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ABSTRACT

The data-mining literature is rich in problems asking to assess the
importance of entities in a given dataset. At a high level, existing
work identifies important entities either by ranking or by selection.
Ranking methods assign a score to every entity in the population,
and then use the assigned scores to create a ranked list. The major
shortcoming of such approaches is that they ignore the redundancy
between high-ranked entities, which may in fact be very similar or
even identical. Therefore, in scenarios where diversity is desirable,
such methods perform poorly. Selection methods overcome this
drawback by evaluating the importance of a group of entities collec-

tively. To achieve this, they typically adopt a set-cover formulation,
which identifies the entities in the minimum set cover as the impor-
tant ones. However, this dichotomy of entities conceals the fact
that, even though an entity may not be in the reported cover, it may
still participate in many other optimal or near-optimal solutions.
In this paper, we propose a framework that overcomes the above
drawbacks by integrating the ranking and selection paradigms. Our
approach assigns importance scores to entities based on both the
number and the quality of set-cover solutions that they participate
in. Our methodology applies to a wide range of applications. In a
user study and an experimental evaluation on real data, we demon-
strate that our framework is efficient and provides useful and intu-
itive results.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; G.2.1
[Discrete Mathematics]: Combinatorics—Combinatorial algorithm-

s, Counting problems

Keywords

counting, importance sampling, set cover

1. INTRODUCTION
How can we identify a subset of important entities from a given

population? This question arises in numerous application domain-
s. For example, how can we select a small subset of reviews to
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show to a user from over 35,000 reviews hosted on Amazon.com
for the Kindle Keyboard 3G? Or, as another example, how can we
select a set of experts from a large population of skilled individ-
uals registered on sites like linkedin.com, odesk.com and
guru.com ?

Existing data-mining methods address this type of questions via
entity-ranking or entity-selection methods.

Entity-ranking methods assign a score to each entity and then
report to the user the top-k entities with the highest scores. For ex-
ample, review portals like Yelp or Amazon rank reviews based on
user-submitted helpfulness votes. Such score-assigning schemes
ignore the redundancy between the highly-scored entities. For ex-
ample, the top-k reviews about a laptop may all comment on the
battery life and the weight of the laptop, but may provide no infor-
mation about the quality of its screen or other important features.

Entity-selection methods overcome this drawback by collective-

ly evaluating sets of entities, and reporting the members of the
highest-scoring sets as important. For example, review-selection
methods select a small subset of reviews that collectively comment
upon all the attributes of a particular product [16, 18, 23]. Similar-
ly, expert-selection methods identify a set of skilled experts that can
collectively perform a given task [2, 17]. That is, entity-selection
methods identify the entities in the selected subset as important, and
naïvely dismiss the rest as unimportant. Such a dichotomy conceal-
s the fact that there may be entities not selected in the discovered
solution, but which may participate in equally-good (or almost as
good) solutions.

In this paper, we propose a framework that combines the entity-
ranking and entity-selection paradigms and overcomes their respec-
tive drawbacks. Given a set of entities C, our methods assign an
importance score to entities based on the number of high-quality

solutions that they participate. In particular, we focus on entity-
selection problems, which are formalized as minimum set-cover

problems [1, 14, 16, 17, 21, 23]. The common characteristic of all
these formulations is that the input consists of two parts: (i) a uni-
verse U = {u1, . . . , un} of items that need to be covered, and (ii) a
collection of entities, where each entity is a subset of this universe,
i.e., C = {C1, . . . , Cm} with Ci ⊆ U . Any subset S of entities
whose union contains the entire universe U , i.e., ∪C∈C′C = U , is
called a set cover or simply a cover. The data-mining task is typi-
cally mapped to the problem of finding the minimum set cover. The
assumption in such formulations is that the entities that participate
in the minimum cover compose an important subset. Some of the
applications this formulation are the following.

Review selection: What are the best reviews to display for a given
product? In this application, the universe U consists of all the at-
tributes of the reviewed product. Each review C ∈ C comments on-
ly on a subset C ⊆ U of the attributes. Given the limited attention-



span of the users, the review-selection problem asks for a small set
of reviews that comment on all the attributes of a product [16, 23].

Expert selection: Who are the best experts to select for executing a
given task? In this application, the universe U consists of the skills
required for a particular task. Each expert C ∈ C is represented by
the set of his skills C ⊆ U . The team-formation problem asks for
a small-cardinality team whose members have the required set of
skills [2, 17].

The underlying thesis in this paper is that by simply selecting the
entities in the minimum set cover and dismissing other set-cover
solutions one ignores useful information about the landscape of the
solution space. For example, our analysis of the Guru dataset1 re-
vealed that although there are more than 340 000 registered expert-
s, there are only 200 unique combinations of skills. That is, every
expert is (on average) identical with approximately 1700 other ex-
perts. This means that every set S of cardinality |S| is as good as
1700|S| other teams (on average). However, the set-cover formula-
tion naïvely selects to report as important the members of only one
of these subsets

In our work, we take into consideration the landscape of solu-
tions by adopting a counting framework; instead of focusing on a
single optimal solution, we count the number of high-quality set
covers that each entity participates. We use the cardinality of a set
cover as a measure of its quality; compact covers are preferable,
since they lead to lower-cost solutions.

On a high level, we address the following problem.

PROBLEM 1. We are given a universe of elements U and a set

of entities C where each C ∈ C is a subset of U . The goal is to

evaluate the importance of each entity by counting the number of

compact set covers that it participates.

In the context of reviews, solving Problem 1 will allow us to
to evaluate the utility of each review in the covering of all the at-
tributes of a given product. Intuitively, our methodology will assign
high importance to reviews that cover a large number of a produc-
t’s attributes, or comment on a small number of attributes that are
rarely commented by other reviewers. In expert-management appli-
cations, the scores assigned by our approach will be driven by the
number of skills that each individual can contribute, as well as the
rarity of these skills. Intuitively, these are the individuals who play
a key role in forming effective teams. While we use the domains
of reviews and experts to motivate our work, our methodology is
applicable to any setting that can be expressed in the terms of the
set-covering formulation.

