
Interpretable Nonnegative Matrix Decompositions

Saara Hyvönen
∗

Fonecta Ltd.
Helsinki, Finland

saara.hyvonen@fonecta.com

Pauli Miettinen
Helsinki Institute for

Information Technology
University of Helsinki

Finland
pamietti@cs.helsinki.fi

Evimaria Terzi
∗

IBM Almaden
San Jose, CA

USA
eterzi@us.ibm.com

ABSTRACT
A matrix decomposition expresses a matrix as a product
of at least two factor matrices. Equivalently, it expresses
each column of the input matrix as a linear combination of
the columns in the first factor matrix. The interpretabil-
ity of the decompositions is a key issue in data-analysis
tasks. We propose two new matrix-decomposition prob-
lems: the nonnegative CX and nonnegative CUR problems,
that give naturally interpretable factors. They extend the
recently-proposed column and column-row based decompo-
sitions, and are aimed to be used with nonnegative matrices.
Our decompositions represent the input matrix as a nonneg-
ative linear combination of a subset of columns (or columns
and rows) from the input matrix.

We present two algorithms to solve these problems and
provide an extensive experimental evaluation where we asses
the quality of our algorithms’ results as well as the intuitive-
ness of nonnegative CX and CUR decompositions. We show
that our algorithms return intuitive answers with smaller
reconstruction errors than the previously-proposed methods
for column and column-row decompositions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; F.2.1 [Analysis of Algorithms and Prob-
lem Complexity]: Numerical Algorithms and Problems—
Computations on matrices

General Terms
Algorithms, Experimentation

Keywords
Matrix decompositions, column-row decompositions, alter-
nating least squares, local search

∗This work was partially done when the authors were with
Helsinki Institute for Information Technology, Helsinki, Fin-
land.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

1. INTRODUCTION
Matrix decompositions have proved to be useful tools for

many data-analysis tasks. Broadly speaking, a matrix de-
composition takes as input an m×n matrix A and an integer
k and outputs an m × k component matrix C and a k × n
mixing matrix X such that A can be approximately repre-
sented by the product CX. In that way, the decomposition
represents the data by using k components. Naturally, the
matrices C and X should be such that they can adequately
represent the data in terms of the reconstruction error de-
fined, e.g., as the Frobenius distance ‖A− CX‖F .

Matrix decompositions allow for storing matrices C and
X instead of the original matrix A. This can save space,
especially when the input matrix is dense and k � n.1

In many practical applications it is of interest to express
the data using components from the actual data set. As-
suming that the columns of A represent the data points, this
means that we look for a decomposition of the original ma-
trix into matrices C and X such that the error ‖A−CX‖F

is small and, at the same time, the columns of matrix C are
actual columns of the original matrix. Then, matrix C tells
us what the components are and the mixing matrix X tells
us how strongly each component is related to each column
of the original matrix A. Such a decomposition is known
as the CX decomposition. The corresponding decomposition
where the matrix A is decomposed into three matrices, C,
U and R, where C contains a subset of the columns, R a
subset of the rows, and U is a mixing matrix, is called the
CUR decomposition.

The CX and CUR decompositions have received increasing
attention in the data-analysis community [2, 5, 6]. One of
their advantages is that they are very space efficient since
they preserve data sparsity: if the input matrix is sparse
then so are C and R. At the same time, CX and CUR de-
compositions give a relatively intuitive interpretation of the
original data. Consider matrix A where the columns corre-
spond to newsgroup categories and rows to words used in
newsgroups’ posts; each entry (i, j) of matrix A gives the
frequency of word i in newsgroup j. Further assume that
the columns that correspond to news, religion, and sports
categories are selected to be in C. Then, the CX decom-
position can express any other column, e.g., a column that
corresponds to newsgroup about golf, as being 0.9 of sports,
−0.6 of religion, and 0.3 of news. Knowing the meaning of
the components in matrix C (e.g., sports, news or religion)
increases the interpretability of the decomposition.

1This is an assumption that we will follow throughout the
paper.

As a real-world example, consider the dialect dataset,
discussed in Section 4.3. The rows of the data represent the
dialect features and the columns represent the municipali-
ties of Finland so that element (i, j) tells whether feature
i is used in municipality j or not. When doing a CUR de-
composition to this data the columns of C represent the
prototypical municipality of a certain dialect group, while
the rows of R represent the prototypical dialect features of
each dialect group. In this paper, we take the CX (and CUR)
decompositions one step further by adding a nonnegativity
constraint on the mixing matrices: matrices X (in CX) and
U (in CUR) are required to be nonnegative.

