
Selecting a Characteristic Set of Reviews

Theodoros Lappas
Boston University

tlappas@cs.bu.edu

Mark Crovella
Boston University

crovella@cs.bu.edu

Evimaria Terzi
Boston University

evimaria@cs.bu.edu

ABSTRACT

Online reviews provide consumers with valuable information
that guides their decisions on a variety of fronts: from en-
tertainment and shopping to medical services. Although the
proliferation of online reviews gives insights about different
aspects of a product, it can also prove a serious drawback:
consumers cannot and will not read thousands of reviews
before making a purchase decision. This need to extract
useful information from large review corpora has spawned
considerable prior work, but so far all have drawbacks. Re-
view summarization (generating statistical descriptions of
review sets) sacrifices the immediacy and narrative structure
of reviews. Likewise, review selection (identifying a subset
of ‘helpful’ or ‘important’ reviews) leads to redundant or
non-representative summaries. In this paper, we fill the gap
between existing review-summarization and review-selection
methods by selecting a small subset of reviews that together
preserve the statistical properties of the entire review cor-
pus. We formalize this task as a combinatorial optimization
problem and show that it NP-hard both to solve and ap-
proximate. We also design effective algorithms that prove
to work well in practice. Our experiments with real review
corpora on different types of products demonstrate the util-
ity of our methods, and our user studies indicate that our
methods provide a better summary than prior approaches.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Selection
Process; H.2.8 [Database Management]: Database ap-
plications—Data Mining
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1. INTRODUCTION
One of the most significant developments in consumer

shopping in recent years has been the explosive proliferation
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of online reviews. This reflects the great utility and trust
that individuals ascribe to first-person reviews of products
and services, particularly when those reviews come from ac-
tual past customers. It also reflects the fact that reviews are
often highly detailed: reviews routinely cover many different
aspects of a single product, allowing the reader to compile a
very thorough picture of the strengths and weaknesses of any
given product. Because of the utility and impact of reviews,
major e-commerce sites have adopted them as a standard
feature (e.g., Amazon.com), and a number of popular web-
sites have emerged whose main goal is simply hosting online
reviews (e.g., Yelp.com).

The immense value of online reviews has led to a vast
body of reviews for individual items. For example, Amazon
has more than 32,000 reviews for its Kindle e-reader, and
there are individual restaurants in Yelp that have more than
100,000 reviews. Having a large number of reviews on the
same product is desirable, since a large review-corpus is more
likely to provide insights about different aspects of the item
at hand. In addition, a large number of reviews increases
the reader’s confidence in the opinions they express.

However, the vast body of reviews for individual item-
s is also a serious drawback. Consumers can not and will
not read thousands of reviews before making a purchase de-
cision. When a body of reviews is massive, its sheer size
can prevent readers from extracting its useful information.
A number of researchers have therefore begun to look for
methods to extract the useful information contained in large
review corpora, into a form that users can absorb more eas-
ily, despite having limited time or limited screen space.

For example, a significant amount of work has been devot-
ed to the development of review-summarization methods [5,
20, 14, 15, 18]. The goal of these approaches is to create a
summary of a review corpus that is both compact and rep-
resentative of the opinions it contains. These summaries are
statistical in nature, recording the number of positive and
negative opinions that are expressed on each of the item’s
features. However, the drawback of such summaries is that
they lack the immediacy and narrative structure of reviews
as written by real users. This sacrifices one of the prima-
ry benefits of online reviews: the ability to appreciate the
first-person experience of a previous buyer.

In response to this drawback of statistical summaries, an-
other set of methods seek to summarize a review corpus
using a subset of ‘important’ reviews. These important re-
views are ultimately the ones shown to the user. For exam-
ple, there exists a considerable amount of work in the area
of review ranking [4, 7, 9, 10, 11, 17, 19]. Those approaches



first produce a score for each review. They then show the
top-k highest-scoring reviews to the user. However, these
methods also suffer from a serious drawback: they do not
seek coverage over the range of features that are important
to users, and can therefore be highly redundant. For ex-
ample, all the top reviews of a new camera may be highly
informative about its long-range zoom ability, but mention
nothing about how easy it is to use or carry. In other words,
by evaluating each review separately, these approaches fail
to consider the complementarity among reviews.

Hence, a number of recent efforts has focused on the prob-
lem of review selection based on feature coverage. For exam-
ple, Lappas and Gunopulos [8] select a subset of reviews that
collectively comment upon of all the features of the prod-
uct at hand. Similarly, Tsaparas et al. [16] select a set of
reviews that collectively provide both the negative and the
positive aspects of each commented feature. While these
methods do diversify the reported set of reviews, they fail
to accurately capture the proportion of opinions (both posi-
tive and negative) in the underlying collection. For example,
the summary constructed by method in [16] will always con-
tain at least one positive and at least one negative opinion
on each feature, even if one kind of opinion is significantly
more common in the reviews of the underlying collection.

In this paper, we fill the gap between existing methods for
review summarization and selection, by providing a subset
of reviews that collectively present a statistically accurate
summary of the entire review collection. More specifical-
ly, we preserve the integrity, coherence, and immediacy of
actual reviews by providing users with a subset of reviews
written by real previous customers. At the same time, we
also ensure that the selected set of reviews preserves the s-
tatistics of the underlying corpus with respect to the positive
and negative opinions expressed for different features. On
a high level, the problem that we address in this paper is
the following: “Given a corpus of Reviews R on item, find a
small subset S ⊆ R of reviews that accurately capture the
proportion of opinions of the item’s features.” To the best of
our knowledge, we are the first to formally define and study
this problem, which we call the Characteristic-Review
Selection problem.

