
Reconstructing randomized social networks

Niko Vuokko∗ Evimaria Terzi†

Abstract

In social networks, nodes correspond to entities and edges

to links between them. In most of the cases, nodes are

also associated with a set of features. Noise, missing

values or efforts to preserve privacy in the network may

transform the original network G and its feature vectors

F . This transformation can be modeled as a randomization

method. Here, we address the problem of reconstructing the

original network and set of features given their randomized

counterparts G′ and F ′ and knowledge of the randomization

model. We identify the cases in which the original network

G and feature vectors F can be reconstructed in polynomial

time. Finally, we illustrate the efficacy of our methods using

both generated and real datasets.

Keywords: social-network analysis, privacy-
preserving data mining

1 Introduction

Recent work on privacy-preserving graph mining [1, 8,
11, 15] focuses on identifying the threats to individual
nodes’ privacy and at the same time propose techniques
to overcome these threats. The most simple such
technique is data randomization: the original network
is slightly randomized by the removal of some of its
original edges and the addition of new ones. In this
way, the network is expected to maintain its global
properties, while individual nodes’ privacy is protected.

In this paper, we give methods for reconstructing
the original data given the randomized observations. In
our setting each node in the social network is associated
with a feature vector. We assume randomization meth-
ods that may randomize both the structure of the so-
cial network and the feature vectors of individual nodes.
We show that the information encoded in the observed
graph and feature vectors gives enough information to
reconstruct the original version of the data. Of course,
we assume that the data-randomization methods do not
completely destroy the original dataset; had they done

∗HIIT, Helsinki University of Technology, Finland. This work
was mostly done when the author was at IBM Almaden Research

Center.

†Boston University. This work was mostly done when the
author was at IBM Almaden Research Center.

so, they would not serve their original goal to maintain
the usefulness of the data.

The premise of our approach is captured in the
famous quote from Plato: “Friends have all things in
common”. In other words, our basic assumption is
that nodes that are connected in a social network have
similar features and nodes that have similar features are
highly probable to be connected in the network. This
tendency is observed in real datasets: Figure 1 shows
the total number of neighboring pairs of nodes that
share more than ϕ = {1, 2, . . . , 10} features1 in some
instance of the DBLP graph (solid line). The dashed
line shows the corresponding number of neighboring
pairs in a random graph that has the same nodes (and
features) and the same number of edges as the original
DBLP graph. Note, that the y-axis in the figure is in
logarithmic scale. The number of edges in the original
graph that connect nodes that share at least 1, 3, 5 and 7
features is 20670, 3416, 426 and 34 in the original graph.
The corresponding numbers in the randomly generated
graph are significantly smaller: 3708, 153, 10 and 0.

Although the motivation of our work comes primar-
ily from privacy-preserving graph mining, our frame-
work has also applications in reconstruction of noisy
or incomplete datasets. For example, one can use our
methodology to infer whether an individual has bought
a specific product given some (noisy version) of the pur-
chases of his friends in the social network.

Problem 1. We solve the following reconstruction
problem: given observed, randomized graph G′ with
feature vectors F ′ reconstruct the most probable true
versions G and F ; that is find G and F such that
Pr (G,F |G′, F ′) is maximized.

We assume that the graph is simple, i.e., the graph
is undirected, unweighted, containing no self-loops or
multiple edges. We study the following three variants
of the above reconstruction problem.

1. F ′ = F and G′ ̸= G: in this case only graph G has
been randomized, while the features of individuals

1Nodes correspond to authors; two authors are connected if
they have written a paper together. Features encode each author’s
publishing venues.

1 2 3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

10
4

10
5

DBLP

random

Figure 1: Number of edges in the DBLP graph that
connect nodes that share at least ϕ = {1, . . . , 10}
features (solid line). The dashed line shows the same
number for a random graph with the same number of
edges as the original DBLP graph.

remain intact. We show that this problem can be
solved optimally in polynomial time.

2. F ′ ̸= F and G′ = G: in this case the features
of individuals are randomized while the graph
structure remains in its original form. We show
that in this case the most probable original matrix
F can be also reconstructed in polynomial time.

3. F ′ ̸= F and G′ ̸= G: this is the most general
case where both the graph and the features are
randomized. For this problem we distinguish some
cases where optimal reconstruction can be achieved
in polynomial time.

Remark 1.1. Our framework can be combined with any
data-randomization method as long as this method is
known to the reconstruction algorithms. Here, we focus
our attention on a randomization model similar to the
one presented in [8]. However, our methodology is
independent of the randomization procedure.

1.1 Related work Our problem is primarily moti-
vated by randomization techniques used for privacy-
preserving graph analysis, like for example the ones pre-
sented in [1,8]. In [16] topological similarity of nodes is
used to recover original links from a randomized graph.
However, to the best of our knowledge we are the first to
address the inverse problem of reconstructing a pair of
original graph and feature vectors of individuals given
their observed randomized versions.

In [14] the authors try to infer the links between
individuals given their feature vectors. The main

difference with our present work is that here we assume
that a randomized version of the graph and the feature
vectors is observed as part of the input – in [14] only
feature vectors were given as part of the input. From
the algorithmic point of view, the goal in [14] was to
sample the space of possible graphs; here the goal is to
find the most probable graphs and feature vectors given
their randomized counterparts.

Related to ours is also the work on link-based
classification – see [2, 9, 12, 13] and references therein.
The goal there is to assign labels to nodes in a network
not only by using the features appearing in the nodes,
but also the link information associated with them.
There are two main differences between our setting and
collective classification: first, in collective classification,
there are no randomized observations associated with
every node. Therefore, the label of every node is decided
based on the labels of its neighbors. In our case, the
randomized version of the feature vectors F ′ can be used
to decide whether a feature exists in a node or not. Even
more importantly, link-based classification techniques
assume that the network structure is not randomized
but fixed. We, on the other hand, consider the case
where the links between nodes are also randomized.