In many data-analysis tasks the data matrices have only
nonnegative entries; such entries correspond, for example, to
counts of event occurrences. In cases where the input matrix
is nonnegative, the additional nonnegativity requirement is
not only reasonable, but it also helps in the interpretability
of the results. For example in the aforementioned news-
group data expressing the column about golf a being 0.8
of sports, 0 of religion, and 0.1 of news seems more intu-
itive. For the dialect data the nonnegative mixing matrices
naturally express the strength of dialect features in munic-
ipalities showing, e.g., the smooth transition from a dialect
to other.

In this paper we define the nonnegative CX and CUR decom-
positions (NNCX and NNCUR respectively) and give two algo-
rithms to find them. Via extensive experimental evaluation
we show that the algorithms work well in practice: they give
interpretable decompositions and achieve low reconstruction
errors. In fact, with nonnegative data our algorithms achieve
lower reconstruction errors than general CX and CUR decom-
position methods. In some cases this is true even when the
latter are not forced to satisfy our nonnegativity constraint.

The rest of the paper is organized as follows. Problem
definitions and some facts regarding the computational com-
plexity of the NNCX and NNCUR problems are given in Sec-
tion 2. In Section 3 we present our algorithms. Section 4
contains the results of our experiments and Section 5 gives
a review of the related work in the area. We conclude the
paper in Section 6.

2. THE PROBLEMS
In this section we provide some background on the CX and

CUR decompositions and define their nonnegative variants,
which are the main focus of this paper. We also outline
some basic properties of these variants and study their com-
putational requirements.

2.1 Problem definitions
Let A be an m×n matrix. We denote the i-th column of A

by Ai. Similarly for I ⊆ {1, . . . , n} we use AI to refer to the
submatrix of A that contains only the columns of A indexed
by the indices in I. We use ‖·‖F to denote the Frobenius

norm of a matrix, ‖A‖F =
qP

i

P
j a2

ij , and R+ to denote

the nonnegative real numbers.
For an integer k, we define the column-based low-rank ap-

proximation of A to be the matrix A′ = CX, where C is
an m× k matrix whose columns consist of k columns of the
input matrix A, and mixing matrix X is in Rk×n. Matrices
C and X define a CX decomposition of A. The cost of such
a decomposition is defined to be

CX(A, k, C, X) = ‖A− CX‖F .

The CX problem, given k, asks for the matrices C and X
such that CX(A, k, C, X) is minimized. We use CX∗(A, k) to
denote this minimum value. The complexity of finding the
optimal solution to the CX problem is unknown [5]. How-
ever, a recent result [3] strengthens the intuition of the NP-
hardness of the problem.

The CUR decomposition is an extension of the CX decom-
position. For an input matrix A and integers k and r, we
define the column-row based low-rank approximation of A
to be the matrix A′ = CUR where C is an m × k matrix
with k columns from A, R is an r × n matrix with r rows
from A, and U ∈ Rk×r is a mixing matrix. Matrices C, R,
and U define a CUR decomposition of A. The cost of such a
decomposition is defined to be

CUR(A, k, r, C, U, R) = ‖A− CUR‖F .

As in the CX problem, given k and r, the CUR problem asks
for matrices C, R, and U such that CUR(A, k, r, C, U, R)
is minimized. We denote by CUR∗(A, k, r) this minimum
value. Solving the CUR problem is at least as hard as solving
the CX problem.

Adding the nonnegativity constraints in the CX and CUR

decompositions leads to the definitions of the nonnegative
CX (NNCX) and nonnegative CUR (NNCUR) problems, which
are the focus of this paper.

Problem 2.1. Given a matrix A ∈ Rm×n
+ and an integer

k, find an m× k matrix C of k columns of A and a matrix
X ∈ Rk×n

+ minimizing

CX+(A, k, C, X) = ‖A− CX‖F .

We refer to Problem 2.1 as the NNCX problem and to the CX
decomposition where xij ∈ R+ as the NNCX decomposition of
A. We also use CX∗

+(A, k) to denote the minimum value of
the CX+(A, k, C, X) function. Notice that the matrix C can
be interpreted as a set of points generating a convex cone
and the goal is to minimize the sum of distances from other
columns of A to this cone.