Contribution: Given a set system X = 〈U, C〉, where U is a uni-
verse of elements and C is a set of entities defined as subsets of U ,
our paper proposes a general methodology that assigns importance
scores to entities in C. The score of each entity depends both on
the number and the quality of the set covers that the entity partic-
ipates. Enumerating all the set covers that an entity participates is
a computationally intractable task. Here, we take advantage of the
fact that we are only interested in the number of set covers an enti-
ty participates. Therefore, we develop practical counting schemes
that allow us to accurately estimate this number in polynomial time.
More specifically, we propose a counting algorithm that is based
on Monte Carlo (MC) sampling. The algorithm builds on exist-
ing techniques for counting the number of satisfying assignments
of DNF formulas [22]. We significantly extend this technique in
the following ways: (i) we modify it so that it can efficiently es-
timate the number of set covers of all entities simultaneously; (ii)
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we show how we can incorporate weights that capture the size of
set cover solutions; (iii) we show how to handle efficiently entities
with multiple copies. Finally, our experimental evaluation shows
the scalability of our algorithm, and the utility of our methodology
in different application domains. Also, our user study demonstrates
that our concept of importance is in agreement with human percep-
tion regarding important entities.

Roadmap: The rest of the paper is organized as follows. In Sec-
tion 2 we present an overview of our framework, and in Section 3
we present our algorithms. We present our experimental results in
Section 4 and we discuss the related work in Section 5. We con-
clude the paper with discussion and conclusions in Section 6.

2. THE COUNTING FRAMEWORK
In this paper, we consider problems for which the input con-

sists of two parts: (i) a universe set U = {u1, . . . , un} of item-
s that need to be covered, and (ii) a collection of entities, where
each entity is a subset of this universe, i.e., C = {C1, . . . , Cm}
with Ci ⊆ U . We use the notation X = 〈U, C〉 to represen-
t such an input. We visualize this type of input using a bipartite
graph; the nodes on the one side of the graph correspond to the
elements of U , and the nodes of the other side correspond to the
entities in C. An edge connects a node u ∈ U to node C ∈ C
if u ∈ C. A bipartite-graph representation of input X = 〈U, C〉
with U = {u1, u2, u3, u4} and C = {C1, . . . , C5} is shown in
Figure 1(a).

DEFINITION 1. For input X = 〈U, C〉 we say that a subset S
of the collection C (S ⊆ C) is a set cover or simply a cover of U if

U ⊆
⋃

C∈S C.

For the rest of the paper, we will use L to represent all the subsets
of C and Lsc to represent all possible set covers.

The minimum set cover. A set cover S∗ that has minimum car-
dinality is called a minimum set cover. The problem of finding
the minimum set cover, henceforth called SET-COVER, is a well-
studied NP-hard problem, which can be approximated within a fac-
tor of O(log n) using a simple greedy algorithm [24].

In many application domains, a solution to SET-COVER is a nat-
ural way to select a small subset of C: an entity C of the collection
C is “selected” if and only if C is part of the solution S∗. Then,
the entities in S∗ are rendered more “important” than the entities
not in the solution. However, such a strict dichotomy can be un-
fair. For example, an entity C may be part of another minimum
or near-minimum set cover. Such a case is shown in the following
example.

EXAMPLE 1. Consider the instance of the SET-COVER prob-

lem represented by the bipartite graph shown in Figure 1(a) with

4 items in U , 5 entities in C, and C1 = {u1}, C2 = {u1, u2},
C3 = {u2, u3}, C4 = {u3, u4}, and C5 = {u5}. In this case,

the minimum set-cover solution is C = {C2, C4}. The minimum-

cardinality solution, in which set C3 participates, has cardinality 3.

Nevertheless, there is no reason to believe that set C3 is so much

less important than C2 or C4. After all, C3 has as many elements

as C2 and C4.

Minimal set covers. Instead of focusing on a single minimum-
cardinality solution, we could count the number of solutions that
each entity C ∈ C participates. One way of applying this idea is to
consider the concept of minimal set covers. A set cover S is mini-

mal if S \ C is not a set cover for all C ∈ S . Minimal set covers
have the property that every other cover is a superset of a minimal
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Figure 1: Examples used for illustrating the inadequacy of mini-
mum and minimal set covers in value computations.

cover. In order to estimate the importance of a particular entity C,
one could count in how many minimal covers it participates. Al-
though this initially looks like a natural approach, the following
example indicates that it can lead to unintuitive results.

EXAMPLE 2. Consider the instance of the SET-COVER prob-

lem shown in Figure 1(b). In this instance, U = {u1, u2, u3} and

C = {C′, C, C1, . . . , Cm}, and C1 = C2 = . . . = Cm = {u1},
C = {u1, u2, u3} and C′ = {u2, u3}. Observe that C can cover

all the elements in U . Nevertheless, it participates in a single mini-

mal solution {C}. On the other hand, C′ participates inm minimal

solutions {C′, Ci} for i ∈ {1, . . . ,m}. Even though in this case,

C participates in significantly less minimal solutions than C′, C is

clearly as useful as C′ (since it is actually a superset of C′).

Counting set covers. We overcome the deficiencies of the above
approaches by introducing a score R(C) for every entity C ∈ C.
The cover score (or simply score) of entity C is defined as follows:

R (C) =
∑

S∈Lsc

δ (C,S)w (S) . (1)

In the above equation, Lsc represents all the set covers of 〈U,C〉;
the function δ (C,S) is an indicator variable that takes value 1 if S
is a set cover and takes value 0 otherwise. The term w (S) assigns
to every solution S a weight such that better solutions – smaller
cardinality covers – are assigned higher weights. In other words,
for two set covers S and S ′ if |S| ≤ |S ′|, then w(S) ≥ w(S ′). In
other words, important entities participate in many good set covers
and therefore are assigned higher scores.

In this paper, we consider three weighting schemes:

• Uniform: The uniform scheme assigns a weight of 1 to all set
covers. Formally: w(S) = 1 for every S ∈ Lsc. For every
other S , w(S) = 0.

