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1 Introduction

Social networks, online communities, peer-to-peer file sharing and telecommu-
nication systems can be modeled as complex graphs. These graphs are of signif-
icant importance in various application domains such as marketing, psychology,
epidemiology and homeland security. The management and analysis of these
graphs is a recurring theme with increasing interest in the database, data min-
ing and theory communities. Past and ongoing research in this direction has
revealed interesting properties of the data and presented efficient ways of main-
taining, querying and updating them. The proliferation of social networks has
inevitably raised issues related to privacy preserving data analysis as illustrated
in recent papers: e.g., [2, 11, 23, 18, 22].

Compared with existing anonymization and perturbation techniques of tab-
ular data (see, e.g., the survey book [1]), working with graphs and networks is
much more challenging. Some aspects of graph data that enhance the challenge
are the following:

• It is difficult to model the background knowledge and the capability of an
attacker. Any topological structures of the graph can be exploited by the
attacker to derive private information. Two nodes that are indistinguish-
able with respect to some structural metrics may be distinguishable by
other metrics.

• It is difficult to quantify the information loss. A graph contains rich
information but there is no standard way to quantify the information loss
incurred by the changes of its nodes and edges.

• It is even difficult to devise graph-modification algorithms that balance
the goals of preserving privacy with the utility of the data. Although in
tabular data where each tuple can be viewed as an independent sample
from some distribution, the nodes and edges in a graph are all related to
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each other. Therefore, the impact of a single change of an edge or a node
can spread across the whole network.

Recall that in a social network, nodes correspond to individuals or other
social entities, and edges correspond to social relationships between them. The
privacy breaches in social network data can be grouped to three categories: 1)
identity disclosure: the identity of the individual who is associated with the node
is revealed; 2) link disclosure: sensitive relationships between two individuals
are disclosed; and 3) content disclosure: the privacy of the data associated
with each node is breached, e.g., the email message sent and/or received by
the individuals in a email communication graph. A perfect privacy-protection
system should consider all of these issues. However, protecting against each of
the above breaches may require different techniques. For example, for content
disclosure, standard privacy-preserving data mining techniques [1], such as data
perturbation and k-anonymization can help. For link disclosure, the various
techniques studied by the link-mining community [9, 23] can be useful.

The techniques presented in this chapter aim towards protection of identity
disclosure of individuals in a social network. In their recent work, Backstrom et.
al. [2] point out that the simple technique of anonymizing graphs by removing
the identities of the nodes before publishing the actual graph does not always
guarantee privacy. It is shown in [2] that there exist adversaries that can infer, in
polynomial time, the identity of the nodes using graph-isomorphism algorithms
designed for a restricted class of graphs. However, the problem of designing
techniques that could protect individuals’ privacy has not been addressed in [2].

Motivated by [2], we focus our attention on protecting the identities of in-
dividuals from adversaries that have prior knowledge of the degrees of some
nodes. As an example, consider a social-network graph and an adversary who
connects to a node with a degree x that is unusually high. It would be rather
unexpected for there to be another node of degree exactly x. Now assume a
“naive” privacy-protection strategy that simply removes the names of the nodes
in the network before releasing the graph. Then it is obvious that if degree x is
unique in the graph, then the adversary can re-identify his high-degree neighbor
by simply asking the query “Find all nodes with degree x”. In this chapter we
present methods that prevent this. For that we describe a k-anonymity no-
tion for graphs that is similar to the k-anonymity notion introduced for tabular
data [19]. In other words, this chapter describes a methodology for answering
the following question: How can a graph be minimally modified to protect the
identity of each individual involved?

The material presented here is an extension of our earlier work presented
in [15]. Since the publication of our original paper, several other methods have
been developed for identity anonymization on graphs. We give a summary of
these methods in the next section.
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2 Related work

Since the introduction of the concept of anonymity in databases [19], there has
been increasing interest in the database community in studying the complexity
of the problem and proposing algorithms for anonymizing data records under
different anonymization models [4, 16, 17]. Though much attention has been
given to the anonymization of tabular data, the privacy issues of graphs and
social networks, and the notion of anonymization of graphs, have only been
recently touched.

Backstrom et. al. [2] were the first to study attacks against simple privacy-
preserving methods for social networks. In their seminal paper ([2]) they show
that simply removing the identifiers of the nodes does not always guarantee pri-
vacy. Adversaries can infer the identity of the nodes by solving a set of restricted
isomorphism problems based on the uniqueness of small random subgraphs em-
bedded in a network.

As we have already discussed in the introduction, this observation gave rise
to three types of risks of challenges in privacy-preserving data mining methods:
how to prevent identity disclosure, link disclosure, and content disclosure in
social networks. To combat these challenges, several authors have recently de-
veloped different types of privacy models, adversaries, and graph-modification
algorithms. Unfortunately, none of the work is likely to solve all the problems in
one shot. Protecting against each kind of privacy breach may require different
techniques, or a combination of them. Below we give a list of papers dealing
with these challenges. This list should be conceived as indicative rather than
complete. For a more thorough review of the literature, see [24].

Apart from our work in [15] which we describe here, the problem of identity-
anonymization in social networks has been studied in [11, 18].

Hay et. al. [11] observe that the structural similarity of the nodes in the
graph determines the extent to which an individual in the network can be dis-
tinguished from others. Based on the notion of k-anonymity [19], Hay et al. [11]
proposed a scheme of anonymity through structural similarity. Vertices that
look structurally similar may be indistinguishable to an adversary. A strong
form of structural similarity between vertices is automorphism equivalence. The
anonymization technique proposed in [11] is a node-clustering approach. It gen-
eralizes an input network by grouping vertices into partitions and publishing the
number of vertices in each partition along with the densities of edges within and
across partitions. Data analysts can still use the anonymized graphs to study
macro-properties of the original graph.

Pei and Zhou in [18] consider yet another definition of graph anonymity: a
graph is k-anonymous if for every node there exists at least k − 1 other nodes
that share isomorphic neighborhoods; in this case the neighborhood of a node
is defined by its immediate neighbors and the connections between them. This
definition of anonymity in graphs is different from ours. In a sense it is a more
strict one.

Protection of links between individual graph entities has been studied in [13,
23, 22]. Zheleva and Getoor [23] consider the problem of protecting sensitive
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relationships among the individuals in the anonymized social network. This is
closely related to the link-prediction problem that has been widely studied in
the link-mining community [9]. In [23] simple edge-deletion and node-merging
algorithms are proposed to reduce the risk of sensitive link disclosure.

Sensitive link and relationship protection is also discussed by Ying and
Wu [22]. They study how anonymization algorithms that are based on randomly
adding and removing edges change certain graph properties. More specifically,
they focus on the change caused in the eigenvalues (spectrum) of the network.
The authors additionally explore how the randomized network can be exploited
by an adversary to gain knowledge about the existence of certain links.