In our work, we provide a formalization and thorough
analysis of the problem, and identify and overcome the chal-
lenges that arise in efficiently finding its solution. We present
novel algorithmic techniques, and show that they are effec-
tive through a rigorous evaluation. We show that our meth-
ods can accurately represent large review corpora, using only
a small subset of reviews (e.g., from 5 to 20 reviews). Fi-
nally, we confirm the utility of the reported sets through a
user study in which actual users judge the relative value of
our approaches compared to the state of the art.

In addition to our main contribution of formalizing and
solving the Characteristic-Review Selection problem,
we also address an important precursor problem. A statisti-
cal summary is only meaningful if the distribution of positive
and negative opinions in the corpus is stable at the time the
summary is formed. If the state is unstable or immature,
then the reported set could also be misleading. Taking this
into consideration, we include an analysis of real review cor-
pora in our experiments, and explore how the allotment of
opinions in such corpora changes through time. Our analysis
provides valuable insight on the converge of opinions, and

allows us to identify when a body of reviews is sufficiently
stable so as to serve as the basis of an informative summary.

Roadmap: The rest of the paper is organized as follows.
First, we review related work in Section 2. We formally de-
fine our problem in Section 3, and in Section 4 we describe
our algorithms for solving it. In Section 5, we present a thor-
ough experimental evaluation of our methods. We conclude
the paper in Section 6.

2. RELATED WORK
The goal of our work is to select a characteristic subset of

reviews from a given corpus, in order to provide users with a
compact and representative source of information. Although
– to the best of our knowledge – the exact problem formu-
lation we are proposing has not been considered before, our
work clearly has ties with existing work in the domains of
review summarization and review selection.

Review Selection: A recent line of work has addressed
the problem of selecting a subset of reviews from a given
corpus. Lappas and Gunopulos [8] proposed the selection
of a set that represents the majority opinion on each fea-
ture. The drawback of this approach is that it overlooks the
minority opinion, regardless of how significant it is. In a
follow-up work, Tsaparas et al. [16] adopted an alternative
formulation: given an upper bound on the number of the s-
elected reviews, their goal is to select the set of reviews that
covers as many features as possible. In their work, a feature
is considered covered if the reported set includes at least one
positive and at least one negative opinion on it. The short-
coming of this formulation is that it disregards the ratio of
the number of positive and negative opinions on a feature.
Thus, the reported set can be misleading to the user, who
cannot use this set to deduce the actual proportion of posi-
tive and negative opinions across product features. The set
of characteristic reviews reported by our methods does not
have such drawbacks, since our goal is to accurately emulate
the opinion distribution in the underlying corpus.

Review Summarization: Our work has ties to the exten-
sive research devoted to review summarization. The prob-
lem of summarization was essentially introduced by Hu and
Liu [5], who proposed a method for opinion-extraction, and
applied the mined knowledge to create a statistical sum-
mary that informs the user of the number of positive and
negative opinions in the corpus. A similar approach to the
problem was taken by Zhang et al. [20]. In that work, the
authors focused on the review domain, enriching their sum-
mary with opinionated sentences from the corpus. Instead
of reporting the number of positive and negative opinions,
Meng and Wang [14] report the terms that are used to char-
acterize each feature (e.g. “small” or “expensive”). Another
extension is proposed by Shimada et al. [15], who enrich the
produced summary with objective information on the item,
mined from web sources (i.e. Wikipedia). Finally, Liu et
al. [9] explore ways to filter out low-quality reviews, in order
to prevent them from corrupting the produced summary.

While the proposed approaches use statistical findings and
isolated snippets to represent the given corpus, our own
formulation asks for the selection of a characteristic set of
actual reviews. We consider reviews as cohesive linguistic
constructs, which provide users with an intuitive and user-
friendly representation of the corpus. Nonetheless, in the



context of a review-hosting website, our selection paradig-
m can be easily complemented by a corresponding statisti-
cal summary, in order to provide users with the maximum
amount of information.

Review Quality and Ranking A significant amount of
work has been devoted to evaluating different aspects of re-
view quality [1, 11, 17]. These methods assign a quality score
to every review, which is then used for ranking the reviews.
The most prolific line of work in this field has focused on
finding ways to emulate the user-assigned helpfulness votes
that are present in review-hosting websites [19, 10, 7, 19,
4]. The main shortcoming of these approaches is that they
evaluate the quality of each review separately. Hence, they
completely dismiss the potential of reviews to complement
each other and cover as many of the item’s features as possi-
ble. High-quality reviews can still be redundant, reiterating
the same opinions on the same features, and thus convey-
ing no additional information to the user. Our selection
paradigm overcomes such shortcomings, by considering the
complementarity among reviews. Nonetheless, our method-
ology is fully compatible with quality-evaluation techniques,
which can be used to filter out substandard reviews.

3. PROBLEM DEFINITION
In this section, we describe the notational conventions

that we will use throughout the paper. We also provide
a formal definition of the Characteristic-Review Selec-
tion problem and discuss its computational complexity.