• Step: The step scheme assigns a weight of 1 to all set covers
of size less or equal to a threshold τ . Formally: w(S) = 1 if
S ∈ Lsc and |S| ≤ τ . Otherwise, w(S) = 0.

• Cardinality-based: The cardinality-based scheme assigns a
weight that decreases with the cardinality of the set cover.
Formally: w(S) = wk > 0, for every S ∈ Lsc and |S| = k;
w(S) = 0 for every S /∈ Lsc.

From the algorithmic point of view, computing R(C) is compu-
tationally intractable; note that there are exponentially many solu-
tions in Lsc. More formally, for the uniform weighting scheme, the

task of estimating R(C) is identical to the task of counting all set
covers for 〈U, C \ {C}〉, which is a #P-complete problem [22].

Discussion: The interpretation of the cover score is the following:
if we sample solutions from L such that every solution S is sam-
pled with probability proportional to w(S) (i.e., good solutions are
sampled with higher probability), then R(C) is proportional to the
probability that the sampled solution contains C.

The Equation (1) indicates that the framework we propose bridges
Bayesian model-averaging [4] with optimization-based data min-
ing. To draw the analogy, the objective function (expressed via the
weight w(·)) corresponds to the Bayesian prior. The validity of the
solution (expressed via the indicator function δ(·, ·)) corresponds
to the probability of the data given the model. At a very high lev-
el, one can think that R(C) is the average “goodness” of solutions
with entity C.

3. ALGORITHMS FOR COUNTING
As already discussed, estimating R(C) is computationally in-

tractable and we cannot hope for computing it exactly in polyno-
mial time. Therefore, we are content with algorithms that approxi-
mate the cover score in polynomial time. In this section, we discuss
such algorithms for the different weighting schemes.

Apart from R(C) we will also compute the sum of the weights
of all the subsets of C. Formally: R =

∑
S∈L

w(S). In some
cases, for clarity of presentation, we will use the uniform weighting

scheme. Under this scheme, R represents the cardinality of set Lsc,
namely, the number of set covers for X = 〈U, C〉.

3.1 Naïve Monte Carlo sampling
We begin by presenting a naïve Monte-Carlo counting algorith-

m. We discuss why this algorithm fails to compute R(·) under the
uniform weighting scheme, but the discussion applies to the other
weighting schemes too.

For input X = 〈U, C〉 one could compute estimates R(C) using
the following procedure: first, set the counters r = 0 and r(C) = 0
for every C ∈ C. Then retrieve N samples from L. For each
sample S , check if S is a set cover. If it is, then: (i) increase the
value of r by 1 and (ii) increase the value of r(C) by 1 for all C ∈
S . In the end of the sampling procedure, report the estimate for
R to be 2mrN−1 and the estimate for R(C) to be 2mr(C)N−1,
where m is the number of entities in C.

The above algorithm, which we call NaiveCounter, is a stan-
dard Monte-Carlo sampling method. Using Chernoff bounds, we
can state the following fact [22, Theorem 11.1].

FACT 1. The NaiveCounter algorithm yields an ǫ-approxi-

mation to R(C) with probability at least 1− δ, provided that

N ≥
4

ǫ2ρc
ln

2

δ
,

where ρc = R(C)
2m

.

The drawback of NaiveCounter is that, as ρc becomes smaller,
the number of samples N required to obtain a good approximation
increases. Since we do not know the value of ρc (in fact, this is
what we are trying to approximate) we have to rely on a lower
bound. In the absence of any evidence, the only reasonable lower
bound is ρc ≥ 1

2m
. This, however, requires an exponential number

of samples, leading to an inefficient and impractical algorithm.

3.2 Importance sampling
We overcome the problem of NaiveCounterwith a novel and

efficient algorithm, based on the principles of importance sam-



Algorithm 1 The CountSimple algorithm.

Input: X = 〈U,C〉 and seed sets M = {M1, . . . ,Md}.
Output: Quantity R =

∑
S∈Lsc

w(S).
1: r ← 0
2: for iterations N , polynomial in d do

3: pickMℓ from M with prob w(Mℓ)∑
d
j=1

w(Mj )

4: S = RandomSample(Mℓ)
5: ℓ∗ = CanonicalRepresenative(S)
6: if ℓ∗ = ℓ then r ← r + w(Sℓ)

7: r ← rw(U)
N

8: return r

pling.2 We call our algorithm Compressed-IC. Our algorithm
works for all our weighting schemes and therefore we present it
here in its full generality.

The algorithm requires as input a seed of d minimal set cov-
ers M = {M1, . . . ,Md}. In principle, all minimal set covers
are required. However, computing all minimal set covers can be a
computationally expensive task. Thus, we propose to use as seed a
subset of all the minimal covers. As we show in our experiments
this is sufficient to accurately estimate the desired counts. Later in
the section, we give details on how to obtain such a seed.

In the sections that follow, we give a bottom-up presentation of
the Compressed-IC algorithm. That is, we describe a sequence
of steps that allow us to modify the classic importance sampling
algorithm in order to efficiently approximate the cover scores.

3.2.1 Overview of importance sampling

We start with an overview of importance sampling for the task
of estimating R. For a minimal set coverMℓ we define Mℓ to be
the collection of all supersets of Mℓ. Given two (small) positive
numbers ǫ and δ, the method provides an ǫ-accurate estimate for R
with probability at least (1 − δ), provided that the following three
conditions are satisfied:

1. We can compute w(Mℓ) =
∑

S∈Mℓ
w(S) for all ℓ = 1, . . . , d

in polynomial time.

2. We can obtain a random sample from each Sℓ; where the sam-
pling space is determined by the weighting scheme w(S).

3. We can verify in polynomial time if S ∈Mℓ.

For the weighting schemes we consider in this paper, we have the
following lemma.

LEMMA 1. For the uniform, step, and cardinality-based weight-

ing schemes, all three conditions above are satisfied.