Korolova et al.[13] considered the problem where an attacker wants to derive
the link structure of the entire network by collecting the neighborhood informa-
tion of some compromised users, who are either bribed or whose accounts are
broken into by the attacker. Analysis shows that the number of users needed
to be compromised in order to cover a constant fraction of the entire network
drops exponentially with increase in a lookahead parameter ℓ. Parameter ℓ de-
termines if a registered user can see all of the links and nodes within distance ℓ
from him.

Content disclosure is normally an issue when the private data associated with
a user on the network is disclosed to others. A very interesting example recently
arose from Facebook’s “Beacon” service, a “social ads” system where your own
expressed brand preferences and Internet browsing habits, and even your very
identity, are used to market goods and services to you and your friends. For
example, adding the latest season of LOST to your queue on Blockbuster.com
might result in Facebook placing an ad for Blockbuster straight on your friends’
news feeds. This helps Facebook and its partners (Blockbuster in this example)
make money because, as Facebook’s CEO Mark Zuckerberg extols, “nothing
influences a person more than a recommendation from a trusted friend.” This
may be fine in some situations, but there may be some things that one is not
prepared to share with the entire world. From the users’ perspective, they
want to ask how to avoid the disclosure of their personal private information
while still enjoying the benefit of social advertisement. Companies on the other
hand want to assure the users that their privacy is not compromised while
doing social advertisement. Privacy concerns regarding content disclosure exist
in other application scenarios such as social recommendation, etc. Protecting
against this kind of disclosure is an important research and engineering problem.
However, the work in the literature thus far does not take into account how
graph structures affect the content disclosure; they rather focus on standard
data perturbation and anonymization for tabular data.

3 Problem definition

Let G(V, E) be a simple graph; V is a set of nodes and E the set of edges in G.
We use dG to denote the degree sequence of G. That is, dG is a vector of size
n = |V | such that dG(i) is the degree of the i-th node of G. Throughout the
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chapter, we use d(i), d(vi) and dG(i) interchangeably to denote the degree of
node vi ∈ V . When the graph is clear from the context we drop the subscript
and use d(i) instead. Without loss of generality, we also assume that entries in
d are in nonincreasing order, that is, d(1) ≥ d(2) ≥ . . . ≥ d(n). Additionally,
for i < j we use d[i, j] to denote the subsequence of d that contains elements
i, i + 1, . . . , j − 1, j.

Before defining the notion of a k-degree anonymous graph, we first define the
notion of a k-anonymous vector of integers.

Definition 1 A vector of integers v is k-anonymous if every distinct value in
v appears at least k times.

For example, vector v = [5, 5, 3, 3, 2, 2, 2] is 2-anonymous.

Definition 2 A graph G(V, E) is k-degree anonymous if its degree sequence dG

is k-anonymous.

Alternatively, Definition 2 implies that for every node v ∈ V there exists at
least k − 1 other nodes that have the same degree as v. This property prevents
the re-identification of individuals by adversaries with a priori knowledge of the
degree of certain nodes. This echoes the observation made by Hay et. al. [12].

Figure 1 shows two examples of degree-anonymous graphs. In the graph on
the left, all three nodes have the same degree and thus the graph is 3-degree
anonymous. Similarly, the graph on the right is 2-degree anonymous since there
are two nodes with degree 1 and four nodes with degree 2.

Figure 1: Examples of a 3-degree anonymous graph (left) and a 2-degree anony-
mous graph (right).

Degree anonymity has the following monotonicity property.

Proposition 1 If a graph G(V, E) is k1-degree anonymous, then it is also k2-
degree anonymous, for every k2 ≤ k1.

We use the definitions above to define the Graph Anonymization problem.
The input to the problem is a simple graph G(V, E) and an integer k. The
requirement is to use a set of graph-modification operations on G in order to
construct a k-degree anonymous graph Ĝ(V̂ , Ê) that is structurally similar to
G. We require that the output graph is over the same set of nodes as the original
graph, that is, V̂ = V . Thus, we focus on two graph-modification operations:
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addition and deletion of edges. Given two graphs G(V, E) and Ĝ(V̂ , Ê) defined

over the same set of nodes (V̂ = V ) we measure their structural similarity using
two metrics: the degree-anonymization cost and the structural cost. The formal
definitions of these metrics are given below.

Definition 3 For two graphs G(V, E) and Ĝ(V̂ , Ê) with degree sequences d

and d̂ defined over the same set of nodes (V = V̂ ), we define the degree-

anonymization cost between G and Ĝ to be the L1-norm of the difference of
their degree sequences. That is,

Da
(
d̂,d

)
:= L1

(
d̂− d

)
:=

∑

i

∣∣∣d̂(i)− d(i)
∣∣∣ . (1)

Definition 4 For two graphs G(V, E) and Ĝ(V̂ , Ê) defined over the same set

of nodes (V = V̂ ), we define the structural difference between G and Ĝ to be
the symmetric difference of their sets of edges. That is,

∆
(
Ĝ, G

)
:=

∣∣∣Ê \ E
∣∣∣ +

∣∣∣E \ Ê
∣∣∣ . (2)

Given the above definitions we define the Graph Anonymization problem
as follows.

Problem 1 (Graph Anonymization) Given a graph G(V, E) with degree se-

quence d, and an integer k, find a k-degree anonymous graph Ĝ(V, Ê) with de-

gree sequence d̂ such that (a) Da
(
d̂,d

)
is minimized and (b) ∆

(
Ĝ, G

)
is also

minimized.

Note that the above problem definition has two optimization objectives: it
requires both the degree-anonymization as well as the structural cost of the
anonymization to be minimized. We first show that a solution to the Graph
Anonymization problem that is optimal with respect to the one objective is
not necessarily optimal with respect to the other. This is illustrated in the
following observation.

Observation 1 Consider graph G (V, E) and G′ (V ′, E′) with V = V ′ = {w, x, y, z},
E = {(w, x), (y, z)} and E′ = {(w, z), (x, y)}. One can verify that Da (dG,dG′) =
0 while ∆(G, G′) = 4. At the same time it is easy to construct another graph
G′′ (V ′′, E′′) with V ′′ = {w, x, y, z} and E′′ = {(w, x), (y, x)} such that ∆(G, G′′) =
2 < ∆(G, G′). At the same time Da (dG,dG′′) = 2.

One way of dealing with problems that have more than objective functions
is to define the problem as a multiple-objective optimization problem, where the
goal is to simultaneously optimize both the objectives. In this case, the situation
can arise that two graphs Ĝ and Ĝ′ are incomparable, e.g., Da

(
d bG

,dG

)
<
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Da
(
d bG′

,dG

)
, but ∆

(
Ĝ, G

)
> ∆

(
Ĝ′, G

)
. In these cases, all one can hope for

are Pareto-optimal solutions [5]. A graph Ĝ is a Pareto-optimal solution if there

does not exist another graph Ĝ′ that is at least as good as Ĝ in both objectives,
and strictly better than Ĝ in at least one of the two. The problem of finding all
(approximate) Pareto-optimal solutions has been studied in [7].