Link-based classification is a special case of the
more general problem of classification with pairwise
relationships among the objects to be classified. Such
problems have been studied from many different view
points (see [3] Ch. 8) and have been encountered
in many applications domains (e.g., in [5, 7]). The
difference between these problem formulations and ours
is that in our case the pairwise relationships (i.e., links
in the graph) between the objects to be classified are
not fixed, but often randomized versions of the true
relationships.

1.2 Roadmap The rest of the paper is organized as
follows: in Section 2 we give the necessary notation and
describe some basic assumptions about our model. The
formal problem definitions are given in Section 3 and the
algorithms are described in Section 4. Section 5 presents
our experimental evaluation on both synthetic and real
datasets, and we conclude the paper in Section 6.

2 Preliminaries

2.1 Basic notation Throughout we assume that
there is an underlying true unweighted, undirected
graph G(V,E) with n nodes V = {1, . . . , n}. Each node
i is associated with 0–1 feature vector fi ∈ {0, 1}k. That
is, every node is associated with k binary features, such
that fiℓ = 1 if node i has feature ℓ. Otherwise, fiℓ = 0.
In the case of social networks, the binary feature vector
of each individual may represent her hobbies, interests,

diseases suffered, skills, products bought or conferences
published in.

For ease of exposition, we represent graph G(V,E)
by its n× n adjacency matrix, which we also denote by
G. We use gij to refer to the (i, j) cell of G, and we
have that gij = 1 if there exists an edge between nodes
i and j in the graph. Otherwise gi,j = 0. Similarly we
use F to denote the n × k 0–1 matrix that represents
the features of the individual nodes. We use fi to refer
to the i-th row of matrix F , which in turn corresponds
to the feature vector of node i, and fiℓ to refer to the ℓ
feature of node i, which in turn is the (i, ℓ) cell of matrix
F .

We assume that the existence of a certain edge in G
is independent of the other edges of G and depends only
on the feature vectors of endpoint nodes for the edge. As
shown in [16], there are benefits in considering also the
local topologies of nodes when recovering randomized
networks. Incorporating this work into our approach
and thus getting rid of the independence assumption is
however left as future work.

2.2 Similarity functions As we have already dis-
cussed in the introduction, our basic assumption is that
nodes that are connected in G are likely to have simi-
lar feature vectors, and nodes that have similar feature
vectors are likely to be connected in G. In order to mea-
sure the similarity between two feature vectors, we need
to define a similarity function. Our similarity functions,
generally denoted by sim, map pairs of {0, 1}k vectors to
positive reals. That is, sim : {0, 1}k × {0, 1}k → R. We
focus our attention to similarity functions that consider
features independently and more specifically to similar-
ity functions that are defined as the summation of the
similarity of each individual attribute. That is, the sim-
ilarity of vectors fi and fj is computed as

sim (fi, fj) =
k∑

ℓ=1

sim (fiℓ, fj,ℓ) ,

We focus our attention to two classes of similarity func-
tions that we call Dot Product (DP) and Hamming
(H).

DP similarity functions : In these similarity func-
tions the more 1-entries two vectors fi and fj share
the more similar they are considered. The dot prod-
uct similarity simdp between these vectors is an ob-
vious instance of a DP similarity:

simdp (fi, fj) =
k∑

ℓ=1

fiℓ · fj,ℓ.

H similarity functions : In these similarity func-
tions, the more entries (either 1s or 0s) two vector
share, the more similar they are considered. An
example of such similarity function is the simple
Hamming similarity function simH where

simH (fi, fj) =
k∑

ℓ=1

(
1 − |fiℓ − fj,ℓ|

)
.

We use similarity functions to capture the belief
that the more similar the feature vectors fi and fj are,
the more probable it is for the edge gij to exist. We
model this by setting the probability of edge gij to be
an exponential of sim (fi, fj). That is,

Pr (gij = 1|fi, fj) =(2.1)

=
1
Z

exp (α sim (fi, fj))

=
1
Z

exp

(
α

k∑
ℓ=1

sim (fiℓ, fjℓ)

)
,

where Z and α are the appropriate normalization fac-
tors. Similarly,

Pr (gij = 0|fi, fj) =(2.2)

1
Z

exp
(
α

k∑
ℓ=1

(1 − sim (fiℓ, fjℓ))
)
,

and we require α and Z to be set so that
Pr (gij = 1|fi, fj) + Pr (gij = 0|fi, fj) = 1. Since we as-
sume that the existence of edges in G depends only on
the feature vectors, we have

Pr (G|F) =
∏
i<j

Pr (gij |fi, fj) .(2.3)

2.3 Data randomization methods In our setting,
we assume that the true values of G and F are not
observed. Rather, only a randomized version of them is
available. We denote these randomized versions by G′

and F ′ respectively. Note that both G′ and F ′ have the
same number of nodes and features as the original G
and F . The randomization method can only flip entries
of the G and F tables: 0-entries can be transformed into
1s and vice versa.

To model the randomization, we assume no prior in-
formation about G or F and so we use uniform prior dis-
tributions for them. Several data-randomization meth-
ods can be adopted, each having its own advantages and
disadvantages. For concreteness, we assume a specific
randomization method that we call two-phase random-
ization. The method takes as input a 0–1 matrix X and

integer value m and outputs a randomized version of
this matrix X ′ = R (X,m). Matrix X ′ is created from
X in two steps.

Step 1: Convert m, 1-entries from matrix X into 0s.
In this way intermediate matrix X1 is formed.