Due to space constraints, we omit the proof of this lemma.

3.2.2 The CountSimple algorithm

First, we present an algorithm for estimating R = w(L), the
sum of the weights of all the subsets in L, i.e., the collections of
all possible subsets of C. Recall that all three considered weighting
schemes assign a weight of 0 to all subsets that are not set-covers.
Therefore, the problem of computing R is reduced to computing
the sum of the weights of all the set covers

R = w(Lsc) =
∑

S∈Lsc

w(S).

The basic idea is to consider the multiset U = M1 ⊎ . . . ⊎Md,
where the elements of U are pairs of the form (S , ℓ) corresponding
2See the textbook of Motwani and Raghavan [22] for a detailed
discussion on the foundations of this technique.

Algorithm 2 The ImportanceCounter algorithm.

Input: X = 〈U, C〉 and seed sets M = {M1, . . . ,Md}.
Output: Quantities R and R(C) for every C ∈ C.

1: R← 0
2: for C ∈ C do

3: R(C)← 0

4: for iterations N , polynomial in d, do

5: pickMℓ from M with prob w(Mℓ)∑
d
j=1

w(Mj )

6: S = RandomSample(Mℓ)
7: ℓ∗ = CanonicalRepresenative(S)
8: if ℓ∗ = ℓ then

9: R← r + w(Mℓ)
10: for C ∈ Sℓ do

11: R(C)← R(C) +w(Mℓ)

12: for C ∈ C do

13: R(C)← R(C)w(U)
N

14: R← Rw(U)
N

15: return R, R(C) for every C ∈ C

to S ∈Mℓ. I.e., for every set cover S , U contains as many copies
of S as there are Mℓ’s for which S ∈ Mℓ. Notice that the total
weight of U can be trivially computed as w(U) =

∑d

ℓ=1 w(Mℓ).
The multiset U is then divided into equivalence classes, where

each class contains all pairs (S , ℓ) that correspond to the same set
cover S . For each equivalence class, a single pair (S , ℓ) is defined
to be the canonical representation for the class. Now, R can be ap-
proximated by generating random elements from U and estimating
the fraction of those that correspond to a canonical representation
of an equivalent class. The generation of random samples from U

is done by first picking a minimal setMℓ from M and with proba-
bility proportional to the weight of Mℓ. Then, we randomly sample
S from Mℓ. The different weighting schemes imply different sam-
pling methods within Mℓ. However, as Lemma 1 indicates, this
sampling can be done in polynomial time.

The pseudocode of this algorithm, named CountSimple, is
shown in Algorithm 1. The key idea of the algorithm is that instead
of sampling from the whole space L, it only draws samples from U.
Observe that each cover S can contribute weight at most dw(S) in
w(U). Therefore, the ratio ρ = w(Lsc)/w(U) is bounded from
below by 1/d. Following a similar argument as in Fact 1, we can
estimate the value of w(Lsc) using N ≥ 4d

ǫ2
ln 2

δ
samples, i.e., the

number of samples required is polynomial to the size of M.

3.2.3 The ImportanceCounter algorithm

To estimate the values of R(C), we modify Algorithm 1 as fol-
lows: every setM ∈ M needs to be extended so that it contains
set C. Using as M = {M1 ∪ {C}, . . . ,Md ∪ {C}}, we can then
run CountSimple for each entity separately and thus compute
the number of covers that contain C.

Such an approach, however, is computationally expensive. Each
execution of the CountSimple algorithm requires N calls to the
CanonicalRepresentative routine and therefore O(Nmd)
time. Since CountSimple needs to be executed m times, the
total running time isO(Nm2d). Even if N = O(d) any reasonable
seed size is at least d = O(m), implying that the approach needs
time O(m4).

We overcome this computational bottleneck by computing all the
score values R(C) for every C ∈ C in a single (yet modified) call of
the CountSimple routine. Algorithm 2 gives the pseudocode of
this modified algorithm, which we call ImportanceCounter.



The main result of this section is that ImportanceCounter
yields estimates for the m values of R(C) that are as good as ex-
ecuting m times the CountSimple algorithm, while it requires
almost the same number of samples.

THEOREM 1. If the weighting scheme satisfies a certain “s-

moothness” condition, then Algorithm 2 gives an ǫ-approximation

of R(C) and R with probability (1− δ) if

N ≥
(1 + α)4d

ǫ2
ln

2

δ
,

where α is a finite integer greater or equal to 1. Furthermore, for

the uniform weighting scheme α = 1, for the cardinality-based

weighting scheme α = 2, while for the the threshold weighting

there does not exist a finite α for which the above inequality holds.

Although we do not give the proof of the above theorem, we state
the smoothness condition that we require for the weighting scheme
w(·), so that the above theorem holds for finite α.

CONDITION 1. If S and T are set covers with |T | = |S| + 1,

then the weighting function satisfies w(S) ≤ αw(T ) for some

α > 0. In other words, if T is larger than S by one element, the

value of the weighting function cannot drop too much.

Running time: Note that the ImportanceCounter algorithm
requires only N calls to the GenerateSuperset routine, ob-
taining a factor of O(m) improvement over the naïve approach of
executing CountSimplem times.

3.2.4 The Compressed-IC algorithm

Even though ImportanceCounter is much more efficien-
t than NaiveCounter, its running time can still be prohibitive for
very large datasets. Here, we present the Compressed-IC algo-
rithm, which outputs the same scores as ImportanceCounter,
but it is much more efficient in practice.

In many of the datasets we considered, we observed that many of
the entities in C are identical. For example, in the case of reviews,
there are many identical reviews that comment on the same product
attributes. Similarly, in the case of experts, there are many experts
who have exactly the same set of skills. Compressed-IC takes
advantage of this phenomenon while optimizing for running time.