In our case, we take a different approach: we prioritize our objectives. That
is, we first focus on minimizing degree-anonymization cost; then among all those
graphs that have the same value of Da() cost, we try to pick the one with the
minimum ∆() cost.

Note that the Graph Anonymization problem always has a feasible solu-
tion. For example, all edges not present in the input graph can be added. In
this way, the graph becomes complete and all nodes have the same degree; thus,
any degree-anonymity requirement is satisfied (due to Proposition 1).

3.1 Restriction to edge additions

Problem 1 allows both for edge-addition as well as edge-deletion modification
operations. For the case where we only focus our attention on edge additions,
the anonymized graph Ĝ will be a supergraph of the original graph.

In this case minimizing Da
(
d bG

,dG

)
is equivalent to minimizing ∆

(
Ĝ, G

)
,

because in the case of edge additions,

∆
(
Ĝ, G

)
= |Ê \ E| = |Ê| − |E|

=
1

2
L1

(
d̂− d

)
=

1

2
Da

(
d bG

,dG

)
.

It is obvious that the case where only edge-deletion operations are allowed
is equivalent, because edge deletions can be considered as edge additions in the
complement of the input graph.

4 Overview of the Approach

We propose a two-step approach for the Graph Anonymization problem. For
an input graph G(V, E) with degree sequence d and an integer k, we proceed
as follows:

1. First, starting from d, we construct a new degree sequence d̂ that is k-
anonymous and such that the degree-anonymization cost Da(d̂,d) is min-
imized.

2. Given the new degree sequence d̂, we then construct a graph Ĝ(V, Ê) such

that ∆
(
Ĝ, G

)
is minimized.

These two steps give rise to two problems, which we formally define and solve
in subsequent sections. Performing step 1 translates into solving the Degree
Anonymization problem defined as follows.
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Problem 2 (Degree Anonymization) Given d, the degree sequence of graph

G(V, E), and an integer k construct a k-anonymous sequence d̂ such that Da
(
d̂,d

)
=

L1(d̂− d) is minimized.

Similarly, performing step 2 translates into solving the Graph Construc-
tion problem that we define below.

Problem 3 (Graph Construction) Given a graph G(V, E) and a k-anonymous

degree sequence d̂, construct graph Ĝ(V, Ê) such that d bG
= d̂ and ∆

(
Ĝ, G

)
is

minimized.

In the next sections we develop algorithms for solving Problems 2 and 3.

5 Degree Anonymization

In this section we give algorithms for solving the Degree Anonymization
problem. Given the degree sequence d of the original input graph G(V, E),

the algorithms output a k-anonymous degree sequence d̂ such that the degree-
anonymization cost Da(d) = L1(d̂− d) is minimized.

We first give a dynamic-programming algorithm (DP) that solves the Degree
Anonymization problem optimally in time O(n2). Then, we show how to
modify it to achieve O(nk) running time, and finally, for the restricted case of
edge additions or edge deletions only, O(n) time.

Given a (sorted) input degree sequence d, let Da (d[1, i]) be the degree-
anonymization cost of subsequence d[1, i]. Additionally, let I (d[i, j]) be the
degree anonymization cost when all nodes i, i + 1, . . . , j are put in the same
anonymized group. Alternatively, this is the cost of assigning to all nodes
{i, . . . , j} the same degree, d∗. That is,

I (d[i, j]) =

j∑

ℓ=i

|d∗ − d(ℓ)|,

where d∗ is the (integer) degree with property

d∗ = argmin
d

j∑

ℓ=i

|d− d(ℓ)|.

From [14] we know that d∗ is the median of the values {d(i), . . .d(j)}, and
therefore given i and j, computing I (d[i, j]) can be done optimally in O(j − i)
time (see [6] for details).

We now construct a set of dynamic-programming equations that solve the
Degree Anonymization problem. For i < 2k, let

C (i) := I (d[1, i]) . (3)
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For i ≥ 2k, let

C (i) :=min
{
I (d[1, i]) , min

k≤t≤i−k

{
C (t) + I (d[t + 1, i])

}}
. (4)

When i < 2k, it is impossible to construct two different anonymized groups
each of size k. As a result, the optimal degree anonymization of nodes 1, . . . , i
consists of a single group.

When i ≥ 2k, the degree-anonymization cost for the subsequence d[1, i]
is the optimal degree-anonymization cost of the subsequence d[1, t], plus the
anonymization cost incurred by putting all nodes t + 1, ..., i in the same group
(provided that this group is of size k or larger). The range of variable t, as
defined in Equation (4), is restricted so that all groups examined, including the
first and last ones, are of size at least k.

Running time of the DP algorithm. For an input degree sequence of size n,
the running time of the DP algorithm that implements Recursions (3) and (4)
is O(n2); first, the values of I (d[i, j]) for all i < j can be computed in an
O(n2) preprocessing step. Then, for every i the algorithm goes through at most
n− 2k + 1 different values of t for evaluating the Recursion (4). Since there are
n different values of i, the total running time is O(n2).

In fact the running time of the DP algorithm can further improve from O(n2)
to O(nk). The core idea for this speedup lies in the following simple observation:
no anonymous group should be of size larger than 2k− 1. If any group is larger
than or equal to 2k, it can be broken into two subgroups with equal or lower
overall degree-anonymization cost. Using this observation, the preprocessing
step that computes the values of I (d[i, j]), does not have to consider all the
combinations of (i, j) pairs, but for every i consider only j’s such that k ≤
j − i + 1 ≤ 2k − 1. Thus, the running time for this step drops to O(nk).

Similarly, for every i, we do not have to consider all t’s in the range k ≤ t ≤
i−k as in Recursion (4), but only t’s in the range max{k, i−2k+1} ≤ t ≤ i−k.
Therefore, Recursion (4) can be replaced by

C (i) := min
t∈Si

{
C (t) + I (d[t + 1, i])

}
, (5)

where
Si:={t | max{k, i− 2k + 1} ≤ t ≤ i− k}.

For this range of values of t we guarantee that the first group has size at
least k, and the last one has size between k and 2k − 1. Therefore, for every
i the algorithm goes through at most k different values of t for evaluating the
new recursion. Since there are O(n) different values of i, the overall running
time of the DP algorithm is O(nk).

Therefore, we have the following.

Theorem 1 Problem 2 can be solved in polynomial time using the DP algorithm
described above. The running time of the DP algorithm when the degrees of the
nodes can either increase or decrease is O(nk).
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5.1 Restriction to edge additions

Again, if we restrict our attention to Problem 1 where only edge additions
are allowed, then the degrees of the nodes can only increase in the Degree
Anonymization problem. That is, if d is the original sequence and d̂ is the k-
anonymous degree sequence, then for every 1 ≤ i ≤ n we have that d̂(i) ≥ d(i).
In this case, the DP algorithm described in the previous section can solve the
Degree Anonymization problem. The only difference is in the evaluation of
cost I (d[i, j]) that corresponds to the L1 cost of putting all nodes i, i + 1, . . . , j
in the same anonymized group. Note that the indices correspond to the ordering
of the nodes in nonincreasing order of their degree in d. Therefore, if the degrees
of the nodes can only increase, every group will be assigned the degree of the
node with the highest degree. That is,

I (d [i, j]) =

j∑

ℓ=i

(d(i)− d(ℓ)). (6)

In this case, the running time of the DP algorithm can be further improved
as follows.