3.1 Preliminaries
We use R to denote the collection of n reviews of the item

of interest. We also assume that every item is associated
with a set of z features {f1, . . . , fz}. One should think of
the features as the characteristics of the item that reviewers
comment upon. For example, the features of a restaurant
may be the food quality, ambiance, service, and so forth.
A typical review only comments on a subset of these fea-
tures, express either positive or negative opinions. In fact,
the same review may have a positive opinion about one fea-
ture and a negative opinion about another. Hence, in order
to describe the opinions that appear in reviews, we form the
set of binarized feature opinions, which we refer to simply as
the opinions of the item. That is, for each feature fi, there
are two possible opinions: positive and negative. Hence, the
opinion vector of a item has cardinality m = 2z; we denote
it by A = {a1, . . . , am}.

Throughout the paper, we assume that features and opin-
ions can be automatically extracted. There are a number
of methods for this task. In our experiments, we use the
method by Ding et al. [2]. Therefore, every review R ∈ R
can be represented as a subset of opinions from A; we say
that R covers all the opinions that appear in R.

Given a collection of reviews S ⊆ R, we use π(S) to denote
the m-dimensional vector of that represents the fraction of
the reviews in S that cover each opinion. That is, π(S , i)
denotes the fraction of reviews in S that cover opinion ai.
We refer to π(S) as the opinion vector of S .

In addition to the opinion vector, we also use the notion of
a target vector τ . The target vector is also defined over the
set of opinions in A and, thus, it is also an m-dimensional
vector. We quantify the closeness between two vectors π and

τ using the L2
2 norm of their difference. We denote this by

D (π, τ ) := L2
2 (π − τ ) =

m
∑

i=1

(π(i)− τ (i))2 .

Given a set of reviews S and a target vector τ we call the
value of D(π(S), τ ) the error of the collection S .

3.2 The Crs problem
Given a collection of reviews R about a item and a target

vector τ , our high-level goal is to select a subset of reviews
S ⊆ R such that D (π(S), τ ) is small. At the same time,
we also want the subset S to consist of a small number of
reviews. The encoding of these two goals is incorporated in
the following problem definition.

Problem 1 (Characteristic-Review Selection (Crs)).
Given a collection of reviews R, a target vector τ and an
integer number k, find S ⊆ R such that |S| ≤ k and
D (π(S), τ ) is minimized.

Problem 1 would be trivial if all the reviews contained
at most one opinion. Without such unrealistic restriction-
s, however, the problem is hard. Specifically, our analysis
below demonstrates that the Crs problem is not only NP-
hard, but it is also NP-hard to approximate. In order to
see this, lets consider the decision version of the problem
which is defined as follows: Given a collection of reviews R,
and real number L and integer K does there exist a subset
S ⊆ R with |S| ≤ k and D(π(S), τ ) ≤ d? We call this de-
cision version of the problem Decision-Crs. The following
lemma shows that this problem is NP-complete.

Lemma 1. The Decision-Crs problem is NP-complete.

Proof. We will reduce and instance of X3C (Exact
Cover by 3 Sets) [3] to Decision-Crs. An instance of
X3C consists of a universe of n items U and a set of sets
C = {C1, . . . , CM} where |Ci| = 3 for every i = 1, . . . ,M
and Ci ⊆ U . Given integer K, the decision version of the
problem asks whether there exists a subset C′ ⊆ C such that
|C′| = K, U and every element in U is covered by exactly
one set in C′.

We transform an instance of X3C to an instance of
Decision-Crs by setting the set of opinions A to be the
universe U . In this case, every set Ci ∈ C is represented by
a review Ri ∈ R; review Ri covers opinion aj ∈ A if set Ci

contains the j-th element of U . To complete the instance
of the Decision-Crs problem, we set the target vector τ to
consist of n dimensions all equal to 1/K, and we also set
k = K and d = 0. Then, it is easy to see that the answer to
the X3C decision problem is “yes” if and only if there exist-
s a solution to the instance of the Decision-Crs problem,
which we created above.

By the fact that we used X3C for our reduction, we can
show that the problem is NP-hard even if all the reviews of
the collection have exactly three opinions. Another imme-
diate corollary of Lemma 1 is the following.

Corollary 1. The Crs problems is NP-hard and NP-
hard to approximate. That is, it is NP-hard to find a poly-
nomial - time approximation algorithm for the Crs problem.

Proof. We will prove the hardness of approximation of
the Crs problem by contradiction. Assume that there exists



an α-approximation algorithm for the Crs problem. Then if
S∗ is the optimal solution to the problem and SA is the so-
lution output by this approximation algorithm, it will hold
that D(π(SA), τ ) ≤ αD(π(S∗), τ ). If such an approximation
algorithm exists, then this algorithm can be used to decide
decision instances of the Crs problem for which d = 0. How-
ever, this contradicts the proof of Lemma 1, which indicates
that these problems are also NP-hard. Thus, such an ap-
proximation algorithm does not exist.