One can observe that, for all our weighting schemes, identical
entities are assigned the same cover scores. Compressed-IC

takes advantage of this observation and compresses all identical
entities into into super-entities. Then, the algorithm assigns scores
to super-entities and in the end it assigns the same score to al-
l the original entities that are part of the same super-entity. The
key technical challenge we face here is to design an algorithm that
operates on this compressed input and still assigns to all entities
the correct scores. We say that a score assignment on the com-
pressed input is correct, if the scores assigned to entities are iden-
tical to the scores that would have been assigned to them by the
ImportanceCounter algorithm before compression.

A naïve way of dealing with identical entities in C is to simply
ignore their multiplicities. In this case, all identical entities have a
single representative and in the end they are all assigned the score of
this representative. Although this procedure will reduce the number
of entities and the running time of the ImportanceCounter

algorithm, the output scores will be incorrect. In order to see that
these scores are incorrect consider the following example.

EXAMPLE 3. Assume X = 〈U, C〉, where U = {u1, u2, u3}
and C = {C0, C1, . . . , CK} with C0 = {u3} and C1 = . . . =

CK = {u1, u2}. If we represent all entities C1, . . . , CK by a sin-

gle representative Ĉ = {u1, u2} we have a new problem instance

X ′ = 〈U, Ĉ〉, with Ĉ = {C1, Ĉ}. If we now compute the cover

scores of C0 and Ĉ for input X ′ and for the uniform weighting

scheme, we get that both weights are equal to 1. However, in the

original problem instance X = 〈U, C〉, the score of C0 is K times

larger than the score of any one of the sets C1, . . . , CK .

Instead of assigning the score of the representative to all the i-
dentical entities, we could divide this score by the cardinality of
each set of identical entities. This solution also fails to produce the
correct cover scores. This is shown in the following example.

EXAMPLE 4. Consider the problem instance X = 〈U, C〉, where

U = {u1, u2, u3, u4} and C = {C1, C2, C3, C4} with C1 =
C2 = {u1, u2, u3}, C3 = {u1, u2} and C4 = {u3, u4}. Now

assume that we form new set Ĉ = {Ĉ12, C3, C4}, where Ĉ12 =

{u1, u2, u3}. For the problem instance X = 〈X, Ĉ〉 and unifor-

m weighting scheme, the scores assigned to Ĉ12, C3 and C4 are

respectively 3, 3, and 4. Now, if we attempt to find the scores in

the original problem by dividing the score of Ĉ12 equally into C1

and C2 we get that the final scores are: R(C1) = R(C2) = 1.5,

R(C3 = 3) and R(C4) = 4. One can see that these scores are

incorrect; they do not correspond to the number of solutions that

the different entities participate. Even further, ranking the entities

using these scores gives a totally unintuitive ranking: C1 and C2

appear to be worse than C3 although they both cover a superset of

the elements that C3 covers!

The above two examples illustrate that if we want to form one
super-entity for each set of identical entities in C, we need to make
a very meticulous adaptation of the ImportanceCounter al-
gorithm. We describe this adaptation here. First, we transform the
input entities C into Ĉ = {Ĉ1, . . . , ĈK} where every Ĉj is a super-

entity that represents a set of identical input entities. Each such en-
tity Ĉk ∈ Ĉ is characterized by its cardinality Tk. The mechanics
of the Compressed-IC algorithm are similar to the mechanics
of the ImportanceCounter algorithm, shown in Algorithm 2.
The main differences are explained below.

First, note that every minimal set Mℓ now consists of super-
entities and therefore the probability of Mℓ being sampled is the
weighted sum of the probabilities of all the minimal sets it rep-
resents. Once a minimal set Mℓ is selected, a particular element
S is sampled from Mℓ. The sampling is identical to the corre-
sponding step of the ImportanceCounter algorithm. The re-
sult of sampling is a set cover S that consists of j super-entities
Ĉ1, . . . , Ĉj ; for each super-entity Ĉi that participates in S , we
know its cardinality Ti as well as the number ti of actual entities
that were sampled from Ĉi. By treating super-entities in the same
way as entities, we check whether the canonical representative of
the sampled set cover S is indeed the previously-selected minimal
set Mℓ. If this is not the case, no counter is increased. Other-
wise, we need to do the following: first, we accept the match with

probability
(∏

Ĉi∈Mℓ
ti
)−1

. Second, for every entity C ∈ Ĉi

the score of C is increased by w(Mℓ)tiT
−1
i . The rest of the steps

of the Compressed-IC algorithm remain identical with those of
the ImportanceCounter algorithm.

We have the following result.

THEOREM 2. The cover scores computed by Compressed-IC

are correct. That is, they are identical to the scores computed by

the ImportanceCounter algorithm.



Although we omit the proof of Theorem 2 we consider this theorem
as the second main technical contribution of our work.

The running time of the Compressed-IC algorithm depends
only on the number of super-entities and not on the actual number
of entities. Therefore, for datasets that contain small number of
distinct entities the Compressed-IC algorithm is extremely effi-
cient, while at the same time it outputs the correct scores for all the
individual entities.

From now on, whenever we use the term entities, we will refer
to the super-entities that are formed after the compression of the
identical input entities.

3.2.5 Selecting the seed of minimal sets

As discussed early in the section, importance sampling requires
the complete set M of all minimal set covers. However, enumerat-
ing all the minimal set covers is a computationally expensive task;
this problem is known as the transversal hypergraph problem. Al-
though we experimented with various available methods for the
problem [3, 9, 12], none of them was able to generate all minimal
set covers in reasonable time, even for small inputs.

Therefore, we propose to execute Compressed-ICwith a seed
of minimal sets, which is a subset of M. Our intuition is that even a
small-cardinality seed is adequate to accurately estimate the counts
of the entities in the input. We form such seeds by starting with set
C and randomly removing elements until we reach a minimal solu-
tion. We repeat this process until we generate a seed of the desired
size. Our experiments indicate that a seed of size moderately larger
than m, where m is the total number of entities, is sufficient.