Step 2: Convert m 0-entries from matrix X1 into 1s in
order to form the final graph X ′.

Assume that the original matrix X had a total of N
entries (cells) and N1 of those were 1s, then it is obvious
that matrix X ′ will also have N1 1s. For a fixed
randomization method we can compute the probability
of the original matrix X given the observed matrix X ′

by a simple application of the Bayes rule. That is,

Pr (X|X ′) =
Pr (X ′|X) Pr (X)

Pr (X ′)

Notice that since X ′ is the observed matrix, Pr (X ′) is
fixed. Also, since we assume X to have a uniform prior
distribution, Pr (X) is a constant. Therefore, the above
equation becomes

Pr (X|X ′) ∝ Pr (X ′|X)(2.4)

=
∏
i,j

Pr
(
x′

ij |xij

)
.

The last derivation assumes independence of the entries
xij of matrix X. For the specific randomization method
we discussed above, and for specific entries x and x′ of
matrices X and X ′ the probabilities Pr (x′|x) can be
easily computed as follows:

Pr (x′ = 0|x = 0) =
N − N1

N − N1 + m
,(2.5)

Pr (x′ = 1|x = 0) =
m

N − N1 + m
,(2.6)

Pr (x′ = 0|x = 1) =
m

N1
· N − N1

N − N1 + m
,(2.7)

Pr (x′ = 1|x = 1) =
N1 − m

N1
+

m

N1

m

N − N1 + m
.(2.8)

Note, that Equations (2.5), (2.6), (2.7) and (2.8) un-
like Equation (2.4) are specific to the randomization
method we described above. We picked this random-
ization method because it is commonly used in privacy-
preserving applications (see for example [8] and [1]).

In the above equations X can be instantiated by
either G or F . When X is instantiated with G we
have that N =

(
n
2

)
and N1 = |E|, while when it is

instantiated with F we have that N = nk and N1 is the
total number of 1-entries in feature matrix F . Matrices
G and F are randomized independently from each other
under this model.

3 Reconstruction problems

At a high-level, the problem we are trying to solve is
the following: given observations G′ and F ′ reconstruct
the original forms of G and F . We call this problem the
Reconstruction problem.

We adopt a maximum-likelihood approach where
the goal is to find the most probable G and F given the
observations G′ and F ′. That is, the objective is to find
G and F such that Pr (G,F |G′, F ′) is maximized. Using
Bayes rule this probability can be easily decomposed as
follows:

Pr (G,F |G′, F ′) =
Pr (G′, F ′|G,F) Pr (G,F)

Pr (G′, F ′)
∝ Pr (G′, F ′|G,F) Pr (G,F)
= Pr (G′|G) Pr (F ′|F) Pr (G,F) .

In the first step of the above decomposition we simply
use Bayes rule. In the second step, we ignore the
denominator, because Pr (G′, F ′) is constant. Finally,
the decomposition of Pr (G′, F ′|G,F) into the product
Pr (G′|G) Pr (F ′|F) is due to the assumption that G and
F are perturbed independently.

Probabilities Pr (F ′|F) and Pr (G′|G) can be com-
puted using Equation (2.4). The joint probability of G
and F can be further decomposed as follows:

Pr (G,F) = Pr (G|F) Pr (F)
∝ Pr (G|F)

=
∏
i<j

Pr (gij |fi, fj) .

Note that term Pr (F) was eliminated since F has a
uniform prior distribution. Finally, factors Pr (gij |fi, fj)
can be computed using Equations (2.1) and (2.2).

For conventional and practical reasons, in-
stead of maximizing Pr (G,F |G′, F ′) we minimize
− log Pr (G,F |G′, F ′). We call this quantity the energy
E of the reconstruction defined as,

E (G, F) = − log Pr (G,F |G′, F ′)
= − log Pr (G′|G) − log Pr (F ′|F)(3.9)

− log Pr (G,F) .

Note that in the energy functions we use as arguments
the variables whose value is unobserved. Therefore,
G′ and F ′ do not appear as arguments because they
correspond to constants. The formal definition for
reconstruction problems follows.

Problem 2. (Reconstruction problem) Given a
data-randomization method, a feature similarity func-
tion sim, observed graph G′, and feature vectors F ′, find
G and F such that E (G, F) is minimized.

Two special cases of the Reconstruction problem are
of interest. In this section we define them formally and
in the next section we give algorithms for solving them.
Recall that the data-randomization method randomizes
G and F independently. Therefore, it can be the case
that only one of the two gets randomized and not
necessarily both of them. The G-Reconstruction
and the F-Reconstruction problems refer to exactly
these cases.

We start with the G-Reconstruction problem
where only the matrix G gets randomized to G′, while
the features maintain their original values. Since F ′ =
F , we have that Pr (F ′|F) = 1 and the problem becomes
that of finding the original graph G that minimizes
energy function

E (G) = − log Pr (G, F ′|G′, F ′)
= − log Pr (G′|G) − log Pr (G,F ′)

=
∑
i<j

(
− log Pr

(
g′ij |gij

)
− log Pr

(
gij |f ′i , f ′j

))
.

(3.10)

The elements in the summation can be evaluated
using Equations (2.1), (2.2) and (2.4). This G-
Reconstruction problem is defined formally below.

Problem 3. (G-Reconstruction problem) Given
a data-randomization method, a feature similarity func-
tion sim, randomized graph G′, and feature vectors F ′,
find G such that E (G) (Equation (3.10)) is minimized.

The F-Reconstruction problem is symmetric to
Problem 3. The only difference is that now only the
features F are randomized to F ′, while the graph main-
tains its original structure. Since G′ = G, we have that
Pr (G′|G) = 1 and the the problem is to find the original
vectors of features F that minimize energy function

E (F) = − log Pr (G, F |G′, F ′)
= − log Pr (F ′|F) − log Pr (G, F)

=
n∑

i=1

k∑
ℓ=1

(
− log Pr (f ′

iℓ|fiℓ) − log Pr
(
g′ij |fi, fj

))
.