So far, we have discussed the Crs problem for an arbi-
trary target vector τ . For a collection of reviews R, the
most natural instantiation of the target vector is the mean
opinion vector, denoted by π (R). Figure 1 shows an ex-
ample of a review corpus and the optimal characteristic
subset that minimizes D (π, π (R)). The corpus consist-
s of 6 reviews R1, R2, R4, R4, R5, R6. These reviews com-
ment on 3 distinct features f1, f2, f3. A plus (resp. mi-
nus) denotes a positive (resp. negative) opinion on the
feature. For example, review R1 expressed positive opin-
ions on features f1 and f2 and a negative opinion on fea-
ture f3. In this example, the mean opinion vector corre-
sponding to the included opinions f+

1 , f−
1 , f+

2 , f−
2 , f+

3 , f−
3 is

π (R) = (4/6, 2/6, 4/6, 0/6, 2/6, 4/6). We observe that the
opinion vector of the selected characteristic set {R4, R5, R6}
is identical: (2/3, 1/3, 2/3, 0/3, 1/3, 2/3). Therefore, this set
is optimal with respect to the objective function, when the
target is the mean vector.

Figure 1: An example of a review corpus and the opti-

mal characteristic set that minimizes D (π, π (R)), where

π (R) is the mean opinion vector.

This instantiation of the target vector – and the Crs prob-
lem – corresponds to a very natural geometric problem: Giv-
en a set of points in m-dimensional space, select a subset of
them of size k whose centroid approximates the centroid of
the collection as well as possible. In the case of Crs the m-
dimensional vectors are also binary, but the general problem
where vectors lie in R

m is also interesting and – to the best
of our knowledge – unexplored. Another natural target vec-
tor is the distribution of features in R. However, one can
observe that this is actually a simple rescaling of the mean
opinion vector π(R). Although in all our experiments we use
π (R) as our target vector, we note that alternative instan-
tiations may also arise in practice. For example, when the
goal is to provide personalized sets of characteristic reviews,
then one may choose to approximate a specially-selected set

of reviews (e.g. reviews written by reviewers with similar
preferences as the interested user). Hence, in such cases the
target vector would be tuned by the characteristics of the
particular user.

4. ALGORITHMS
Although theCrs problem is NP-hard and NP-hard to ap-

proximate, our experiments with real datasets demonstrate
that, in practice, there exist heuristics that work extremely
well. We describe such heuristics below. With the exception
of Random (described in Section 4.3), all our heuristics work
for arbitrary target vectors τ .

4.1 The Greedy algorithm
The Greedy algorithm is an iterative algorithm for Crs.

At every iteration t, the algorithm picks one review R to
form subset St. The review R is picked so that the distance
D

(

π
(

St−1 ∪ {R}
)

, τ
)

is minimized. The pseudocode of the
Greedy algorithm is shown in Algorithm 1.

Algorithm 1 The Greedy algorithm

Input: R, target vector τ and integer k
Output: S ⊆ R, |S| = k

1: S = ∅
2: for i = 1 . . . k do

3: R = argminR′∈R D (τ, π (S ∪ {R′}))
4: S = S ∪ {R}
5: R = R \ {R}
6: end for

7: return S

For a collection R of n reviews, the running time of Greedy
is O(knTD), where TD is the time required to compute the
distance D required in line 3 of Algorithm 1. In our case,
TD requires O(m) time, and therefore the running time of
Greedy is O(knm).

4.2 The Integer-Regression algorithm
The Integer-Regression algorithm finds the set of k

characteristic reviews by first solving a continuous version
of the Crs problem, and then transforming the obtained
continuous solution into the closest discrete one. This is a
well known strategy that has been shown to be effective for
combinatorial optimization problems.

To describe the Integer-Regression algorithm, we use
matrix notation. We start with the m × n binary matrix
R in which entry Rij = 1 iff opinion ai appears in review
Rj . The Characteristic-Review Selection problem can
then be restated as: find a 0-1 vector s such that D (Rs, τ )
is minimized, and s contains at most k 1s. The fact that
mins D (Rs, τ ) has the form of a linear regression is what
inspires our approach.

In reality, R can contain duplicate columns; these are ir-
relevant for regression, so we remove them to form R̃ having
size m×n′ and consisting of distinct columns. However, du-
plicate columns in R correspond to distinct reviews that
may be useful in approximating τ ; hence we keep track of
the number of such duplicate columns by remembering for
each column i of R̃ its multiplicity ci in R.

The Integer-Regression algorithm works in two steps,
which are repeated for all values from 1 to k:



For ℓ = 1 to k

Step 1: Form a nonnegative real-valued vector x such
that D(τ, R̃x) is small, and the number of nonzero
elements of x is not larger than ℓ.

Step 2: Form a nonnegative integer-valued vector s̃ rep-
resenting k reviews that together approximate x in
distribution. That is, find s̃ such that ∀ i, s̃i ≤ ci,
||̃s||1 ≤ k, and ‖ s̃

||̃s||1
− x

||x||1
‖1 is minimized.

Step 1 solves a regression problem, with the constraint that
the solution has no more than ℓ positive coefficients. In s-
tatistics, regression with this sort of constraint is referred to
as a subset selection problem; in signal processing it is called
sparse signal reconstruction. We adopt an algorithm from
signal processing for this step, namely Nonnegative Or-
thogonal Matching Pursuit (NOMP) [12, 13]. However,
a variety of algorithms are known for this problem, and we
expect that our general approach can make use of other al-
gorithms as well. NOMP works iteratively; at each iteration t,
it greedily selects the (not-yet selected) column from R̃ that
has the largest dot-product with the residual of the target
vector τ . Then, the corresponding coefficients xt are com-
puted via least-squares, and a new residual is computed as
τ − R̃xt.