The definition of the NNCUR problem is similar to that of
NNCX.

Problem 2.2. Given a matrix A ∈ Rm×n
+ and integers k

and r, find an m× k matrix C of k columns of A, an r × n
matrix R of r rows of A, and a matrix U ∈ Rk×r

+ minimizing

CUR+(A, k, r, C, U, R) = ‖A− CUR‖F .

A solution to the NNCUR problem is an NNCUR decompo-
sition of the input matrix A. We denote the cost of the
optimal NNCUR decomposition by CUR∗

+(A, k, r).
From the above definitions, it is easy to derive a set of

propositions that summarize the relationships between the
different decompositions.

Proposition 1. For a nonnegative matrix A and inte-
gers k and r, it holds that

CX∗(A, k) ≤ CX∗
+(A, k) and

CUR∗(A, k, r) ≤ CUR∗
+(A, k, r).

Proposition 2. For a nonnegative matrix A and inte-
gers k, k′ such that k ≤ k′ and r, r′ such that r ≤ r′, it holds
that

CX∗
+(A, k) ≥ CX∗

+(A, k′) and

CUR∗
+(A, k, r) ≥ CUR∗

+(A, k′, r′).

A trivial upper bound for CX∗
+(A, k) is obtained by se-

lecting C to consist of the k columns of A with the largest
norms and assigning xij = 1 if Ci = Aj and zero otherwise.
This yields the following bound.

Proposition 3. Let J be the indices of the n−k columns
of A with the smallest norms. Then CX∗

+(A, k) ≤ ‖AJ‖F .

2.2 Problem complexity
As mentioned above, the complexity of the CX and CUR

problems is unknown. However, we can show that given
the component matrices, the mixing matrices X and U can
be computed in polynomial time. We present our results
in terms of the CX and NNCX decompositions, but all results
apply mutatis mutandis to CUR and NNCUR.

Notice first that if the matrix C is given, then finding
the matrix X that minimizes CX(A, k, C, X) can be done in
polynomial time by setting X = C†, where C† is the Moore–
Penrose pseudoinverse2 of C [11]. An analogous result for
nonnegative X is given in the next proposition.

Proposition 4. Given a matrix A ∈ Rm×n
+ , an integer

k, and an m × k matrix C of k columns of A, the matrix
X ∈ Rk×n

+ minimizing CX+(A, k, C, X) can be computed in
polynomial time.

For the proof notice that finding the NNCX decomposition
of a matrix translates into a convex quadratic programming
problem with linear constraints. This can be solved in poly-
nomial time [12].

Therefore, for a given matrix C, finding the optimal X
can be done in polynomial time for both CX and NNCX de-
compositions. Similarly, given C and R, finding the optimal
matrix U for the CUR and NNCUR decompositions can also
be done in polynomial time. These observations give a hint
that the difficulty of Problem 2.1 (or Problem 2.2) lies in
finding the correct C (or C and R).

3. ALGORITHMS
In this section we give two approximation algorithms for

the NNCX and NNCUR problems. We mainly focus our atten-
tion on the algorithms for the NNCX problem. We then show
how we can solve the NNCUR problem using the algorithms
for the NNCX problem as black boxes.

3.1 Algorithms for the NNCX problem
To solve the NNCX problem, one could take any existing

algorithm for the CX problem and then apply the nonnega-
tivity constraint to matrix X (for existing algorithms, see,
e.g., [2, 6]). Instead of taking this approach we propose two
new algorithms for the NNCX problem: Local and ALS.

The Local algorithm is a local-search heuristic that takes
as input a nonnegative matrix A and an integer k and com-
putes matrices C and X. The algorithm initially starts with
a random subset of columns of A forming the matrix C.
It then repeatedly replaces a column from C with another
column from A, given that such a swap decreases the cost
of the NNCX decomposition. The algorithm stops when no
more improvements can be made, or when a limit on the
number of iterations is reached. The user can select the
maximum number of iterations based on her demands, use

2Sometimes C+ is used to denote the pseudoinverse, but we
restrict the use of + to denote nonnegativity.

Algorithm 1 The Local algorithm for NNCX.

Input: An m × n nonnegative matrix A and an integer k.
Output: Matrices C and X that approximate A.

