is a sample of similar
experimental results obtained using the datasets balloon,
darwin, winding, xrates and phone from the UCR repository.
The DNS performs extremely well in terms of accuracy, and
it is again very robust across different datasets for different
values of k. Overall, GiR performs the best among the rest
of the heuristics. However, there are cases (e.g., the balloon
dataset) where GiR is severely outperformed.

5.4 Exploring the benefits of the recursion. We addi-
tionally compare the basic DNS algorithm with different
versions of RDNS. The first one, FULL-RDNS (full recur-
sion), is the RDNS algorithm when we set the value of χ
to be a constant. This algorithm runs in linear time (see
Theorem 4.2). However, we have not derived any approx-
imation bound for it (other than O(n)). The second one,
SQRT-RDNS, is the RDNS algorithm when we set χ to be√

n. At every recursive call of this algorithm the parental
segment of size s is split into O(

√
s) subsegments of the

same size. This variation of the recursive algorithm runs in
time O(n log log n) and has approximation ratio O(log n)
(see Theorem 4.3). We study experimentally the tradeoffs
between the running time and the quality of the results ob-
tained using the three different alternatives of “divide-and-
segment” methods on synthetic and real datasets. We also
compare the quality of those results with the results obtained
using GiR algorithm. We choose this algorithm for compar-
ison since it has proved to be the best among all the other
heuristics. In Figures 5 and 6 we plot the error ratios of the
algorithms as a function of the number of segments and the
variance for the synthetic datasets. Figure 7 shows the ex-
periments on real datasets.

From the results we can make the following observa-
tions. First, all the algorithms of the divide-and-segment
family perform extremely well, giving results close to the
optimal segmentation and usually better than the results ob-
tained by GiR. The full recursion (FULL-RDNS) does harm
the quality of the results. However, we note that in order
to study the full effect of recursion on the performance of
the algorithm we set χ = 2, the minimum possible value.
We believe that for larger values of χ the performance of
FULL-RDNS will be closer to that of DNS (for which we
have χ = (n/k)2/3). Finally, there are cases where SQRT-
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Figure 2: Error ratio of different algorithms with respect to OPT as a function of the number of segments
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Figure 3: Error ratio of different algorithms with respect to OPT as a function of the variance of the generated datasets
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Figure 4: Error ratio of different algorithms with respect to OPT as a function of the number of segments for different real
datasets
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RDNS (and in some settings FULL-RDNS) performs even
better than simple DNS. This phenomenon is due to the dif-
ference in the number and the positions of the splitting points
the two algorithms pick for the division step. It appears that,
in some cases, performing more levels of recursion helps the
algorithm identify better segment boundaries, and thus pro-
duce segmentations of lower cost.

Figure 8 shows how the error of the segmentation output
by `-RDNS changes for different number of recursion levels,
for four real datasets (balloon, darwing, phone and winding).
Note that even for 5 levels of recursion the ratio never
exceeds 1.008.

6 Applications to other segmentation problems

Here, we discuss the application of the simple DNS algo-
rithm for a variant of the k-segmentation problem, namely
the (k, h)-segmentation [7]. Similar to the k-segmentation,
the (k, h)-segmentation of sequence T asks again for a par-
tition of T in k segments. The main difference is that now
the representatives of each segment are not chosen indepen-
dently. In the (k, h)-segmentation only h < k distinct rep-
resentatives can be used to represent the k segments. We
have picked this problem to demonstrate the usefulness of
the DNS algorithm because of the applicability of (k, h)-
segmentation to the analysis of long genetic sequences. For
that kind of analysis, efficient algorithms for the (k, h)-
segmentation problem are necessary.

Let S be a (k, h)-segmentation of the sequence T . For
each segment s of the segmentation S, let `s be the represen-
tative for this segment (there are at most h representatives).
The error Ep of the (k, h)-segmentation is defined as follows

Ep (T, S) =

(
∑

s∈S

∑

t∈s

|t − `s|p
) 1

p

.

Let Sn,k,h denote the family of all segmentations of se-
quences of length n into k segments using h representatives.
In a similar way to the k-segmentation, for a given sequence
T of length n and error measure Ep, and for given k, h ∈ N

with h < k, the optimal (k, h)-segmentation is defined as

(6.7) Sopt(T, k, h) = arg min
S∈Sn,k,h

Ep (T, S) .

Therefore, the optimal (k, h)-segmentation is defined as
follows:

PROBLEM 2. (OPTIMAL (k, h)-SEGMENTATION) Given a
sequence T of length n, integer values k and h with h <
k ≤ n and error function Ep, find Sopt(T, k, h).