Step 1 returns a nonnegative real-valued vector x such
that D(τ, R̃x) is minimized. Intuitively, the entries of x en-

code the “proportions” of each column of R̃ that are needed
in order to accurately approximate the target vector τ . The
vector x is real-valued, and does not take into account the
multiplicity of reviews ci. Hence, x cannot be used directly
as a solution to the Crs problem; instead, we use x to guide
us to an actual set of reviews from the original collection R.
Accordingly, we transform the proportions of reviews encod-
ed in x into integer values in s̃ such that ‖s̃‖1 = k and for
every element s̃i of s̃ it is guaranteed that s̃i ≤ ci (i.e., each

column in R̃ cannot be used more times than its multiplic-
ity in R). This translation from proportions to integers is
accomplished in Step 2 of the algorithm.

The reason that we perform these steps for ℓ = 1, ..., k
is that a trade-off exists between the sparsity of x and the
hard limit k on the total number of reviews. When ℓ is small
(say, 1) then it is difficult to find an x such that τ is well

approximated by R̃x; after all, x can only have ℓ nonzero
elements. On the other hand, when ℓ is large (say, k) then it
is difficult to approximate the real-valued x with k integer-
valued reviews. Intuitively, we expect the best value of ℓ to
be somewhere in between 1 and k; in practice, we simply
test all values of ℓ between 1 and k.

As we have already discussed, Step 2 constructs the clos-
est possible discrete approximation to the output of Step
1. The problem can expressed as follows: Let the num-
ber of nonzero elements in x be p. Given the nonnegative
real vector v ∈ R

p having ||v||1 = 1, and a set of integers
c1, c2, ..., cp, output a nonnegative integer vector s̃ ∈ R

p such
that ∀i s̃i ≤ ci and || s̃

||̃s||1
− v||1 is minimized.

We use an efficient algorithm to solve the above problem
in O(Cp) time, where C =

∑p

i=1
ci. The basic idea is ‘con-

ditioning’ on the sum of s̃ elements, i.e., ||̃s||1. That is, we
augment the problem with the requirement that ||̃s||1 = N .
We can solve this efficiently as follows. First, we observe that
the s̃ that minimizes || s̃

||̃s||1
−v||1 also minimizes ||̃s−Nv||1.

Next, we set aside the constraints ci and solve the un-

constrained problem. For that, let U =
∑p

i=1
⌈Nvi⌉ and

L =
∑p

i=1
⌊Nvi⌋. If N ≤ L (resp. N ≥ U) then the solution

is to set each s̃i value below (resp. above) the corresponding
value of Nvi. If L < N < U , then compute X = N − L.
Let the set L be the elements of v having the X largest val-
ues of Nvi − ⌊Nvi⌋. For elements i ∈ L, set s̃i = ⌈Nvi⌉.
For the other elements, set s̃i = ⌊Nvi⌋. In order to solve
the constraint version of the problem, we first fix s̃i = ci
for all entries i such that ci < Nvi. Then, we solve the
unconstrained version of the problem for the remaining ele-
ments. For any given N , this yields the optimal s̃ in O(p)
time. Since the maximum allowable value of ||̃s||1 given the
constraints is C, we only need to run this algorithm for each
N ∈ 1, ..., C to find the optimal value of s̃.

The computational complexity of Step 1 of the Integer-
Regression algorithm requires O(k3) in general. However,
since NOMP works column-wise, incremental algorithms exist
that lower the complexity of the regression to O(k2). Com-
bined with the outer loop over k, this brings the overall com-
plexity to O(k3). Thus, for small values of k that are most
appropriate for review summaries, the running time of this
step is negligible. As we have already discussed, the running
time of Step 2 is O(Cp). As C = O(n) and p = O(k) the
worst-case running time of this step is O(nk). For the very
small values of k that we consider in practice, the running
time of this step is almost linear in n.

4.3 The Random algorithm
When the target vector τ is the mean opinion vector of

the collection of reviews R (denoted by π(R)) we have the
following observation.

Observation 1. A random sample S of R of size k guar-
antees that D(π(R), π(S)) = 0 on expectation.

In other words, for a random sample of reviews S , π(S) is
an unbiased estimator of π(R). However, the algorithm that
randomly samples k reviews from R, which we call Random,
performs poorly in practice. This is because its results have
high variance, which also leads to higher error. In order to
reduce the variance, we also propose an iterative version of
Random – which we call Iterative-Random. The Iterative-
Random selects a reasonably large number of random samples
from R and reports the one with the best valuation of the
objective function of the Crs problem.

5. EXPERIMENTS
Here, we present a thorough experimental evaluation of

our methodology using review corpora from Amazon. In
all our experiments, we use the mean opinion vector of the
underlying collection of reviews as our target vector

We start our experimental evaluation in Section 5.2, where
we present a study of the convergence of the opinion vectors
of different corpora. We then evaluate the performance of
the different algorithms with respect to the objective func-
tion of Crs in Section 5.3. We conclude our experimental
study in Section 5.4, by presenting a user study that demon-
strates the appeal of our summaries to real users.