(3.11)

As before the elements of the summation in Equa-
tion (3.11) can be computed from Equations (2.1), (2.2)
and (2.4). Note now that the only unknown in the en-
ergy function are the feature vectors F . We call the
problem of finding the most probable feature vectors
the F-Reconstruction problem and we formally de-
fine it below.

Problem 4. (F-Reconstruction problem) Given
a data-randomization method, a feature similarity func-
tion sim, randomized feature vectors F ′, and graph

G′, find the feature vectors F such that E (F) (Equa-
tion (3.11)) is minimized.

4 Algorithms

We start this section by showing that the G-
Reconstruction and F-Reconstruction problems
can be solved optimally in polynomial time (Sections 4.1
and 4.2 respectively). The solution to the Recon-
struction problem is slightly more involved and we
discuss it in Section 4.3.

4.1 Algorithms for G-Reconstruction The ob-
jective in the G-Reconstruction problem is to mini-
mize energy E (G) given in Equation (3.10). If we use

β (gij) ≡ − log Pr
(
g′ij |gij

)
− log Pr

(
gij |f ′i , f ′j

)
,

then the energy to be minimized can be simply written
as a summation of

(
n
2

)
terms, each one of which depends

on a single gij value. That is,

E (G) =
∑
i<j

β (gij) .

In order to minimize E (G) it is enough to minimize
each term of the summation separately. Therefore, an
optimal algorithm for the G-Reconstruction prob-
lem simply decides whether an edge gij exists or not in
the original graph. That is, the algorithm goes through
all the edges gij and if β (gij = 1) < β (gij = 0) it sets
gij = 1. Otherwise, it sets gij = 0.

We call this algorithm OptG. OptG has to go through
all the

(
n
2

)
edges and for each edge (i, j) compute the

similarity between feature vectors fi and fj . If the
time required for a similarity computation is O (Ts) the
running time of the OptG algorithm is O

(
n2Ts

)
. In our

case, Ts = O(k) and thus the running time of the OptG
algorithm is O

(
n2k

)
.

4.2 Algorithms for F-Reconstruction We start
this section by giving a polynomial-time algorithm for
solving the F-Reconstruction problem optimally.
We call this algorithm OptF; the basic principles of the
algorithm originate from work on image restoration in
computer vision (see for example [7, 10]).

Recall that in the F-Reconstruction problem,
the goal is to find F such that energy function E(F)
(Equation (3.11)) is minimized. In other words, the
goal is to find what values from {0, 1} to assign to the
nk variables fiℓ, with 1 ≤ i ≤ n and 1 ≤ ℓ ≤ k.

The high-level idea of the OptF algorithm is to
construct a flow graph HF . The flow graph HF has
one node viℓ for every variable fiℓ. In addition to these
nk nodes it also has terminal nodes s and t. Weighted

Algorithm 1 The OptF algorithm for the F-
Reconstruction problem.

Input: Observed feature matrix F ′ and graph G′ =
G.
Output: Original feature matrix F .

1: Construct flow graph HF

2: (S, T) ← Min-Cut(HF)
3: for all viℓ ∈ S do
4: fiℓ = 0
5: for all viℓ ∈ T do
6: fiℓ = 1

directed edges connect these nk + 2 nodes. The details
of the edge addition process will be described shortly.

Assume a cut (S, T) of HF such that nodes s ∈ S
and t ∈ T . Any such cut can be described by nk binary
variables fiℓ with 1 ≤ i ≤ n and 1 ≤ ℓ ≤ k, such
that fiℓ = 0 if viℓ ∈ S and fiℓ = 1 if viℓ ∈ T . Therefore,
there is a relationship between cuts in HF and solutions
to the F-Reconstruction problem. We formalize this
relationship in the following definition.

Definition 1. (Min-Cut property of E (F)) En-
ergy function E (F) has the Min-Cut property if there
exists a flow graph HF such that the minimum weight
cut (S, T) of HF that separates terminals s and t cor-
responds to the minimum-energy configuration of vari-
ables fiℓ.

The following lemma is a consequence of [10].

Lemma 4.1. Energy function E (F) given in Equa-
tion (3.11) has the Min-Cut property both for DP and
Hamming similarity functions.

Since energy function E(F) has the Min-Cut property,
the OptF algorithm simply constructs the flow graph
HF and then solves the Min-Cut problem on HF .
This high-level idea of the OptF algorithm is depicted
in the pseudocode shown in Algorithm 1. The following
theorem is a direct consequence of Lemma 4.1.

Theorem 4.1. For DP and Hamming similarity
functions the F-Reconstruction problem can be
solved optimally in polynomial time using the OptF al-
gorithm.

The running time of the OptF algorithm is the time
required for constructing the flow graph (O (|E|k)) and
the time required for solving the Min-Cut problem on
the flow graph. Note that in practical cases |E| = O(n)
although it can be as high as

(
n
2

)
. If the time of the Min-

Cut computation is O (TC), then the total running time
of the OptF algorithm is O (|E|k + TC). The running

time of the Min-Cut algorithm depends on the sparsity
of the graph. Also, the flow graph HF is very shallow;
all paths from s to t are of length 2. Due to this special
structure of the HF graph we use the specialized Min-
Cut algorithm introduced in [4]. A proper review of
Min-Cut algorithms can be found in [6].