3.2.6 Decomposition into subproblems

Assume that the input can be partitioned into disjoint connected

components, where a connected component is defined over the bi-
partite graph representation that we used in Figure 1. In this case,
to compute R and R(C) for every C ∈ C, it is sufficient to compute
the R(C)’s for all the C’s that are in the same connected compo-
nent separately. Such separate computations are much faster, since
they operate on smaller inputs. We can then obtain the final counts
by simply computing the product of the values reported for each
component. For the datasets we have experimented with, this de-
composition alone has yielded significant speedups. For example,
in one of our datasets there were 2227 entities, while the largest
component included only 705, i.e., about 30%, of them.

3.2.7 Discussion

Oftentimes, counting problems are solved using the Markov chain
Monte Carlo method [20], and Metropolis-Hastings [11]. In our
setting, such a method would sample elements of Lsc by perform-
ing a random walk on the space Lsc. Appropriate definitions of the
random walk can guarantee unbiased estimates of the required s-
cores. Using the appropriate random walk, we experimented with
such a method and found it is very inefficient when compared to
Compressed-IC. Thus, we do not present this method in detail,
neither do we show any experiments for it.

4. EXPERIMENTS
In this section, we describe the experiments we conducted to e-

valuate the Compressed-IC algorithm, in terms of both utility
and performance. We also report the results of a user study that
demonstrates the validity of our scores and their closeness to the
human perception of important entities. All our results are obtained
using the step weighting scheme, since it is the obvious choice in
applications where the size of the set cover solutions is important.

For all our experiments, we use a machine with 8GB of RAM and
2.66GHz processor speed.

4.1 Datasets
We evaluate our algorithms using three families of datasets, which

we describe below.

GPS datasets: We consider the reviews of the five most-frequently
reviewed GPS systems sold on Amazon.com, as of 2010. Thus we
compile five different datasets in total. For this dataset family, the
universe U is the set of product attributes. Each review Ci com-
ments on a subset of the product attributes. In other words, each
review is represented by the set of the attributes discussed in the re-
view. We construct the subsets Ci by parsing the reviews using the
method by Hu and Liu [13], which can be shown to extract the re-
view attributes with high accuracy. An attribute is covered if there
exists at least one review that discusses this attribute. The cover
score R(Ci) expresses the usefulness of the review Ci. In addition
to the complete text for each review, the datasets also include the
number of the accumulated helpfulness votes of each review; we
anonymize the five datasets and simply refer to them as GPS-1,
GPS-2, GPS-3, GPS-4 and GPS-5. The number of reviews in
these datasets are 375, 285, 254, 216 and 222, respectively.

Guru datasets: We construct the Guru datasets by crawling the
www.guru.comwebsite, which hosts profiles of active freelancer-
s from various professional disciplines, such as software engineer-
ing, marketing, etc. We extracted the skills of each each freelancer
and we compiled five different datasets as follows: each dataset cor-
responds to a task that requires c skills, with c ∈ {10, 20, 40, 80, 160}.
Each dataset consists of all the freelancers who have at least one
of the skills required by the respective task. We refer to the five
datasets as Guru-1, Guru-2, Guru-3, Guru-4 and Guru-5.
The number of freelancers in each one of these datasets is 109 158,
184 520, 239 856, 300 256 and 317 059 respectively.

With the Guru datasets, we evaluate the ability of our algorithm
to identify the freelancers who are most valuable for a given task.
Consequently, the universe U is the set of skills required for the
task. Each freelancer Ci is represented by the set of his skills, as
they appear in his profile. The cover score R(Ci) given by our al-
gorithm quantifies the usefulness of the freelancer Ci, with respect
to the given task and can be used to rank experts.

4.2 Performance of Compressed-IC
In this section we provide a comprehensive experimental evalua-

tion of the behavior of the scores R(C) output by Compressed-IC
as well as the running time of the algorithm.

Inefficiency of the naïve Monte-Carlo sampling: We start the
presentation of our experimental results by pointing out that the the
naïve Monte-Carlo sampling technique presented in Section 3.1 is
impractical. The reason for that is that the naïve sampling rarely
succeeds in forming a set from Lsc. In practice, for each one of our
10 datasets, we sampled 10 000 sets from L: in 5 out of 10 datasets
0% of the samples were set covers; in 4 out of 10 1% of the samples
were set covers and in the remaining one 12% of the samples were
set covers. This indicates, that we cannot rely on this technique in
order to compute the R(C) scores.

Compressed-IC vs. ImportanceCounter: As we discussed
in Section 3.2.4, the Compressed-IC algorithm gives the same
results as ImportanceCounter, but it is designed to handle
datasets with multiple copies of entities in C. Thus, the only differ-
ence between the Compressed-IC algorithm and Importance-
Counter is that the former keeps a single copy for every set of i-
dentical entities, rather than considering each one of them separate-



Table 1: Compressed-IC; GPS and Guru datasets: ratio of the num-
ber of super entities considered by Compressed-IC over the number of
original set of entities in the dataset.

GPS

GPS-1 GPS-2 GPS-3 GPS-4 GPS-5

0.808 0.6667 0.7087 0.8009 0.6667

Guru

Guru-1 Guru-2 Guru-3 Guru-4 Guru-5

0.0001 0.0004 0.0005 0.0036 0.0253

ly. In other words, the Compressed-IC algorithm compresses
entities into super-entities. Table 1 shows the corresponding com-

pression ratio; that is, the ratio of the number of super-entities (after
compression) to the number of total entities (before compression)
in all 10 datasets. The smaller the value of this ratio the larger the
compression achieved by the super-entities.

The results show that the compression ratio achieved for the GPS
datasets ranges from 67% to 81%. For the Guru datasets, this ratio
is much smaller, ranging from 0.01% to 2.5%. Such large com-
pressibility can be explained by the nature of this particular data
type; recall that, in the Guru datasets, each freelancer is associated
with a set of skills. It is much more likely to have multiple free-
lancers with identical sets of skills; for example, it is expected that
all programmers know more or less the same set of programming
languages. On the other hand, when it comes to product reviews,
it is less likely (although possible) to find reviews that comment on
exactly the same set of product attributes.