5.1 Datasets
In our experiments, we use six different datasets of re-

views from Amazon.com. The data was extracted from the
collection of reviews introduced by Jindal and Liu [6]. This



collection, crawled in June 2006, covers a wide range of d-
ifferent product from Amazon.com. It includes 5.8 million
reviews, 2.14 million reviewers and 6.7 million products. For
our own experiments we extract six datasets from six differ-
ent domains: MP3 players, Digital Cameras, Coffee Makers,
Printers, Books, and Vacuum Cleaners. We refer to these
as MP3, CAM, COF, PRINT, BOOK and VAC. These datasets in-
clude reviews on 238, 233, 40, 112, 11447, and 62 different
items, respectively. The mainstream nature and popularity
of these domains ensures the availability of sizable review
corpora. Other than that, our methods do not benefit from
this selection. For the BOOK dataset, we purposefully avoid-
ed introducing any further constraints on the genre or type
of the book. Our goal was to evaluate our algorithms in
the context of a very large dataset of ambiguous items that
typically encourage subjective reviews.

For our experiments, we extracted the opinions expressed
in a review using the method proposed by Ding et al. [2].
Recall that an opinion is defined as the mapping of a feature
(e.g. the lens of a digital camera) to a positive or negative
polarity. While the method of Ding et al. worked well in
practice, our framework is compatible with any method for
opinion extraction.

5.2 Convergence of opinion vectors
The Crs problem asks for a set for a set of reviews that

respect the opinion vector π(R) of the underlying corpus.
Such a set would only be informative and depictive of the
reviewed item’s true qualities, if the target opinion vector
has converged to a stable state. On the other hand, if the
arrival of new reviews causes big variations to the opinion
vector, then the resulting set can be misleading.The goal
of this section is to experimentally explore whether such
variations appear in practice.

In order to study this for a corpus R on a particular item,
we proceed as follows. First, we sort the reviews in ascend-
ing order of their submission date and set a checkpoint every
10 reviews. Using a checkpoint attached to a calendar unit
(e.g. monthly or weekly) was not desirable since, for most
corpora, the number of included reviews varies greatly across
units. As we saw in our experiments, setting checkpoints ev-
ery 10 reviews results in batches that include opinions on at
least 90% of the item’s features. Further, 10 is the number
of reviews that is typically included in a single webpage of
a review-hosting site (e.g. Amazon.com), since it is big e-
nough to provided sufficient information, and small enough
to respect the users’ attention span.

Therefore, for a corpus with T checkpoints and t ∈ {1, . . .,
T} we use Rt to denote the set of the 10t oldest reviews in
the corpus. We measure the variation between the opinion
vectors of Rt−1 and Rt by measuring

Dt = D (π(Rt−1), π(Rt)) .

Given a sequence of T such measurements and a threshold
d, we say that an item is converged with respect to d, if there
exists a t such that Dt ≤ d. If, in addition to the above, we
also observe that for every t′ ≥ t D′

t ≤ d, then we say that
the item is strongly converged. Therefore, the opinion vector
of strongly-converged items shows little or no variation after
a particular checkpoint. Finally, we refer to items that are
converged but not strongly converged as relapsed items.

For a given item with corpus R, and T measurements
D1, . . . , DT , we study the following questions: (a) Do the Dt

values decrease as t increases? (b) How long does it take for
a corpus converge? (c) How often do items relapse? Next,
we address these questions and present the corresponding
experimental findings.

Figure 2(a) shows the average Dt values across all items
as a function of the checkpoint t. The figure validates our
intuition that as the size of a corpus increases, the Dt values
decrease. For the plot, we use T = 25 for all items, since the
Dt values for t > 25 are almost zero. The plot demonstrates
that the opinion vectors of all corpora show little variation
as time progresses. Starting from a maximum value around
0.3, the average Dt value drops fast with t and for t = 25,
it becomes almost zero.

To gain additional insight, we study the percentage of
items that have relapsed at least once. The results for dif-
ferent values of the threshold d ∈ {0.025, 0.05, 0.1, 0.2, 0.4}
are shown in in Figure 2(b). In order to properly interpret
these results, we need to know the percentage of converged
items per threshold; this percentage is shown in Figure 2(c).
Figure 2(b) clearly demonstrates that only a minuscule per-
centage of items relapse. Therefore, most of the items are
actually strongly converged. The significance of this find-
ing is enhanced even further by its applicability across all
datasets, despite the fact that they correspond to differen-
t types of products. Figure 2(c) shows the percentage of
converged items for different values of d. For threshold val-
ues d = 0.025 and d = 0.05, the percentage of converged
items ranges from 1% (CAM-0.025) to 33% (MP3-0.05). This
variance demonstrates that, for small values of d, the conver-
gence results are domain-specific. However, as d increases
(e.g., d = 0.4), the percentage of converged items is equal or
very close to 100% for all datasets.

Overall, our analysis demonstrates that the opinion vec-
tors of review corpora converge as new reviews are added. In
addition, we discovered that the vast majority of the items
in our collections are strongly converged.

5.3 Comparison of the selection algorithms
In this section we evaluate the solutions reported by the

Greedy, Integer-Regression and Iterative-Random algo-
rithms for the Crs problem.