1: J = k random distinct column indices in {1, . . . , n}
2: C = AJ ;
3: [X, err] = Solve_X_Given_C(A, C)
4: while err decreases AND max iterations are not reached do
5: for j ∈ J do
6: j′ = arg minc∈{1,...,n}\J{err | [X, err] =

Solve_X_Given_C(A, A(J\{j})∪{c})}
7: J = (J \ {j}) ∪ {j′}
8: C = AJ ; X = Solve_X_Given_C(A, C)

Algorithm 2 The ALS algorithm for NNCX.

Input: An m × n nonnegative matrix A and an integer k.
Output: Matrices C and X that approximate A.

1: J = k random column indices from {1, . . . , n}
2: C̃ = AJ ;
3: while err decreases AND max iterations are not reached do
4: [X, err] = Solve_X_Given_C(A, C̃)

5: [C̃, err] = Solve_~C_Given_X(A, X)

6: J = match_columns(C̃, A)
7: C = AJ

8: [X, err] = Solve_X_Given_C(A, C)

some predefined default value, or omit the whole stopping
criterion. Algorithm 1 sketches the main steps of the Local
algorithm.

At every step we fix a set of columns that form the ma-
trix C, and we need to evaluate the cost of the solution
and the nonnegative matrix X induced by this particular
C. This task is handled by the function Solve_X_Given_C.
Given nonnegative matrices A and C, Solve_X_Given_C re-
turns a nonnegative matrix X such that CX is close to A.
See below for more discussion about this function and its
counterpart Solve_~C_Given_X.

Another important point is that the Local algorithm is
not bounded to the NNCX problem, but it can also be used as
an alternative solution to the standard CX problem simply
by not requiring X to be nonnegative. As we will see in
Section 4, using Local for the standard CX problem gives in
many settings better results than standard algorithms used
for the CX problem.

The second algorithm we propose for the NNCX problem
comes with the name ALS and is inspired by the alternat-
ing least squares method used in the NMF algorithms [1]. A
sketch of the algorithm is given in Algorithm 2.

The idea is that we first pick a random set of k columns
from the original matrix to construct a matrix C̃. Then,
we use this C̃ to compute the nonnegative matrix X using
the routine Solve_X_Given_C. In turn, we compute a new
nonnegative matrix C̃ using the current X in an analogous
way of computing X given C̃. This new C̃ does not have to
contain columns of A (hence C̃, not C). This computation
is handled by the routine Solve_~C_Given_X.

The loop terminates either when the alternating process
gives no more improvement in the error function, or when a
certain number of iterations has been reached. Alternatively,
the stopping criteria can be changed so that the while loop
terminates when the improvement in the error goes below
some threshold. Again, the user can supply the algorithm
with the stopping criteria best suited with her needs or rely
on default values.

After the while loop, matrix C̃ might not – and in gen-
eral does not – contain columns of A. Thus, we need an
additional post-processing step on line 6. The task is to
find k distinct columns of A that are as close as possible
to the columns of C̃. This task is handled by the routine
match_columns on line 6, and it involves finding a solution to
a standard maximum matching problem on bipartite graphs.
This problem can be solved optimally in polynomial time
using the Hungarian method [13]. Greedy alternatives also
work well in practice.

3.1.1 Solving X and C̃

The most straightforward way of implementing methods
Solve_X_Given_C and Solve_~C_Given_X without the non-
negativity constraint is to use the Moore–Penrose pseudoin-
verse. By Proposition 4, polynomial-time implementations
of the algorithms with nonnegativity constraints are possible
using convex quadratic programming (CQP). However, the
computational requirements of CQP routines would make
the overall approach highly unscalable, as we need to use it
in the inner loops of both algorithms. As a post-processing
step, i.e., fine-tuning X after C is fixed, CQP could be used
in some cases. For the sake of a fair comparison, we have
not used CQP in our experiments, except in Section 4.2.1.

In order to keep the algorithms scalable for large datasets,
even with some cost in the quality of the results, we use
the following method: In Solve_X_Given_C(A, C), we first
compute X = C†A, where C† is the Moore–Penrose pseudo-
inverse of C. Then we set all negative values of X to 0.
Equivalently, when solving C̃ given X, we compute C̃ =
AX† and set the negative values of C̃ to 0. Our projection-
based approach is in fact a common practice employed in
many NMF algorithms [1]. In Section 4 we will show that the
effect the projection step has to the quality of the results
can be very small or even nonexistent.