6.1 Algorithms for the (k, h)-segmentation problem
The (k, h)-segmentation problem is known to be NP-Hard
for d ≥ 2 and h < k, since it contains clustering as its special
case [7]. Approximation algorithms, with provable approxi-
mation guarantees are presented in [7] and their running time
is O(n2(k + h)). We now discuss two of the algorithms pre-
sented in [7]. We subsequently modify these algorithms, so
that they use the DNS algorithm as their subroutine.
Algorithm SEGMENTS2LEVELS: The algorithm initially
solves the k-segmentation problem obtaining a segmentation
S. Then it solves the (n, h)-segmentation problem obtaining
a set L of h levels. Finally, the representative µs of each
segment s ∈ S is assigned to the level in L that is the closest
to µs.
Algorithm CLUSTERSEGMENTS: As before, the algorithm
initially solves the k-segmentation problem obtaining a seg-
mentation S. Each segment s ∈ S is represented by its
representative µs weighted by the length of the segment |s|.
Finally, a set L of h levels is produced by clustering the k
weighted points into h clusters.

6.2 Applying DNS to the (k, h)-segmentation problem
Step 1 of both SEGMENTS2LEVELS and CLUSTERSEG-
MENTS algorithms uses the optimal dynamic-programming
algorithm for solving the k-segmentation problem. Using
DNS instead we can achieve the following approximation
results:

THEOREM 6.1. If algorithm SEGMENTS2LEVELS uses
DNS for obtaining the k-segmentation, and the cluster-
ing step is done using an α approximation algorithm, then
the overall approximation factor of SEGMENTS2LEVELS is
(6 + α) for both E1 and E2-error measures.

When the data points are of dimension 1 (d = 1) then clus-
tering can be solved optimally using dynamic programming
and thus the approximation factor is 7 for both E1 and E2

error measures. For d > 1 and for both E1 and E2 error
measures the best α is 1 + ε using the algorithms proposed
in [1] and [13] respectively.

THEOREM 6.2. Algorithm CLUSTERSEGMENTS that uses
DNS in for obtaining the k-segmentation, has approximation
factor

√
29 for E2-error measure, and 11 for E1-error

measure.
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Figure 5: Error ratio of DNS and RDNS algorithms with respect to OPT for synthetic datasets.

0 0.2 0.4 0.6 0.8 1
1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009
Synthetic Datasets; d = 1; k = 10

Variance

E
ro

r 
R

at
io

DnS
Sqrt−RDnS
Full−RDnS
GiR

0 0.2 0.4 0.6 0.8 1
1

1.001

1.002

1.003

1.004

1.005

1.006

1.007
Synthetic Datasets; d = 5; k = 10

Variance

E
ro

r 
R

at
io

DnS
Sqrt−RDnS
Full−RDnS
GiR

0 0.2 0.4 0.6 0.8 1
1

1.0005

1.001

1.0015

1.002

1.0025
Synthetic Datasets; d = 10; k = 10

Variance

E
ro

r 
R

at
io

DnS
Sqrt−RDnS
Full−RDnS
GiR

Figure 6: Error ratio of DNS and RDNS algorithms with respect to OPT for synthetic datasets.
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Figure 7: Error ratio of DNS and RDNS algorithms with respect to OPT for real datasets



Notice that the clustering step of the CLUSTERSEGMENTS

algorithm does not depend on n and thus one can assume
that clustering can be solved optimally in constant time,
since usually k << n. However, if this step is solved
approximately using the clustering algorithms of [1] and
[13], the approximation ratios of the CLUSTERSEGMENTS

algorithm that uses DNS for segmenting, becomes 11+ ε for
E1 and

√
29 + ε for E2.

Given Theorem 3.1 and using the linear-time clustering
algorithm for E2 proposed in [13] and the linear-time version
of the algorithm proposed in [2] for E1 we get the following
result:

COROLLARY 6.1. Algorithms SEGMENTS2LEVELS and
CLUSTERSEGMENTS when using DNS in their first step run
in time O(n4/3k5/3) for both E1 and E2 error measure.

In a similar way one can derive the benefits of using the DNS
and R-DNS algorithms to other segmentation problems (like
for example unimodal segmentations [9]).

7 Conclusions

In this paper we described a family of approximation al-
gorithms for the k-segmentation problem. The most ba-
sic of those algorithms (DNS) works in time O(n4/3k5/3)
and has is a 3-approximation algorithm. We have described
and analyzed several variants of this basic algorithm that are
faster, but have worse approximation bounds. Furthermore,
we quantified the accuracy versus speed tradeoff. Our ex-
perimental results on both synthetic and real datasets show
that the proposed algorithms outperform other heuristics pro-
posed in the literature and that the approximation achieved in
practice is far below the bounds we obtained analytically.
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