Effect of the size of the seed of minimal sets: As we discussed
in Section 3.2, ImportanceCounter requires as input a set of
minimal solutions. While, in principle, the complete set of all such
solutions is required, we show here that using a subset is sufficient
for the algorithm to converge. First, we run the algorithm with d-
ifferent seed sizes and retrieve the produced cover scores for each
individual. Specifically, we try all the seed sizes in {m, 10m, 20m,
30m, 40m} (in that order), where m is the total number of entities.
We then compare the scores obtained for the different entities after
consecutive runs (i.e., m vs. 10m, 10m vs. 20m, etc.). Since we
use these scores to rank entities, we assess the stability of the dif-
ferent runs by comparing the ranked lists induced by the computed
scores. For comparing ranked lists, we use the popular Kendall-τ
rank correlation coefficient [15]. The measure takes values in [0, 1];
the lower the value the more different the two lists are.

The process is repeated for all 10 datasets. The results are shown
in Table 2. Each value is an average of 50 experiments, each us-
ing a different seed set. The results show that even though we use
very small seed sets, the scores obtained with seeds of different
sizes produce very similar ranked lists. In particular, as the size of
the seed set grows very moderately most values of τ become very
close to 1.00. This behavior is verified across all three families of
datasets. Therefore, we conclude that the Compressed-IC algo-
rithm is robust, and the estimated scores produce stable rankings
even when considering small-size seed sets.

Effect of the number of samples: Theorem 1 provides a theoreti-
cal bound on how many samples are necessary for the Importance-
Counter and Compressed-IC algorithms compute the true val-
ues of R(C) under different weighting schemes. In this experimen-
t, we demonstrate that, in practice, even smaller number of sample
is sufficient.

Table 2: Kendall-τ rank correlation between rankings induced from cover
scores obtained with seeds of different sizes. The results are averages of 50
repetitions, where each repetition uses a different seed.

Dataset 1 vs. 10 10 vs. 20 20 vs. 30 30 vs. 40

GPS-1 0.75 0.77 0.82 0.86
GPS-2 0.77 0.88 0.90 0.90
GPS-3 0.82 0.88 0.9 0.9
GPS-4 0.8 0.9 0.9 0.9
GPS-5 0.79 0.85 0.87 0.89

Guru-1 1.00 1.00 1.00 1.00
Guru-2 0.88 0.93 0.93 0.94
Guru-3 0.84 0.89 0.89 0.90
Guru-4 0.96 0.99 0.99 0.99
Guru-5 0.98 0.98 0.99 0.99

Table 3: Number of samples and time required until the Kendall-τ rank
correlation coefficient reaches a value 0.90. The results are averages of 50
repetitions, with 50 different seeds.

Dataset # entities # samples time (sec)

GPS-1 375 3 000 4.222
GPS-2 285 3 000 1.526
GPS-3 254 3 000 1.14
GPS-4 216 3 000 1.130
GPS-5 222 3 000 0.689

Guru-1 109 158 8 640 29.607
Guru-2 184 520 6 600 42.547
Guru-3 239 856 3 920 26.595
Guru-4 300 256 3 100 71.367
Guru-5 317 059 3 060 47.552

Our experimental setting is the following: first we apply the
Compressed-IC algorithm to each of the 10 datasets, using a
seed of size 20m. As a convergence criterion, we use the Kendall-
τ rank correlation coefficient. We let the algorithm run until the
Kendall-τ coefficient reaches a value of 0.90 (while checking the
τ coefficient every 1000 samples).

The results of our experiments are summarized in Table 3. A-
gain, the results reported in Table 3 are averages over 50 repeti-
tions, where each repetition considers a different seed set. For each
dataset, in the second column of the table, we report the number
of entities in the dataset since it has direct impact on the complex-
ity of algorithm.Next, we report the total number of total samples
required until reaching Kendall-τ value of 0.90 (third column), as
well as the actual computation time in seconds (fourth column).

As shown in Table 3, in most cases a small number of samples
is needed: in all cases but one the number of samples required is
less than 10 000. This is true even for the Guru datasets, which
have three orders of magnitude more sets than the other datasets.
Therefore, the number of required samples grows very mildly with
the number of sets in the dataset. On the other hand, the number
of entities impacts the overall running time of the algorithm. This
is expected since the time required for drawing one sample grows
linearly with the number of entities in the dataset.

4.3 Evaluating the quality of the results
Here, we compare the scores produced by Compressed-IC

with other baselines. Due to space constraints, we only show results
for the largest dataset from each family.

For the GPS-1 dataset, we use as baseline score the helpfulness

score of a review, i.e., the number of users that have declared this
review to be helpful. The helpfulness score is a popular criterion



for ranking reviews in review-hosting sites (e.g., amazon.com).
Figure 2(a) shows the scatterplot between the cover and the help-
fulness scores; note that the cover scores are normalized, i.e, scores
R(C) are divided by R so that the measures are in [0, 1].

We observe that there is no correlation between the cover and
helpfulness. For example, helpfulness does not directly consider
the contribution of each review in the coverage of an item’s at-
tributes. Instead, it relies on the willingness of the users to reward
a “good” review by giving a helpfulness vote. In such a scheme,
older reviews are more likely to collect higher helpfulness votes,
regardless of whether they are more informative [19]. Our scoring
scheme, on the other hand, is unaffected by such biases, since it
objectively evaluates reviews based on their contribution.

For the Guru-5 dataset, we select a frequency-based baseline
score, i.e., the number of skills of each freelancer. The scatter plot
between our measure and the baseline is shown in Figure 2(b). This
baseline measure can take only one of 5 distinct values {1,2,3,4,5}
and considers all freelancers with the same number of skills as e-
qually important. This is an over-simplifying assumption that does
not take into consideration factors like the rarity of each skill. For
example, one of the freelancers has the following five skills: {Chil-

dren’s Writing, Writing-Editing & Translation, Reports, Technical

Writing, Blogs}. While this freelancer has the maximum number
of skills, all of these skills are very common. This fact is captured
by our own measure, since the particular freelancer participates in
far less covers than most of his peers. As a result, this freelancer
is given one of the lowest observed scores (0.007). On the oth-
er hand, a freelancer with only three skill {Commercial Interior

Design, Landscape Design} is assigned one of the top-30 scores
(0.49). This is because his second skill (Landscape Design) is a
rather rare skill, possessed by only 260 other individuals. There-
fore, our scoring scheme can differentiate between individuals with
the same number of skills, and it can also identify important experts
even when they have small number of skills.