Our projection approach is very simple, and it is possible
to improve it with some simple ideas. For example, one could
project all values of X that are smaller than some ε ≥ 0 to 0.
We have noticed that a careful selection of ε can indeed yield
smaller errors. However, in order to avoid extra parameters
we have not utilized this trick in our experiments.

3.1.2 Convergence of the algorithms
The Local algorithm will eventually converge to some

stationary point since there is only a limited, albeit expo-
nential, number of different matrices C. However, this sta-
tionary point is not guaranteed to be a local optimum. The
convergence of ALS is a more complicated issue. Had we
not the requirement for the columns to be from the origi-
nal matrix, the results reported in [1] would directly apply
here. That is, the while loop in line 3 of the ALS algorithm
converges to local optima given that the optimal solution is
computed in every step. However, the last step of mapping
the columns of C̃ to the closest columns of the original ma-
trix A (line 6), prevents us from claiming anything about
the optimality of the obtained solution.

3.1.3 Time complexity
The time complexity of our algorithms is dictated by the

time complexity of Solve_X_Given_C and Solve_~C_Given_X,
both requiring the computation of Moore–Penrose pseudoin-
verse3 for an m×k (or k×n) matrix, and a multiplication of

3Here we are using the projection method.

two matrices of size m×k and k×n. Using SVD for pseudoin-
verse, this is doable in time O(nk2) (assuming n = m) [11].
That is also the time needed for a single iteration of the
ALS algorithm. A single iteration of Local takes time
O((n − k)nk3). Assuming that the number of iterations is
constant, these are also the final time complexities, albeit
with possibly large hidden constants.

3.2 Algorithms for the NNCUR problem
For the NNCUR problem we use the algorithms proposed

in the previous section as subroutines. Suppose A is an
approximation algorithm for the NNCX problem. We use A
to compute an approximate solution to the NNCUR problem.
First, we solve the NNCX problem for the input matrix A and
for its transpose, AT . As a result, we have matrices C and
R containing a subset of columns and a subset of rows of
A, respectively. Given C and R, we compute the matrix
U . Again, instead of using the convex optimization, we use
the pseudoinverse so that U is the matrix C†AR† with all
negative values set to 0.

The above procedure is not specific to the NNCUR problem,
but it can be used for finding approximate solutions to the
general CUR problem as well.

4. EXPERIMENTAL EVALUATION
In this section we give an extensive experimental study of

the performance of our algorithms. For this, we test our al-
gorithms on both synthetically-generated and real datasets.
The main goals of our experiments are twofold: (1) to show
that NNCX and NNCUR decompositions, in general, are viable
decomposition schemes; and (2) to show that our algorithms,
in particular, achieve good and intuitive results. The syn-
thetic data is used to asses the quality of our algorithms’
results, and with it we study the effects of projection ver-
sus convex optimization; the effects of basis size; and the
effects of noise. The real data serves both purposes of the
experiments: with it we study how well our algorithms per-
form against previously-proposed methods for CX and CUR

decompositions; what are the effects of the nonnegativity
constraint and how meaningful it is; and are the results in-
tuitive.

Our evaluation metric is the reconstruction error, i.e., the
Frobenius norm of the difference between the input matrix A
and the matrix A′ constructed by the decomposition, ‖A−
A′‖F with A′ = CX or A′ = CUR.

4.1 Other algorithms
Since this is the first study to address the NNCX and NNCUR

problems, we compare our algorithms against two previously-
proposed algorithms for CX and CUR decompositions. These
algorithms were designed without the nonnegativity con-
straint in mind. The first of these two algorithms is called
844 and is due to Berry et al. [2]. It is a greedy algorithm
that selects the k-th column in C based on the k − 1 al-
ready selected columns. The other algorithm, DMM, is due
to Drineas et al. [7], and we use the Exactly version of it.
The DMM algorithm contains two algorithms: one for the
CX problem and one for CUR. Both algorithms are, however,
based on the same idea of randomly sampling the columns
in C (and rows in R) with respect to probabilities defined by
the singular vectors of the input matrix. Drineas et al. [5,
6, 7] were able to prove that their algorithms can, with high
probability, achieve a reconstruction error that is at most

(1 + ε) times the optimal reconstruction error achieved by
SVD. Alas, to achieve this result against SVD’s rank-k ap-
proximation, their algorithms need k′ columns. Parameter
k′ depends on k, ε, and δ, the probability of success, but it
is usually orders of magnitude larger than k. In our cases
however, we are interested in the case where the number of
columns is fixed and relatively small.