Randomization testing: We start our evaluation by per-
forming the following randomization experiment. For each
corpus R in our collection we use algorithm Alg

1 to extract
a set of k characteristic reviews SAlg. Then, we evaluate the
error of this set, i.e., DAlg = D(π(SAlg), π(R)). We compare
the value DAlg with the corresponding error of a random set
of k reviews DR. After considering N = 1000 such random
sets, we report the empirical p-value of algorithm Alg to be
the fraction of times for which the random set exhibited a
smaller error than the set reported by Alg. Formally, such
an empirical p-value is computed as follows:

pAlg =
1

N

N
∑

i=1

I(DAlg < Di).

In the above equation, Di corresponds to the error of the
i-th random sample and I(DAlg, Di) is an indicator variable
that takes value 1 if the error of the set reported by Alg

is less than the error reported by the error of the i-th ran-

1
Alg can be any of the three Iterative-Random, Greedy or
Integer-Regression algorithms.
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Figure 2: Convergence experiments.

dom sample of k reviews. Small values of pAlg are desir-
able, as they indicate that Alg has a very low probability
of outperformed by a random set of k reviews from R. The
empirical p-values for the Greedy, Integer-Regression and
Iterative-Random algorithms as a function of k are shown
in Table 1. The values reported in the table are averages
over all the corpora of every dataset.

Table 1: Average empirical p-values for the so-

lutions reported by Greedy, Integer-Regression and

Iterative-Random for all datasets; average is taken

over all items of a dataset.
k = 5 k = 10 k = 15 k = 20

MP3

Greedy 0.0 0.0 0.0 0.0
Integer-Regression 0.04 0.01 0.01 0.0
Iterative-Random 0.03 0.0 0.0 0.0

CAM

Greedy 0.1 0.01 0.0 0.0
Integer-Regression 0.09 0.01 0.0 0.0
Iterative-Random 0.03 0.0 0.0 0.0

COF

Greedy 0.14 0.0 0.0 0.0
Integer-Regression 0.9 0.0 0.0 0.0
Iterative-Random 0.06 0.0 0.0 0.0

BOOK

Greedy 0.3 0.03 0.01 0.0
Integer-Regression 0.27 0.05 0.02 0.0
Iterative-Random 0.3 0.05 0.013 0.0

PRINT

Greedy 0.13 0.02 0.01 0.0
Integer-Regression 0.07 0.0 0.0 0.0
Iterative-Random 0.05 0.0 0.0 0.0

VAC

Greedy 0.07 0.014 0.0 0.0
Integer-Regression 0.8 0.01 0.0 0.0
Iterative-Random 0.05 0.0 0.0 0.0

We observe that the empirical p-values obtained for all
our algorithms are either zero or close to zero. Therefore,
the low-error solutions obtained by our algorithms cannot
be attributed to randomness. For all datasets, the highest
p-values are observed for k = 5. This trend is particularly
pronounced in the BOOK dataset. This indicates that, for

this dataset, it was more challenging for the algorithms to
select a characteristic set with such a small size. This can
be attributed to the ambiguity of the domain, which is less
entertaining to objective judgments. Such ambiguity may
lead to a more diverse opinion vector (i.e. with multiple
positive and negative opinions per feature), and makes it
more challenging to find a very small characteristic set of
reviews. Nonetheless, the results show that the empirical p-
values drop sharply as k increases. In fact, they reach zero
or (near-zero) value for all datasets when k ≥ 15.

Error values: The actual error values of the solutions
reported by Greedy, Integer-Regression and Iterative-

Random as a function of k are also shown in Table 2. Again
the reported values are averages over all corpora in each
dataset. The standard deviations within every dataset (not
shown in the table) are values in the range [0, 0.05] for all al-
gorithms, datasets and values of k. The error values indicate
all three algorithms achieve low errors that are reduced to
near-zero as k is increased. Further, Greedy and Integer-

Regression have a consistent advantage over Iterative-

Random, in terms of both the absolute error values, and their
ability to utilize larger values of k; observe that, for larger
values of k, both Greedy and Integer-Regression achieve
lower errors than Iterative-Random.

Error ratios: In order to further investigate the relation-
ship between Greedy, Integer-Regression and Iterative-

Random, we also conduct the following experiment. First,
we collapse all the items from all six datasets into a single
collection. For each value of k and each item, we compute
EG (resp. EIR) as the ratio of the error of the solution re-
ported by Greedy (resp. Integer-Regression) to the error
of the solution reported by Iterative-Random. We refer
to both EG and EIR as the error ratios. Figure 3 shows
the average values of these ratios for different values of k;
the average is taken over all items. The results demon-
strate that both ratios are consistently less than 1, indi-
cating that both Greedy and Integer-Regression achieve
less error than Iterative-Random. In fact, as the value of k
increases the values of both ratios drop. This indicates that
the advantage of Greedy and Integer-Regression becomes
more pronounced as the value of k increases. Another ob-
servation is that Integer-Regression slightly outperforms
Greedy, especially for larger values of k. This demonstrates
that this algorithm is better at utilizing the flexibility of
large values of k than Greedy, which simply extends the so-
lution that it has obtained for smaller values of k.