Letting fi(t):=C (t) + I (d[t + 1, i]), recursion (5) is

C(i):= min
t∈Si

fi(t).

For given i, if fi(s) ≥ fi(t) for all t ∈ Si with t > s, then plainly fi(s) is
greater than or equal to the minimum of fi(t), taken over all t ∈ Si. So it is
enough to have the values of fi(s), for s ∈ Si such that fi(s) < fi(t) for all
t ∈ Si with t > s. Consider now such s and the next largest such s′. We have
fi(s

′) − fi(s) > 0, which suggests fi+1(s
′) − fi+1(s) > 0, but is this true, and

what happens as i increases further? The next lemma delimits the possibilities.

Lemma 1 For fixed s and s′ with s′ > s, let F (i) := fi(s
′)− fi(s). Then

F (i + 1)− F (i) = d(s′ + 1)− d(s + 1) ≤ 0.

This implies the following.

• Suppose d(s′ + 1) = d(s + 1). Then F (i′) = F (i) for all i′ ≥ i.

• Suppose d(s′+1) < d(s+1). Then F (i) ≤ 0 implies F (i′) ≤ 0 for all i′ ≥ i.
If F (i) > 0, then F (i′) > 0 for i′ with i′ < i + F (i)/(d(s + 1)−d(s′ + 1)),
and F (i′) ≤ 0 for i′ ≥ i + F (i)/(d(s + 1)− d(s′ + 1)).

Proof. The expression for F (i + 1) − F (i) follows from expanding out the
definitions and manipulating, as follows. We have

fi+1(s)− fi(s) = C(d[1, s]) + I(d[s + 1, i + 1])− [C(d[1, s]) + I(d[s + 1, i])]

= I(d[s + 1, i + 1])− I(d[s + 1, i])

=
∑

s+1≤ℓ≤i+1

(d(s + 1)− d(ℓ))−
∑

s+1≤ℓ≤i

(d(s + 1)− d(ℓ))

= d(s + 1)− d(i + 1),

10



and so

F (i + 1)− F (i) = fi+1(s
′)− fi+1(s)− (fi(s

′)− fi(s))

= fi+1(s
′)− fi(s

′)− (fi+1(s)− fi(s))

= d(s′ + 1)− d(i + 1)− (d(s + 1)− d(i + 1))

= d(s′ + 1)− d(s + 1),

which proves the first claim. From this if follows immediately that F (i′)−F (i) =
(i′ − i)(d(s′ + 1)− d(s + 1)), implying the remaining claims.

The discussion just before the lemma says that to compute mint∈Si
fi(t) for

increasing values of i, it is enough to be able to maintain, as i goes from 1 to
n, the list of indices

Li := {s ∈ Si | fi(s) < min
s<t∈Si

fi(t)}. (7)

Specifically, Li is represented as a doubly linked list. How does this list change
as i increases? If s /∈ Li, then fi(s) ≥ fi(t) for some t > s, and so by the lemma,
fi′(s) ≥ fi′(t) for i′ ≥ i; that is, if s is not included now, it will not be included
later.

If Li has been maintained up to time i, then its first entry is sufficient to
allow the computation of (4): for given i and s < i, the value of fi(s) can be
computed in constant time, using previously computed values stored in array C
and the prefix sums

∑
ℓ<i d(ℓ).

To maintain the list, we will consider the “life cycle” of an entry in it. Such
an entry s is “born” at time i = s+ k, when i− k is added to the end of Li. An
entry can “die,” that is, no longer qualify to be in Li, in a few ways.

An entry can die when it gets too old, namely, when s < max{k, i− 2k+1},
and so is no longer in Si.

An entry can also die when a new entry is added whose f value is less than
or equal to its f value; here if s ∈ Li dies, all t > s in Li must also die, since
they have larger fi(t) values. Thus when i− k is added, the entries s ∈ Li can
be examined, in decreasing order, to check if fi(i − k) < fi(s); as such s are
found, they are deleted from Li.

We will also make an entry die in one other way: if fi(s) and fi(s
′) are

consecutive entries in Li, so that s < s′ and fi(s) < fi(s
′), then from the

lemma, there is a future time i′ = D(s, s′) at which fi′(s) ≥ fi′(s
′), so that s

should die. We will maintain that, for each consecutive pair s, s′ of entries in Li,
there is a “death notice” for s, at time D(s, s′). At that time, when the “death
notice” is processed, the entry for s is removed from Li (if it hasn’t already
died), and a death notice is added for the former neighbor s′′ < s, whose new
rightward neighbor is the former rightward neighbor of s. The death notice
D(s, s′) includes a pointer to the list node for s, which has a backpointer to the
death notice, so that if the node for s is removed for other reasons, the death
notice is removed also.

When an entry dies, O(1) work is done for it, including the generation of at
most one new death notice. The processing of that death notice, in the future,
requires O(1) work, so the life cycle of a node requires O(1) work.

11



We have proven the following theorem.

Theorem 2 Problem 2 for the restricted case of edge additions (or deletions)
operations, where the degrees of the nodes can only increase (or decrease) can
be solved optimally using the DP algorithm described above in time O(n).

6 Graph Construction

In this section we present algorithms for solving the Graph Construction
problem. Given the original graph G(V, E) and the desired k-anonymous degree

sequence d̂ output by the DP algorithm, we construct a k-degree anonymous

graph Ĝ(V, Ê) such that ∆
(
Ĝ, G

)
is minimized.

6.1 Basics on Realizability of Degree Sequences

Before giving the actual algorithms for the Graph Construction problem,
we first present some known facts about the realizability of degree sequences for
simple graphs. Later on, we extend some of these results in our own problem
setting.

Definition 5 A degree sequence d, with d(1) ≥, . . . ,≥ d(n) is called realizable
if and only if there exists a simple graph whose nodes have precisely this sequence
of degrees.

Erdös and Gallai [8] have stated the following necessary and sufficient con-
dition for a degree sequence to be realizable.

Lemma 2 ([8]) A degree sequence d with d(1) ≥ . . . ≥ d(n) and
∑

i d(i) even,
is realizable if and only if for every 1 ≤ ℓ ≤ n− 1 it holds that

ℓ∑

i=1

d(i) ≤ ℓ(ℓ− 1) +

n∑

i=ℓ+1

min{ℓ,d(i)} (8)

Informally, Lemma 2 states that for each subset of the ℓ highest-degree nodes,
the degrees of these nodes can be “absorbed” within the nodes and the outside
degrees. The proof of Lemma 2 is inductive ([10]) and it provides a natural
construction algorithm, which we call ConstructGraph (see Algorithm 1 for the
pseudocode).