Here we give the details of the construction of the
flow graph HF . Recall that the minimization function
is E (F), given in Equation (3.11). For simplicity
of exposition consider the following transformation of
Equation (3.11). Define

γ (fiℓ) ≡ − log Pr (f ′
iℓ|fiℓ) ,

δ (fiℓ, fjℓ) ≡ − log Pr
(
g′ij |fi, fj

)
.

Then we can express E (F) simply by

E (F) =
n∑

i=1

k∑
ℓ=1

(
γ (fiℓ) + δ (fiℓ, fiℓ)

)
.

The flow graph HF has nk + 2 vertices
{s, t, v11, . . . , vnk}. Each non-terminal vertex viℓ

encodes a binary variable fiℓ whose value we want to
determine.

Consider now variable fiℓ: if γ (fiℓ = 1) >
γ (fiℓ = 0), then fiℓ is inclined towards taking value
0 and thus an edge s → viℓ is created with weight
γ (fiℓ = 1) − γ (fiℓ = 0). Otherwise, if γ (fiℓ = 1) <
γ (fiℓ = 0), variable fiℓ is inclined towards value 1,
and thus directed edge viℓ → t is added in HF with
weight γ (fiℓ = 0) − γ (fiℓ = 1). Finally for pairs of
variables (fiℓ, fjℓ) such that g′ij = 1, nodes viℓ and
vjℓ are connected with an undirected edge with weight
(δ(0, 0) + δ(1, 1) − δ(0, 1) − δ(1, 0)) /2.

Although the OptF algorithm solves F-
Reconstruction optimally in polynomial time,
it is quite inefficient for large values of n or k. A faster,
though suboptimal, alternative is the NaiveF shown in
Algorithm 2. This is a local iterative algorithm that in
every iteration goes through all the entries of matrix
F one by one and sets them to 0 or 1, depending on
which value minimizes the energy E (F). The notation
(F−iℓ, fiℓ = 1) refers to a matrix that has the same
entries as F in all cells except for cell (i, ℓ) that is
set to 1. The running time of the NaiveF algorithm
is O (ImaxnkTS), where TS is again the time required
for computing the similarity between two vectors of
dimensionality k. In our case, TS = O(k) and thus the
overall running time of NaiveF is O

(
Imaxnk2

)
. NaiveF

is much more efficient than the optimal OptF algorithm;
its complexity can be further improved by substituting
some of the loops with matrix operations. Despite the
running-time advantage the NaiveF algorithms gives
solutions that are only locally, but not necessarily
globally optimal.

Algorithm 2 The NaiveF algorithm for the F-
Reconstruction problem.

Input: Observed feature matrix F ′ and matrix
G′ = G, and maximum number of iterations Imax.
Output: Original feature matrix F .

1: F = F ′ iter = 1
2: while iter < Imax do
3: for i = 1 to n do
4: for ℓ = 1 to k do
5: if E (F−iℓ, fiℓ = 1) <
6: E (F−iℓ, fiℓ = 0) then
7: fiℓ = 1
8: else
9: fiℓ = 0

10: iter = iter + 1

4.3 Algorithms for Reconstruction problem
We start this section by observing that an algorithm
similar to the OptF algorithm can be used for solv-
ing some instances of the Reconstruction problem
optimally in polynomial time. We call this algorithm
the OptBoth algorithm. However, the construction of
the flow graph in this case is slightly more complex
than the construction of graph HF that we described
in Section 4.2. Most importantly, the OptBoth algo-
rithm solves the Reconstruction problem only when
the similarity function used for computing the proba-
bility Pr (G|F) in Equation (2.3) is the DP similar-
ity function. For general similarity functions we give
an efficient greedy but suboptimal algorithm that we
call NaiveBoth and which is a simple extension of the
NaiveF algorithm that we described in Section 4.2 (Al-
gorithm 2).

Simple, but lengthy, manipulations (not presented
here) can transform the energy function E (G, F) of
Equation (3.9) to a summation of three terms as follows:

E (G,F) =
∑
i<j

σg (gij) +
n∑

i=1

k∑
ℓ=1

σf (fiℓ)

+
∑
i<j

k∑
ℓ=1

σ (gij , fiℓ, fjℓ) ,

where

σg (gij) = αkgij − log Pr
(
g′ij |gij

)
,

σf (fiℓ) = − log Pr (f ′
iℓ|fiℓ) ,

σ (gij , fiℓ, fjℓ) = α(1 − 2gij) sim (fiℓ, fjℓ) .

The high-level description of the OptBoth algorithm is
the same as this of OptF (Algorithm 1): Initially a flow
graph H with terminal nodes s and t is constructed

and then Min-Cut problem is solved in H to separate
terminals s and t. The details of the construction
of H are different from those of HF . After all, the
corresponding objective functions E (G,F) and E (F)
are also different.

If we can define a mapping between the nodes in
H and the variables gij and fiℓ (1 ≤ i ≤ n, 1 ≤
ℓ ≤ k), then any cut (S, T) of H will correspond to
an assignment of values in {0, 1} to these variables.
There are cases in which this mapping actually exists.
We formalize this relationship in the following definition
that is similar to Definition 1 in Section 4.2.

Definition 2. (Min-Cut property of E (G,F))
Energy function E (G,F) has the Min-Cut property

if there exists a flow graph H such that the minimum
weight cut (S, T) of H that separates terminals s and
t corresponds to the minimum-energy configuration of
variables gij and fiℓ with 1 ≤ i ≤ n and 1 ≤ ℓ ≤ k.

The following lemma is a consequence of [10].

Lemma 4.2. The energy function E (G,F) given in
Equation (3.9) has the Min-Cut property only for DP
similarity function.