Table 2: Average error of the solutions reported by

Greedy, Integer-Regression and Iterative-Random for

all datasets; the average is taken over all items of a

dataset.
k = 5 k = 10 k = 15 k = 20

MP3

Greedy 0.22 0.12 0.09 0.07
Integer-Regression 0.28 0.16 0.11 0.09
Iterative-Random 0.36 0.25 0.2 0.17

CAM

Greedy 0.25 0.14 0.1 0.08
Integer-Regression 0.24 0.13 0.08 0.06
Iterative-Random 0.27 0.18 0.14 0.12

COF

Greedy 0.22 0.13 0.1 0.07
Integer-Regression 0.23 0.12 0.08 0.06
Iterative-Random 0.23 0.15 0.12 0.11

BOOK

Greedy 0.18 0.1 0.07 0.06
Integer-Regression 0.18 0.09 0.06 0.05
Iterative-Random 0.18 0.12 0.1 0.08

PRINT

Greedy 0.24 0.14 0.1 0.09
Integer-Regression 0.23 0.13 0.09 0.07
Iterative-Random 0.25 0.17 0.14 0.12

VAC

Greedy 0.28 0.16 0.12 0.1
Integer-Regression 0.26 0.14 0.09 0.07
Iterative-Random 0.29 0.2 0.16 0.13

5.4 User study
The goal of our user study is to demonstrate that the

set of reviews reported by our methods is more appealing
to the average user than the current state-of-the-art. To
achieve this, we we randomly select 10 items from the M-

P3 dataset. For the 10 review corpora that correspond to
these items, we select representative sets of reviews by us-
ing three approaches: Helpfulness, GroupCover, and our
own Integer-Regression algorithm. The first one ranks
the review by the standard helpfulness measure that is im-
plemented as a feature in major review hosting-sites such as
Yelp.com or Amazon.com; we obtain the helpfulness scores of
the reviews of our corpora while crawling. The second is the
review-selection method proposed by Tsaparas et al. [16].
This method tries to maximize the number of features for
which there is at least one positive and one negative opinion
in the reported set. We use the Integer-Regression algo-
rithm to represent our own selection paradigm, since it was
shown to outperform the other algorithms in our other ex-
periments, and is the one that gave the least-error solutions.

For each of the 10 items, we use the above three methods
to select a set of 5 reviews. We chose to select no more than
5 reviews, to ensure that the human annotators would be
able to complete the task in a reasonable amount of time.
We asked the human annotators to rank the three sets from
best (score 1) to worst (score 3). The criterion for the rank-
ing was how well each set represents the entire corpus of
reviews on the item. Clearly, it was impossible for the an-
notators to process the tens or even hundreds of reviews of
the entire review corpus in order to make a decision. Thus,
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Figure 3: Average error ratios EG and EIR for k ∈
{5, 10, 15, 20}. The reported ratios are averages over

all items in the union of all six datasets.

for each item, the annotator was shown the total number
of positive and negative opinions expressed on each feature
(Price, Sound Quality, Battery Life, Connectivity, Design,
Screen, Menu and Radio) in the entire corpus. We also pro-
vided annotators with the original link to the review corpus
on Amazon’s website. In this way, we provided them with all
the necessary information needed to determine their rank-
ings. To conduct our survey, we created a HIT (Human
Intelligence Task) on Amazon’s Mechanical Turks platform.
We hired 40 annotators to work on our HIT. The sets were
shown in a randomized order to the annotators, who were
thus oblivious to which set correspond to each approach.
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Figure 4: User study: percentage of rankings for

which different methods were ranked first by the

human annotators.

Figure 4 shows, for each of the 10 items, the percentage of
workers that chose the set reported by each approach as the
best one (i.e. ranked as 1). The results illustrate that the
human subjects had a clear preference to the sets reported
by our approach. A high percentage of the annotators con-
sistently reported our approach as the best one, leading to
percentages as high as 77%. In fact, our set was selected as
the best for all items, with the exception of items 3 and 4
(for which our approach was tied with helpfulness).

Figure 5 shows the average rank assigned to each ap-
proach, for each of the 10 items. Recall that lower values are
desirable (since smaller ranks indicate higher preference of
users to the results of a method). This plot illustrates that
our approach outperforms the two baselines. Items 3 and 4
are the only exceptions. For these, the reviews selected us-
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Figure 5: User study: average ranking of different

methods as ranked by human annotators.

ing the helpfulness scores were ranked slightly higher than
ours. For all the other items, the average ranking achieved
by our method was significantly lower than that of Helpful-
ness and GroupCover. In conclusion, the results of the user
study demonstrate the validity and superiority of our selec-
tion paradigm, when compared to existing ranking criteria
and state-of-the-art review-selection methods.

6. CONCLUSIONS
In this paper we introduced the problem of selecting a

characteristic set of reviews from a given corpus. Our se-
lection paradigm is a significant improvement over previous
relevant work, since it is the first to ask for a set that respects
the proportion of opinions on each feature (both positive and
negative), as observed in the underlying corpus. We formal-
ly define the Characteristic-Review Selection problem
and prove that it is NP-hard both to solve and approximate.
We propose three heuristic algorithms for selecting a char-
acteristic review set, which we evaluate on a wide range of
review datasets from different domains. The results indicate
that our algorithms are consistently able to find a compact
set of reviews that yields a highly accurate approximation
of the set of opinions in the corpus. To demonstrate that
our problem definition and solution is an important improve-
ment over previous efforts, we perform a user study using the
Amazon Mechanical Turks platform. The study reveals that
users consistently prefer the set of reviews selected by our
methods, as opposed to those selected by previous state-of-
the-art methods. Our work can be easily incorporated into
any review-hosting website, in order to provide users with a
compact set of real reviews, that accurately represents the
opinions expressed in the entire corpus.
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