The ConstructGraph algorithm takes as input the desired degree sequence
d and outputs a graph with exactly this degree sequence, if such graph exists.
Otherwise it outputs a “No” if such graph does not exist. The algorithm is
iterative and in each step it maintains the residual degrees of vertices. In each
iteration it picks an arbitrary node v and adds edges from v to d(v) nodes of
highest residual degree, where d(v) is the residual degree of v. The residual
degrees of these d(v) nodes are decreased by one. If the algorithm terminates
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and outputs a graph, then this graph has the desired degree sequence. If at
some point the algorithm cannot make the required number of connections for
a specific node, then it outputs “No” meaning that the input degree sequence
is not realizable.

Note that the ConstructGraph algorithm is an oracle for the realizability of
a given degree sequence; if the algorithm outputs “No”, then this means that
there does not exist a simple graph with the desired degree sequence.

Algorithm 1 The ConstructGraph algorithm.

Input: A degree sequence d of length n.
Output: A graph G(V, E) with nodes having degree sequence d or “No” if
the input sequence is not realizable.

1: V ← {1, . . . , n}, E ← ∅
2: if

∑
i d(i) is odd then

3: Halt and return “No”
4: while 1 do
5: if there exists d(i) such that d(i) < 0 then
6: Halt and return “No”
7: if the sequence d are all zeros then
8: Halt and return G(V, E)

9: Pick a random node v with d(v) > 0
10: d(v)← 0
11: Vd(v) ← the d(v)-highest entries in d (other than v)
12: for each node w ∈ Vd(v) do
13: E ← E ∪ (v, w)
14: d(w)← d(w) − 1

Running time of the ConstructGraph algorithm: If n is the number of
nodes in the graph and dmax = maxi d(i), then the running time of the ConstructGraph
algorithm is O(ndmax). This running time can be achieved by keeping an array
A of size dmax such that A[d(i)] keeps a hash table of all the nodes of degree
d(i). Updates to this array (degree changes and node deletions) can be done in
constant time. For every node i at most dmax constant-time operations are re-
quired. Since there are n nodes the running time of the algorithm is O(ndmax).
In the worst case, dmax can be of order O(n), and in this case the running time
of the ConstructGraph algorithm is quadratic. In practice, dmax is much less
than n, which makes the algorithm very efficient in practical settings.

Note that the random node in Step 9 of Algorithm 1 can be replaced by
either the current highest-degree node or the current lowest-degree node. When
we start with higher degree nodes, we get topologies that have very dense cores,
while when start with lower degree nodes, we get topologies with very sparse
cores. A random pick is a balance between the two extremes. The running time
is not affected by this choice, due to the data structure A.
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Figure 2: The swap transformation.

6.2 The Greedy Swap algorithm

Let d̂ be a k-anonymous degree sequence output by DP algorithm. Let us ad-
ditionally assume for now, that d̂ is realizable so that the ConstructGraph

algorithm with input d̂, outputs a simple graph Ĝ0(V, Ê0) with degree sequence

exactly d̂. Although Ĝ0 is k-degree anonymous, its structure may be quite dif-
ferent from the original graph G(V, E). The Greedy Swap algorithm is a greedy

heuristic that given Ĝ0 and G, it transforms Ĝ0 into Ĝ(V, Ê) with degree se-

quence d bG
= d̂ = d bG0

such that ∆
(
Ĝ, G

)
is minimized.

At every step i, the graph Ĝi−1(V, Êi−1) is transformed into the graph

Ĝi(V, Ei) such that d̂ bG0

= d̂ bGi−1

= d̂ bGi
= d̂ and ∆

(
Ĝi, G

)
< ∆

(
Ĝi−1, G

)
.

The transformation is made using valid swap operations defined as follows:

Definition 6 Consider a graph Ĝi(V, Êi). A valid swap operation is defined by

four vertices i, j, k and l of Ĝi(V, Êi) such that (i, k) ∈ Êi and (j, l) ∈ Êi and

(i, j) /∈ Êi and (k, l) /∈ Êi, or, (i, l) /∈ Êi and (j, k) /∈ Êi. A valid swap operation

transforms Ĝi to Ĝi+1 by updating the edges as follows

Êi+1 ← Êi \ {(i, k), (j, l)} ∪ {(i, j), (k, l)} , or

Êi+1 ← Êi \ {(i, k), (j, l)} ∪ {(i, l), (j, k)} .

A visual illustration of the swap operation is shown in Figure 2. It is clear
that performing valid swaps on a graph leaves the degree sequence of the graph
intact. The pseudocode for the Greedy Swap algorithm is given in Algorithm 2.
At each iteration of the algorithm, the swappable pair of edges e1 and e2 is
picked to be swapped to edges e′1 and e′2. The selection among the possible
valid swaps is made so that the pair that reduces the most the evaluation of
∆ () function is picked.The Greedy Swap algorithm halts when there are no more
valid swaps that can decrease the ∆ () function.

Algorithm 3 gives the pseudocode of the whole process of solving the Graph
Construction problem when the degree sequence d̂ is realizable. The first step
involves a call to the ConstructGraph algorithm, which we have described in
Section 6.1, Algorithm 1. The ConstructGraph algorithm will return a graph

Ĝ0 with degree distribution d̂. The Greedy Swap algorithm is then invoked with
input the constructed graph Ĝ0. The final output of the process is a k-degree
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Algorithm 2 The Greedy Swap algorithm.

Input: An initial graph Ĝ0(V, Ê0) and the input graph G(V, E).

Output: Graph Ĝ(V, Ê) with the same degree sequence as Ĝ0, such that

∆
(
Ĝ, G

)
is minimized.

1: Ĝ(V, Ê)← Ĝ0(V, Ê0)

2: (c, (e1, e2, e
′
1, e

′
2)) = Find Best Swap(Ĝ)

3: while c > 0 do
4: Ê = Ê \ {e1, e2} ∪ {e′1, e

′
2}

5: (c, (e1, e2, e
′
1, e

′
2)) = Find Best Swap

6: return Ĝ

Algorithm 3 An overall algorithm for solving the Graph Construction
problem; the realizable case.

Input: A realizable degree sequence d̂ of length n.
Output: A graph Ĝ(V, E′) with degree sequence d̂ and E ∩ E′ ≈ E.

1: Ĝ0 = ConstructGraph(d̂)

2: Ĝ = Greedy Swap(Ĝ0)

anonymous graph that has degree sequence d̂ and large overlap in its set of
edges with the original graph.