4.4 User study
In this section, we present a user study that we conducted in or-

der to validate the assumption that cover scores give rankings that
agree with human intuition. Using the original dataset from Guru,
we sampled 10 small groups of freelancers; the cardinality of each
group was randomly selected between 5 and 10. For the i-th group
of freelancers we created a task Ti, which was defined as the u-
nion of the skills of the freelancers in the i-th group. Using these
10 tasks we set up a survey on kwiksurveys.com, in which 30
human subjects participated. The subjects were asked to inspec-
t the skills required for a task and the skills of the freelancers in
the corresponding group. The subjects were then asked to rank the
freelancers in the group by assigning to every freelancer a numeric
“usefulness” score with the following interpretation: 4 if the free-
lancer is absolutely necessary, 3 if she is very useful, 2 if she is
somewhat useful, and 1 if she is not useful. In the instructions it
was made clear that the team will have to complete the task repet-
itively and that the task can only be completed if all the required
skills are represented.

Figure 3 shows the average Kendall-τ rank correlation coeffi-
cient between the rankings obtained by the humans and the rank-
ings obtained by three automated measures: (i) using the cover
scores, (ii) the number of skills per freelancer, and (iii) the mini-
mum set-cover solution; in the latter ranking all freelancers in the
minimum set cover were ranked higher than the rest. Recall that
the Kendall-τ coefficient takes values in [0, 1], with 1 (resp. 0) de-
noting the largest (resp. smallest) similarity between the compared
rankings. The results indicate that the ranking obtained by cover s-
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Figure 2: Scatterplots of (normalized) scores of entities against
their baseline scores.
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Figure 3: Average Kendall-τ rank-correlation coefficient between
human rankings and rankings obtained by cover scores, number of
skills and minimum set covers.

cores has consistently high Kendall-τ value; this value never drops
below 0.8 and it is close to 1 for most of the tasks. On the oth-
er hand, with the exception of task T4, the Kendall-τ coefficients
between human rankings and rankings by the number of skills per
freelancer are notably low. For task T4, we observe the highest sim-
ilarity between these two rankings. This is because the freelancers
in the 4-th group are more or less equivalent both in terms of their
count scores and in terms of their number of skills (all of them have
1 or 2 common skills). Therefore, the frequency and the cover-
score rankings are very similar to each other and also similar to the
human rankings. This also explains why for task T4 the minimum
set-cover ranking does not correlate well with the human ranking.
Apparently, the single set-cover solution does not reflect the equiv-
alence between the freelancers and the fact that they all participate
in many different set-cover solutions. Other than T4, the minimum
set-cover rankings correlate well with the human rankings. This is
mostly because for many of the tasks we considered the number
of freelancers is small and therefore the majority of the freelancers



participate in the minimum cover. Nevertheless, this correlation is
not as strong as the one between human and cover-score rankings.

Overall, the user study demonstrates that humans perceive cover
scores as a natural ranking mechanism.

5. RELATED WORK
To the best of our knowledge, we are the to formalize frame-

work that allows counting techniques for the evaluation of entity
importance. Nonetheless, our work has ties to existing research.
We summarize some of this work here.

Counting set covers. There are many theoretical studies on the
problem of hitting-set counting, [6, 7, 8, 10] including complexi-
ty studies and algorithms for special inputs. Since the hitting set
and the set cover problems are isomorphic, these methods can al-
so count set covers. Among these works, the closest to ours is the
work of Damaschke and Molokov [8], that proposes a parameter-
ized algorithm for counting all k-hitting sets (i.e, hitting sets of size
at most k) in set systems, where the size of the maximum set is at
most r. Their algorithm runs in time that is exponential in k and
in r, and despite its theoretical elegance, it is impractical for rea-
sonably large datasets.

Review selection. Lappas and Gunopulos [16] considered the prob-
lem of finding a small set of reviews that cover all product at-
tributes. Tsaparas et. al. [23] studied the problem of selecting a
set of reviews that includes both a positive and negative opinion
on each attribute. More recently, Lappas and Terzi [18] proposed
a scheme for showing to users different covers of the same corpus
of reviews. All these works focus on picking a single set of re-
views that optimizes a particular function under a set of constraints.
On the other hand, our framework evaluates reviews by assigning
a score based on the weight of all the solutions that each review
participates in. Although the notion of coverage is central to our
framework, our intuition and methodology are distinct from exist-
ing work in the area.

Team formation. The problem of identifying a set of individu-
als from a pool of experts who are capable of performing a given
task has been an active area of research in Operations Research [5,
25, 26]. Our own recent work has introduced the problem in the
computer science domain [2, 17]. This work focuses on identifying
a single team of experts that collectively meet a certain set of re-
quirements. Our framework is complementary to this: it identifies
the marginal value of each expert with respect to a given task. Also,
instead of reporting a single solution of the optimization problem
at hand, our framework counts all solutions. Thus, the technical
challenges we face are orthogonal to the those faced when looking
for a single good solution.

6. DISCUSSION AND CONCLUSIONS
Our work is motivated by data-mining problems that have been

formalized in terms of the set-cover problem. For such formula-
tions, we have developed a novel framework for evaluating the im-
portance of entities. Instead of looking at a single set-cover solu-
tion, our framework computes the importance of entities by count-
ing of the number of good set covers an entity participates. Our al-
gorithmic contribution is the design of Compressed-IC, which
is an efficient algorithm for solving this problem. Our algorithm is
proven to provide the correct counts and scales extremely well. Our
framework has applications in numerous domains, including those
of human-resource management and review-management systems.
In a thorough experimental evaluation, we have demonstrated the
efficiency and the effectiveness of our methods, using real datasets
from such domains.
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