Therefore, the OptBoth algorithm can only be used
for the DP similarity function. We give now some of
the details of the construction of H. Apart from the
terminal nodes s and t, H contains the following sets
of nodes: (a) one node aij for every variable gij with
1 ≤ i ≤ n and i < j ≤ n, (b) one node biℓ for every
variable fiℓ with 1 ≤ i ≤ n and 1 ≤ ℓ ≤ k, and (c)
one node uijℓ for every triplet of variables (gij , fiℓ, fjℓ).
Therefore there are a total of

((
n
2

)
+nk+

(
n
2

)
k+2

)
nodes

in H.
Connections between nodes aij and biℓ and between

the latter and terminals s and t are made using the
same principles as in the construction of HF . The only
difference here is that functions σg and σf are used to
evaluate edge weights, instead of function γ used in
HF . Additional edges aij → uijℓ, biℓ → uijℓ, bjℓ →
uijℓ, uijℓ → t, with weight α are also added in H. When
the minimum cut (S, T), with s ∈ S and t ∈ T is
found then all variables gij (or fiℓ) for which aij ∈ S
(or biℓ ∈ S) are assigned value 0. Otherwise they are
assigned value 1.

As we have already mentioned, the main disadvan-
tage of the OptBoth algorithm is the size of the H graph.
Even though the specialized Min-Cut algorithm of [4]
can solve such problem instances relatively efficiently,
the memory requirements are still a bottleneck for large
graphs.

For arbitrary similarity functions, including Ham-
ming similarity, the energy function E (G, F) does not

Algorithm 3 The NaiveBoth algorithm for the general
Reconstruction problem.

Input: Observed graph G′ and feature matrix F ′,
and maximum number of iterations Imax.
Output: Original graph G and feature matrix F .

1: F = F ′, G = G′, iter = 1
2: while iter < Imax do
3: for i = 1 to n do
4: for ℓ = 1 to k do
5: if E (G,F−iℓ, fiℓ = 1) >
6: E (G,F−iℓ, fiℓ = 0) then
7: fiℓ = 1
8: else
9: fiℓ = 0

10: for j = i + 1 to n do
11: if E (G−ij , gij = 1, F) >
12: E (G−ij , gij = 0, F) then
13: gij = 1
14: else
15: gij = 0
16: iter = iter + 1

have the Min-Cut property. In this case we can solve
the Reconstruction problem using the NaiveBoth al-
gorithm. The pseudocode of the algorithm is shown in
Algorithm 3. The NaiveBoth algorithm is a simple ex-
tension of the NaiveF algorithm; it works iteratively and
in every iteration it goes through variables gij and fiℓ

and fixes their value to the one that locally minimizes
the energy E (G,F). We will refer to the NaiveBoth al-
gorithms utilizing either DP or H similarity with terms
NaiveBoth(DP) and NaiveBoth(H) respectively.

4.4 Computational speedups All the algorithms
we described above and particularly the optimal OptF
and OptBoth algorithms are rather inefficient when it
comes to graphs with large number of nodes and feature
vectors with many dimensions. In order to increase effi-
ciency, we resort to the classical method of dividing the
input problem instance into smaller instances, solving
the reconstruction problem in each of these instances
and then combine the results. Algorithm 4 shows how
the Split routine works for the general Reconstruc-
tion problem.

Routine BFS-Split (G, i, d) creates for every node
i subgraph G′

i; G′
i is the subgraph of G′ that contains

all the nodes that are in distance at most d1 from the
node i in the Breadth-First (BFS) tree rooted at i. If
this subgraph has size less than r(n), then also nodes at
distance d2 are included. For reasonable speedups we
set d1 = 1, d2 = 2 and r(n) = 3

√
n. The reconstruction

of G′
i, F ′

i may be done by invoking any of the algorithms

Algorithm 4 The Split routine for speeding up the
algorithms for Reconstruction problems.

Input: Observed graph G′ and feature matrix F ′.
Output: Original graph G and feature matrix F .

1: for i ∈ {1, . . . , n} do
2: (G′

i, F
′
i) =BFS-Split(G′, i, d1, d2, r)

3: (Gi, Fi) =RecAlgo
(
G′

i, F
′
i

)
4: G =Combine(G1, . . . , Gn)
5: F =Combine(F1, . . . , Fn)

described in the previous sections. In the pseudocode
shown in Algorithm 4 we use RecAlgo to refer to any of
these algorithms. Observe that every node i ∈ V may
participate in more than one subgraphs, and therefore
more than one reconstruction values (either 0s or 1s)
might be assigned to it. The Combine function simply
assigns to every node i the value (0 or 1) that the
majority of its reconstructions have suggested.

For any method M we will denote with S-M (e.g.
S-OptBoth) the method that uses Split speed-up com-
bined with M.

5 Experiments

The goal of the experimental evaluation is (a) to demon-
strate the usefulness of our framework in reconstruct-
ing the original data and (b) to explore the advantages
and shortcomings of the different algorithms for the re-
construction problems. All the reported results are ob-
tained by running our C++ implementation of the al-
gorithms on 2.3 GHz 64-bit Linux machine.

5.1 Data sets

5.1.1 Synthetic data: A synthetic dataset consist-
ing of n nodes and k features per feature vector is gen-
erated as follows: first we generate n feature vectors.
Then, each one of these vectors is associated with a
node (randomly). Nodes are connected with probabil-
ity proportional to the similarity of their corresponding
feature vectors. In order to maintain some structure in
the constructed graph the n feature vectors are gener-
ated by first generating K centroid feature vectors and
then constructing the rest n − K vectors to be noisy
versions of one of the K centroid vectors. In the exper-
iments we use a dataset generated as above for n = 200
and k = 20. We controlled the probability of edges so
that the graph G generated has 557 total edges.