A naive implementation of the algorithm would require time O(I|Ê0|2),

where I is the number of iterations of the greedy step and |Ê0| the number of

edges in the input graph graph. Given that |Ê0| = O(n2), the running time of
the Greedy Swap algorithm could be O(n4), which is daunting for large graphs.
However, we employ a simple sampling procedure that considerably improves
the running time. Instead of doing the greedy search over the set of all possible
edges, we uniformly at random pick a subset of size O(log|Ê0|) = O(log n) of
the edges and run the algorithm on those. This reduces the running time of
the greedy algorithm to O(I log2 n), which makes it efficient even for very large
graphs. As we show in our experimental evaluation, the Greedy Swap algorithm
performs very well in practice, even in cases where it starts with graph Ĝ0 that
shares small number of edges with G.

6.2.1 The Probing Scheme

In the discussion above we have assumed that the degree sequence input in the
ConstructGraph algorithm is realizable. However, it might well be the case
that the ConstructGraph algorithm outputs a “No”, i.e., there does not exist
a graph with the required degree sequence. In this case we invoke a Probing

scheme described below. The Probing scheme is a randomized iterative process

that tries to slightly change the degree sequence d̂. The pseudocode of the
Probing scheme is shown in Algorithm 4.
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Algorithm 4 The Probing scheme.

Input: Input graph G(V, E) with degree distribution d and integer k.

Output: Graph Ĝ(V, Ê) with k-anonymous degree sequence d̂.

1: d̂ = DP(d)

2:

(
realizable, Ĝ

)
= ConstructGraph(d̂)

3: while realizable = “No” do
4: d = d + random noise
5: d̂ = DP(d)

6:

(
realizable, Ĝ

)
= ConstructGraph(d̂)

7: Return Ĝ

For input graph G(V, E) and integer k, the Probing scheme first constructs

the k-anonymous sequence d̂ by invoking the DP algorithm. If the subsequent
call to the ConstructGraph algorithm returns a graph Ĝ, then Probing outputs
this graph and halts. If ConstructGraph returns “No”, then Probing slightly
increases some of the entries in d via the addition of uniform noise - the specifics
of the noise-addition strategy is further discussed in the next paragraph. The
new noisy version of d is then fed as input to the DP algorithm again. A
new version of the d̂ is thus constructed and input to the ConstructGraph

algorithm to be checked. The process of noise addition and checking is repeated
until a graph is output by ConstructGraph. Note that this process will always
terminate because in the worst case, the noisy version of d will contain all entries
equal to n − 1, and there exists a complete graph that satisfies this sequence
and is k-degree anonymous.

Since the Probing procedure will always terminate, the key question is how
many times the while loop is executed. This depends, to a large extent, on
the noise addition strategy. In our implementation, we examine the nodes in
increasing order of their degrees, and slightly increase the degree of a single
node in each iteration. This strategy is suggested by the degree sequences of
the input graphs. In most of these graphs there is a small number of nodes with
very high degrees. However, rarely any two of these high-degree nodes share
exactly the same degree. In fact, we often observe big differences among them.
On the contrary, in most graphs there is a large number of nodes with the same
small degrees (close to 1). Given such a graph, the DP algorithm will be forced
to increase the degrees of some of the large-degree nodes a lot, while leaving
the degrees of small-degree nodes untouched. In the anonymized sequence thus
constructed, a small number of high-degree nodes will need a large number of
nodes to connect their newly added edges. However, since the degrees of small-
degree nodes does not changed in the anonymized sequence, the demand of edge
end-points imposed by the high-degree nodes cannot be facilitated. Therefore,
by slightly increasing the degrees of small-degree nodes in d we force the DP

algorithm to assign them higher degrees in the anonymized sequence d̂. In
that way, there are more additional free edges end-points to connect with the
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anonymized high-degree nodes.
From our experiments on a large spectrum of synthetic and real-world data,

we observe that, in most cases, the extra edge-additions incurred by the Probing
procedure are negligible. That is, the degree sequences produced by the DP are
almost realizable, and more importantly, realizable with respect to the input
graph G. Therefore, the Probing is rarely invoked, and even if it is invoked,
only a very small number of repetitions are needed. We further discuss this in
the experimental section of this chapter.

6.3 Restriction to edge additions

In this section we give yet another graph-construction algorithm for the case
where only edge additions are allowed to the input graph. In this case, not only
do we need to construct a graph Ĝ with a given degree sequence d̂, but we
also require that E ⊆ Ê. We capture these two requirements in the following
definition of realizability of d̂ subject to graph G.

Definition 7 Given input graph G(V, E), we say that degree sequence d̂ is re-

alizable subject to G, if and only if there exists a simple graph Ĝ(V, Ê) whose

nodes have precisely the degrees suggested by d̂ and E ⊆ Ê.

Given the above definition we have the following alternation of Lemma 2.

Lemma 3 Consider degree sequence d̂ and graph G(V, E) with degree sequence

d. Let vector a = d̂ − d such that
∑

i a(i) is even. If d̂ is realizable subject to
graph G then

∑

i∈Vℓ

a(i) ≤
∑

i∈Vℓ

(
ℓ− 1− dℓ(i)

)

+
∑

i∈V −Vℓ

min{ℓ− dℓ(i),a(i)}, (9)

where dℓ(i) is the degree of node i in the input graph G when counting only
edges in G that connect node i to one of the nodes in Vℓ. Here Vℓ is an ordered
set of ℓ nodes with the ℓ largest a(i) values, sorted in decreasing order. In other
words, for every pair of nodes (u, v) where u ∈ Vℓ and v ∈ V \ Vℓ, it holds that
a(u) ≥ a(v) and |Vℓ| = ℓ.

Although the proof of the lemma is omitted due to space constraints, one
can see the similarity between Inequalities (8) and (9); if G is a graph with no

edges between its nodes, then a is the same as d̂, dℓ(i) is zero, and the two
inequalities become identical.

Lemma 3 states that Inequality (9) is just a necessary condition for realiz-
ability subject to the input graph G. Thus, if Inequality (9) does not hold, we

can conclude that for input graph G(V, E), there does not exist a graph Ĝ(V, Ê)

with degree sequence d̂ such that E ⊆ Ê.
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Although Lemma 3 gives only a necessary condition for realizability subject
to an input graph G, we still want to devise an algorithm for constructing a
degree-anonymous graph Ĝ, a supergraph of G, if such a graph exists. We call
this algorithm the Supergraph, which is an extension of the ConstructGraph

algorithm (We omit the pseudocode of Supergraph due to space limits).
The inputs to the Supergraph are the original graph G and the desired k-

anonymous degree distribution d̂. The algorithm operates on the sequence of ad-
ditional degrees a = d̂−dG in a manner similar to the one the ConstructGraph
algorithm operates on the degrees d. However, since Ĝ is drawn on top of the
original graph G, we have the additional constraint that edges already in G
cannot be drawn again.

The Supergraph first checks whether Inequality (9) is satisfied and returns
“No” if it does not. Otherwise it proceeds iteratively and in each step it main-
tains the residual additional degrees a of the vertices. In each iteration it picks
an arbitrary vertex v and adds edges from v to a(v) vertices of highest residual
additional degree, ignoring nodes v′ that are already connected to v in G. For
every new edge (v, v′), a(v′) is decreased by 1. If the algorithm terminates and

outputs a graph, then this graph has degree sequence d̂ and is a supergraph of
the original graph. If the algorithm does not terminate, then it outputs “Un-
known”, meaning that there might exist a graph, but the algorithm is unable to
find it. Though Supergraph is similar to ConstructGraph, it is not an oracle.
That is, if the algorithm does not return a graph Ĝ supergraph of G, it does
not necessarily mean that such a graph does not exist.

For degree sequences of length n and amax = maxi a(i) the running time of
the Supergraph algorithm is O(namax), using the same data-structures as those
described in Section 6.1.

7 Experiments

In this section we evaluate the performance of the proposed graph-anonymization
algorithms.

7.1 Datasets

We use both synthetic and real-world datasets. For the experiments with syn-
thetic datasets, we generate random, small-world and scale-free graphs.

Random graphs: Random graphs are graphs with nodes randomly con-
nected to each other with probability p. Given the number of nodes n and the
parameter p, a random graph is generated by creating an edge between each
pair of nodes u and v with probability p. We use GR to denote the family of
graphs generated by this data-generation model and GR to denote a member of
the family.

Small-world graphs: A small-world graph is a type of graph in which most
nodes are not neighbors of one another, but most nodes can be reached from
every other by a small number of hops. This kind of graphs have large clustering
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coefficient (CC) that is significantly higher than expected by random chance,
and small average path length (APL) that is close to that of an equivalent ran-
dom graph. The average path length is defined as the average length of the
shortest path between all pairs of reachable nodes. The clustering coefficient is
defined as the average fraction of pairs of neighbors of a node that are also con-
nected to each other. These two indices, along with the degree distribution, are
considered as standard measures in graph-analysis studies. We generate small-
world graphs using the model proposed in [20]. We denote by GW the family
of graphs generated by this model and GW the members of this family. The
data-generation process is controlled by a parameter α that determines the ex-
tent to which the graph exhibits community structure. Values of α in the range
[5, 7] generate small-world graphs. We have additionally conducted experiments
with small-world graphs generated using the alternative model proposed in [21].
However, since the results we obtained are very similar to the results obtained
by using graphs in GW , we do not report them here due to space limitations.

Scale-free graphs: The scale-free graphs correspond to graphs with power-
law degree distribution. In a power-law graph the probability that a node has
degree d is proportional to d−γ . The power-law distribution is determined by
the exponent γ. The value of γ may vary, taking values between 2 and 3 for
most real networks. We use the model proposed by Barabási and Albert [3] to
generate scale-free graphs. The graph-generation process proceeds by inserting
nodes sequentially. Each new node is initially connected to ℓ already existing
nodes with probability proportional to their degree. We use GBS to denote the
family of graphs generated by this model and GBS to denote members of the
family.

For the real-world data, we use the enron, the powergrid and the co-
authors graphs.

Enron graph: The Enron email graph (available at http://www.cs.cmu.
edu/enron/) is derived from a corpus of emails sent to and from managers at
Enron Corporation. This data was originally made public by the Federal Energy
Regulatory Commission. The dataset contains 151 users. An edge between two
users is added if they have corresponded at least five times.

Powergrid graph: In this graph, the nodes represent generators, trans-
formers and substations in a powergrid network; the edges represent high-
voltage transmission lines between them. The dataset is available at http:

//www.cs.helsinki.fi/u/tsaparas/MACN2006/.
Co-authors graph: The co-authors dataset consists of 7955 authors of pa-

pers in database and theory conferences and it is available at the collection of
Computer Science Bibliographies at http://liinwww.ira.uka.de/bibliography/.
The co-authors graph is constructed by creating undirected edges between au-
thors that have co-authored paper.

Table 1 summarizes the properties of the graphs we used for our experiments.
All the graphs are simple, unweighted and undirected.
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#Nodes #Edges APL CC
GW (α = 6) 1000 5000 9.15 0.77
GR 1000 5000 3.27 0.01
GBS (γ = 3) 1000 2995 3.57 0.02
enron 151 502 3.32 0.46
powergrid 4941 6594 9.12 0.10
co-authors 7955 10055 6.00 0.64

Table 1: Structural properties of the graphs used for the experiments.

7.2 Evaluating Graph Construction algorithms

In this section we evaluate the performance of Greedy Swap, Greedy Swap Additions

and Supergraph algorithms. Since the k-degree anonymity is guaranteed by con-
struction, we only need to look at the structural similarity between the input
and output graphs. We use a set of evaluation measures listed below and we
report our results for different synthetic and real-world graphs.

Anonymization cost L1(dA − d): This is the L1 norm of the vector of
differences between the k-anonymous degree sequence obtained using algorithm
Algo ∈ { Greedy Swap, Greedy Swap Additions, Supergraph} and the degree
sequence of the original graph. The smaller the value of L1(dA − d) the better
the qualitative performance of the algorithm. Figures 3(a), 4(a), 5(a) and 6(a)
summarize the anonymization cost of the different algorithms as a function of
k = {5, 10, 15, 20, 25, 50, 100} for synthetic datasets GW ∈ GW with α = 6,
GBS ∈ GBS, and powergrid and co-authors data. From the plots, we can
observe that Greedy Swap always has the lowest anonymization cost. This is
because Greedy Swap allows the degrees of nodes to either increase or decrease.
On the other hand, Greedy Swap Additions and Supergraph have relatively
higher cost due to their increase-only nature.

If all the anonymized degree sequences are realizable, the optimal cost for
both Greedy Swap Additions and Supergraph should be the same. However,
we note that in the case of GBS graphs, L1(dSupergraph−d) cost is relatively high
for all values of k (see Figure 4(a)). This is due to two reasons: 1) The degrees
of graphs in GBS have a power-law distribution. This causes large differences
among the degrees of high-degree nodes, meaning that the degrees of high-degree
nodes have to be changed significantly in order to meet the degree-anonymous
requirement. 2) The Supergraph algorithm constructs the degree-anonymous
graph by extending the input graph, and it is the only of our proposed algorithms
that tries to comply with all the edge constraints imposed by the input graph.
Therefore, it can potentially add more noise (in the Probing phase) than other
algorithms that build the graph from scratch.

Clustering Coefficient (CC): We compare the clustering coefficients of
the anonymized graphs with the clustering coefficients of the original graphs.
Figures 3(b), 4(b), 5(b) and 6(b) summarize our findings. In all plots, there
is a constant line appearing, this corresponds to the value of the clustering
coefficient of the original graph, which is unaffected by the value of k. Note that
all the plots show that the values of the clustering coefficient, though different in
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the degree-anonymous graphs, they never deviate too much from their original
values; the largest difference in the CC values from the original values is observed
for the co-author dataset, where the difference is 0.24 for the degree-anonymous
graph produced by the Greedy Swap Additions algorithm when k = 100. But
even in this case, the other two algorithms output graphs with CC almost equal
to that of the original graph. Note that there is no clear trend on how the
CC changes when the graph becomes degree anonymous. Both increments and
decrements are observed, however the changes are generally negligible.