5.1.2 Real-world data: The Dblp dataset contains
data collected from the DBLP Bibliography database2.
For the purposes of our experiments, we selected 19
conferences, viz. www, sigmod, vldb, icde, kdd,
sdm, pkdd, icdm, edbt, pods, soda, focs, stoc,
stacs, icml, ecml, colt, uai, and icdt. These
conferences act as the k = 19 dimensions of our feature
vectors. An author has a feature if he has published
in the conference corresponding to this feature. The
corresponding graph has authors as nodes; two authors
are connected by an edge if they have co-authored at
least two papers. By ignoring least prolific authors we
obtain a dataset consisting of 4981 nodes and 20670
edges.

The second real dataset is the Terror data3. The
nodes of the graph in the Terror data correspond
to terrorist attacks and the features describe several
detailed characteristics of the attacks. Two attacks are
connected in the graph if they have occurred in the same
location. The Terror dataset contains 645 nodes and 94
features. The corresponding graph has 3172 edges.

5.2 Results In this section we evaluate the effective-
ness of the different algorithms with respect to the re-
construction task. We use two evaluation metrics: (a)
the minus loglikelihood and (b) the error ratio of the
obtained reconstructions. The minus loglikelihood of
a reconstruction G and F is in fact the energy score
E (G,F) defined in (Equation (3.9)) (or its specializa-
tions E (G) – Equation (3.10) – and E (F) – Equa-
tion (3.11)). The lower the values of the negative log-
likelihoods the better the reconstructions. The error
ratio of a reconstructed matrix X given its randomized
version X ′ and its original version X0 is defined as the
ratio

number of differing entries between X and X0

number of differing entries between X ′ and X0
.

The lower the values of the error ratio the more similar
the reconstructed matrices to the original dataset.

In all cases, we show the minus loglikelihoods and
error ratios of the reconstructions as a function of
the randomization amount m imposed on the original
dataset. Recall that the randomization of the data
is done using the randomization method described in
Section 2. The larger the value of the parameter m the
more noisy the randomized version of the data. In all
cases, except if it is explicitly mentioned otherwise, we
use the H similarity function in our computations.

2http://www.informatik.uni-trier.de/ ley/db/

3The dataset is available at
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.65

0.7

0.75

0.8

Randomization amount

Figure 2: Error ratio of the reconstructions produced
by OptG for the Dblp dataset.

5.2.1 Results for G-Reconstruction: Figure 2
shows the error ratios of the graph reconstructions
obtained by the OptG algorithm. For the experiment we
use the Dblp dataset and varying randomization amount
m ∈ { 100, 200, 300, 500, 800, 1200, 1800, 2500, 3500,
5000 }. For values of m > 300, the error ratio stabilizes
to a value close to .675. Therefore, in the simple setting
of G-Reconstruction, even on high levels of noise
the OptG algorithm’s performance doesn’t suffer and it
can still reconstruct many edges of the original network.
Generally the reconstruction rate stays between .65 and
.75 without significant variation.

A single run of OptG on the Dblp dataset does not
exceed 5.1 seconds in running time.

5.2.2 Results for F-Reconstruction: In this ex-
periment, we report the error ratio and the negative
loglikelihoods of the reconstructions obtained by the
NaiveF and the OptF algorithms. For this experi-
ment we use the synthetic dataset Gendata and we test
the performance of the algorithms for randomization
amounts m ∈ { 0, 15, 30, 45, 60, 75, 90 }. In order to be
fair in the comparison of the two algorithms, for every
experiment we first obtain the optimal reconstruction
F by running OptF. Then, we run the same experiment
with NaiveF; we fix the number of iterations of NaiveF
so that the running times (in terms of clock time) of the
two methods are approximately the same.

Figure 3 shows the error ratio of the reconstructions
obtained by OptF and NaiveF. The results indicate
that NaiveF performs almost as good as the optimal
algorithm for small values of m; for higher values of m
OptF exhibits noticeably better error ratio. Figure 4
shows that the loglikelihoods of the reconstructions
obtained by the two algorithms are similar. That is,
even for large values of m, the NaiveF heuristic gives
reconstructions with energy scores surprisingly close

to the energy scores of the optimal solution. The
comparative study of Figures 3 and 4 shows that the two
reported metrics (error ratio and loglikelihood) measure
different qualities in the obtained reconstructions.

The running time of the OptF algorithm for this
dataset is approximately 10 msecs.

0 10 20 30 40 50 60 70 80 90
50

60

70

80

90

100

Randomization amount

Percentage of errors left in F after reconstruction

NaiveF
OptF

Figure 3: Error ratio of the reconstructions produced
by OptF and NaiveF for the Gendata dataset.

0 10 20 30 40 50 60 70 80 90
−1000

−900

−800

−700

−600

−500

−400

−300

Randomization amount

Log−likelihood of reconstructing F

Randomized
NaiveF
OptF

Figure 4: (Minus) Log-likelihoods (energy scores) of the
reconstructions produced by OptF and NaiveF for the
Gendata dataset.

5.2.3 Results for GF-Reconstruction: In this
section we test the reconstructions obtained by the
different algorithms for the the GF-Reconstruction
problem. As before, we compare the methods by
reporting the loglikelihoods and error ratios of their
results. We only show here the results of the Terror
dataset. The results for Dblp and Gendata are either
similar or better but we omit their presentation due to
space constraints.

Before presenting the actual results, several com-
ments are in order: By Lemma 4.2, we know that
OptBoth is only optimal when similarity function DP
is used in the energy computations. Therefore, we need

0 40 80 150 250 400 600
0

2

4

6

8

10

12

14
x 10

4 Change in log−likelihoods

Randomization amount

∆
Lo

g−
lik

el
ih

oo
d

S−OptBoth
NaiveBoth (DP)
S−NaiveBoth (DP)
NaiveBoth (H)
S−NaiveBoth (H)

Figure 5: Improvement in the Loglikelihood (energy)
scores of the reconstructions produced by OptBoth and
NaiveBoth for the Terror dataset.

to distinguish the cases where we use DP or H sim-
ilarity. Thus besides every algorithm we indicate in a
parenthesis the similarity function it used for its calcula-
tions. Although OptBoth is used only for DP similarity,
NaiveBoth can be used both with DP and H. The re-
sults of both OptBoth and NaiveBoth when combined
with Split method are also reported. In fact, the re-
sults of the plain OptBoth method are omitted because
the method failed to complete even for datasets of mod-
erate size. For example, running OptBoth for the Terror
data requires at least 12 GB of memory, and thus the
task cannot be completed on a personal computer.

Figure 5 shows the improvement in the log-
likelihood attained by each method for the Terror
dataset; the improvement is measured with respect to
the log-likelihood of the input (randomized) data. The
change is computed using the optimization function ev-
ery algorithm tries to optimize. For this experiment
we fix the randomization parameter for feature vec-
tors to 350 and vary the randomization parameter of
the graph m ∈ {0, 40, 80, 150, 250, 400, 600}. From the
plot, we can see that for DP similarity, OptBoth com-
bined with Split speedup (i.e., S-OptBoth) achieves
significantly larger improvements to the objective func-
tion than NaiveBoth(DP) and S-NaiveBoth(DP). For
the H similarity function, the NaiveBoth(H) gives
significantly better improvements that the version of
NaiveBoth(H) that is combined with Split routine.

The running times of S-OptBoth, NaiveBoth (DP)
and NaiveBoth(H) for the Terror dataset are on average
59, 20, 27 seconds respectively. A 10× speed-up is
achieved through Split for NaiveBoth methods. The
corresponding running times for Gendata are 2, 0.5 and
0.5 seconds and for Dblp 320, 15, and 35 seconds. The
speedups achieved by Split are of the order of 3× and
20× for Gendata and Dblp data respectively. Therefore,
using the Split speed-up leads to lower-quality results
but it significantly improves the running time of the

methods.
Our experience with the proposed methods suggests

that the nature of the DP function lures the methods
to fill up the matrices with too many ones. Every
1-entry makes other entries more probable to be set
to one, which forms a vicious circle. This can be
prevented either by careful parameter tuning (e.g.,
slightly modifying the correct values of α and Z in
Equations (2.1) and (2.2)) or by using some adaptive
penalties for adding 1-entries. The NaiveBoth(H)
algorithm doesn’t have the same problem, because any
new 1-entries that are introduced may make other
entries also less probably 1.

Note, that our objective function is such that
there may exist plenty of reconstructions with high
likelihood but low structural similarity to the original
data. Taking structural constraints into account when
finding the reconstructions is an issue that we plan to
investigate further in the future.

6 Conclusions

Social network data, the network itself and (or) the
feature vectors of nodes, may become randomized for
various reasons. We studied the inverse problem: how
to reconstruct the original network and the individu-
als’ feature vectors given their randomized counterparts.
We formally defined this reconstruction problem as a
maximum-likelihood estimation problem and identified
some interesting special cases. We also presented op-
timal and heuristic algorithms for solving the different
variants of the problem. A set of preliminary experi-
mental results in real and synthetic data illustrated the
efficacy of our methods. In the future we plan to ex-
plore how our methods could be enhanced by consider-
ing structural constraints on the output reconstructions.

References

[1] Lars Backstrom, Cynthia Dwork, and Jon M. Klein-
berg. Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganogra-
phy. In WWW, pages 181–190, 2007.

[2] Mustafa Bilgic and Lise Getoor. Effective label acquisi-
tion for collective classification. In KDD, pages 43–51,
2008.

[3] Christopher Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[4] Yuri Boykov and Vladimir Kolmogorov. An exper-
imental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
26(9):1124–1137, 2002.

[5] P. Ferrari, A. Frigessi, and P. De Sá. Fast approxi-

mate maximum a posteriori restoration of multi-color
images. Journal of Royal Statistical Society B, 1995.

[6] Andrew V. Goldberg and Satish Rao. Beyond the flow
decomposition barrier. J. ACM, 45(5):783–797, 1998.

[7] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact
maximum a posteriori estimation for binary images.
Journal of Royal Statistical Society, 51:271–279, 1989.

[8] Michael Hay, Gerome Miklau, David Jensen, Don
Towsley, and Philipp Weis. Resisting structural iden-
tification in anonymized social networks. In VLDB,
2008.

[9] David Jensen, Jennifer Neville, and Brian Gallagher.
Why collective inference improves relational classifica-
tion. In KDD, pages 593–598, 2004.

[10] Vladimir Kolmogorov and Ramin Zabih. What energy
functions can be minimized via graph cuts? In ECCV,
pages 65–81, 2002.

[11] Kun Liu and Evimaria Terzi. Towards identity
anonymization on graphs. In SIGMOD Conference,
pages 93–106, 2008.

[12] Qing Lu and Lise Getoor. Link-based classification. In
ICML, pages 496–503, 2003.

[13] S. Macskassy and F. Provost. Classification in net-
worked data: A toolkit and a univariate case study.
Journal of Machine Learning Research, 8:935–983,
2007.

[14] Heikki Mannila and Evimaria Terzi. Finding links and
initiators: a graph-reconstruction problem. In SDM,
pages 1207–1217, 2009.

[15] Xiaowei Ying and Xintao Wu. Randomizing social
networks: a spectrum preserving approach. In SDM,
pages 739–750, 2008.

[16] Xiaowei Ying and Xintao Wu. On link privacy in ran-
domizing social networks. In PAKDD ’09: Proceed-
ings of the 13th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining, pages 28–
39, 2009.