Average Path Length (APL): In Figures 3(c), 4(c), 5(c) and 6(c) we re-
port the values of the average path length of the degree-anonymous graphs and
the original graphs. As expected, the anonymization process of Greedy Swap Additions

and Supergraph decrease the average path length of the output graph since only
new connections are added. The Greedy Swap, on the other hand, can either
increase or decrease the average path length because it simultaneously adds and
deletes the edges.

Very similar results have been obtained for other datasets generated using
the random-graph model as well as the enron dataset. However, we omit the
corresponding plots due to space constraints.
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Figure 3: Synthetic datasets: small-world graphs GW ∈ GW , with α = 6.
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Figure 4: Synthetic datasets: scale-free graphs GBS ∈ GBS.

Structural Difference: Recall that the structural difference between two
graphs G(V, E) and Ĝ(V, Ê), ∆

(
Ĝ, G

)
, is the symmetric difference of their
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Figure 5: Real datasets datasets: powergrid data.
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Figure 6: Real datasets datasets: co-authors data.

edge sets, i.e., ∆
(
Ĝ, G

)
:=

∣∣∣Ê \ E
∣∣∣+

∣∣∣E \ Ê
∣∣∣. Table 2 summarizes the values of

∆
(
Ĝ, G

)
obtained by different algorithms for the co-authors data. It is inter-

esting to observe that Supergraph consistently has a low value. This is due to
the reason that Supergraph constructs the anonymized graph by only extending

the input graph, and therefore,
∣∣∣E \ Ê

∣∣∣ is always 0. On the other hand, both

Greedy Swap and Greedy Swap Additions construct a anonymized graph from
scratch and then heuristically add and delete edges to make it more similar to
the original graph. This procedure leads to higher symmetric differences of their
edge sets.

However, readers should not be deluded by the straight numbers in the
table and reach a conclusion that Greedy Swap and Greedy Swap Additions are
significantly inferior to Supergraph. In fact, we can show that the number of
edges that are added and deleted by these two greedy algorithms only account for
a very small portion of the overall edge sets. To illustrate this, we decompose the

structural difference between G and Ĝ into two normalized components:
| bE\E|
| bE|

and
|E\ bE|
|E| . The former gives the percentage of the edges in the anonymized

graph that are newly added, and the latter calculates the percentage of the edges
in the original graph that are deleted. The lower these two values, the better
the structure of the original graph is preserved. Figure 7(a) and 7(b) show the
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Greedy Swap Greedy Swap Additions Supergraph

k = 5 1714 1764 66
k = 10 1742 1904 141
k = 15 1846 2009 216
k = 20 1815 2126 300
k = 25 1868 2269 384
k = 50 2096 3068 868
k = 100 2232 4402 1868

Table 2: Structural differences between G and Ĝ, obtained by different algo-
rithms for the co-authors data.

values of
| bE\E|
| bE|

and
|E\ bE|
|E| obtained by different algorithm as a function of k =

{5, 10, 15, 20, 25, 50, 100} for the co-authors data. We can easily observe that
both Greedy Swap and Greedy Swap Additions produce very small values of
| bE\E|
| bE|

and
|E\ bE|
|E| . In particular, Greedy Swap achieves 0.12 for both components

even when k is 100, which is better than Supergraph that has a value of 0.16

for
| bE\E|
| bE|

.
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Figure 7: Decomposed structural differences between G and Ĝ, obtained by
different algorithms for the co-authors data.

7.2.1 Exploring the Scale-free Graphs

Previous work on the analysis of complex networks has shown that many of
the real-world graphs are scale free, i.e., their node degrees follow a power-law
distribution. In this section we demonstrate that our anonymization framework
does not destroy the power-law property of the original graph if k is not too
big. That is, if the input graph has a power-law degree distribution, so does the
degree-anonymous version of it.
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γ
Greedy Swap Greedy Swap Additions Supergraph

original 2.07 2.07 2.07
k = 10 2.45 2.26 2.26
k = 15 2.33 2.13 2.13
k = 20 2.28 1.97 1.97
k = 25 2.25 1.83 1.83
k = 50 2.05 1.57 1.57
k = 100 1.92 1.22 1.22

Table 3: Real dataset: co-authors graph. Value of the exponent (γ) of
the power-law distribution of the original and the k-degree anonymous graph
obtained using Greedy Swap, Greedy Swap Additions and Supergraph algo-
rithms, for k = 10, 15, 20, 25, 50, 100.

In Table 3, we report the values of the estimated exponent (γ) of the power-
law distribution of the original co-authors data and its degree-anonymous
counterpart. We can observe that the new γ values obtained by all three algo-
rithms exhibit high degree of similarity to the original one for k < 15. When k
gets larger, Greedy Swap still preserves the γ value very well. This result is due
to the fact that, the degree-sequence anonymization of Greedy Swap minimally
changes the degree sequence of a graph. For significant large values of k (e.g.,
k = 100), a great amount of the nodes in the anonymized graph will have the
same degree, and the power-law distribution will change. We claim that this is
a natural result for any degree-anonymization algorithm.

8 Conclusions

The degree of a node in a graph, among other structural characteristics, can
to a large extent distinguish the node from other nodes. In this chapter, we
focused on a specific graph-anonymity notion that prevents the re-identification
of individuals by an attacker with certain prior knowledge of the degrees. We
formally defined the Graph Anonymization problem that, given an input
graph asks for the graph modifications (in terms of additions and deletions of
edges) that allow for the transformation of the input to a degree-anonymous
graph; i.e., a graph in which every node shares the same degree with k − 1
other nodes. We showed that this problem can be decomposed into two sub-
problems and proposed simple and efficient algorithms for solving them. We
also presented experiments on synthetic and real-world graph data and demon-
strated the utility of the degree-anonymous graphs as well as the efficiency of
our methods.

From the material presented in this chapter as well as in the related work
(presented in Section 3) it becomes apparent that privacy-preserving data anal-
ysis on graph data raises many more challenges when compared to the challenges
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that arise from anonymization and perturbation techniques in tabular data. In
the latter case, each tuple can be viewed as an independent sample from some
distribution. However, in a graph, all the nodes and edges are correlated; a
single change of an edge and/or a node can spread across the whole network.
Moreover, in graphs it is difficult to model the capability of an attacker. In
principle, any topological structure of the graph can be potentially used to de-
rive private information. Another challenge is related to the right definition
of the utility of an anonymized graph. For example, we measured the utility
using the degree anonymization and the structural cost. However, other mea-
sures that associate the structural properties of the original and the anonymized
graph can also be used. Further, these measures can be also tailored to a par-
ticular graph-analysis task. Overall, there are many directions that need to be
explored before the research community agrees upon a unifying, theoretically-
and practically-sound, model for privacy in social networks.
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