The time complexity of DMM is the same as computing
a rank-k approximation with SVD [7]. 844’s time complexity
is not clearly stated in [2], but it is empirically shown to be
somewhat faster than SVD.

For a fair comparison, we modify 844 and DMM with
the additional step of restricting matrices X and U to be
nonnegative. We refer to these methods as the nonnegative
844 and nonnegative DMM, respectively. However, we also
make experiments without the nonnegativity constraint in
844 and DMM. We also compare our methods against a
straightforward heuristic based on the k-means clustering
algorithm that we call Kmeans. Kmeans first performs k-
means clustering of the columns of A. Then it constructs
matrix C by selecting the columns of A that are the closest
to the centroids of the clustering. Given C it then solves X.

We also report the reconstruction errors of SVD and NMF

decompositions as baselines. The algorithms used to find
SVD and NMF decompositions are denoted by SVD and NMF,
respectively. Note that any feasible solution to NNCX is also
a feasible solution to NMF, and also an at-most-rank-k ap-
proximation of the input matrix. Thus, the optimal NMF

and rank-k approximations are always at least as good as
the optimal NNCX approximation, and can be much better.
Therefore the reconstruction error of SVD is a lower-bound
for the error of the optimal NNCX (or NNCUR) decomposition.
In fact, the reconstruction error of SVD should be expected
to be far smaller than the reconstruction error of the optimal
NNCX (or NNCUR) decompositions. Our experiments demon-
strate that in most of the cases our algorithms achieve errors
very close to the error of SVD which means that not only
our algorithms give high-quality results, but also that NNCX

and NNCUR decompositions are reasonable decompositions in
practice.

Although the optimal solution to the nonnegative matrix
factorization (NMF) problem is in principle a lower bound to
the optimal solution of NNCX (NNCUR) problem, the algorithm
for NMF we use here (the original multiplicative algorithm [1],
NMF) is not optimal, and as a such, does not present any
lower bounds for our algorithms’ performance. In fact, in
some cases our algorithms are better than the NMF algo-
rithm. This illustrates that at least in those cases our algo-
rithms for NNCX and NNCUR are closer to their optimum than
the corresponding NMF algorithm.

In all experiments the maximum number of iterations was
300 for Local and 200 for ALS and NMF. However, neither
Local nor ALS ever met their maximum, as both converged
in at most dozens of iterations. All algorithms were imple-
mented as Matlab functions. For 844 we used the implemen-
tation provided with the article [2]. The other algorithms
are our implementations, save SVD for which we used the
Matlab’s built-in version.

4.2 Experiments on synthetic datasets
We generated the synthetic datasets as follows. Consider

the task of generating a data matrix A of size m × n with
k columns as its basis. First we generated the columns

A1, . . . , Ak as i.i.d. nonnegative random vectors. The rest
of the columns were generated as random linear combina-
tions of the first k columns. The size of the matrices is
200 × 150. In order to test the performance of the algo-
rithms we added a noise matrix N `: (N `)ij is nonzero with
probability ` ∈ (0, 1), an the nonzero entries are uniformly
distributed in the unit interval.

The method for generating synthetic datasets for testing
the NNCUR methods is a bit more complex. In fact, we restrict
our data-generation process to the creation of matrices A
with a special CUR structure in which U is a square identity
matrix of size k × k.4 For input k = r the data-generation
process outputs a matrix A of size m × n such that A =

CR, where C =
“

Ik×k

B(m−k)×k

”
and R =

`
Ik×k | B′k×(n−k)

´
.

The matrices B and B′ have random entries uniformly dis-
tributed in the unit interval. We also added noise matrices
N `, similar to those used with NNCX.

We used two variables in the data-generation process that
allowed us to better study the behavior of the algorithms:
the noise level ` and the size of the decomposition, k. First,
we fixed ` = 0.05 and let k = 2, . . . , 20. Then, we fixed
k = 10 and let ` = 0.01, . . . , 0.5. In all cases k refers to the
actual value of k used to create the data. In all experiments,
including the ones with real datasets, ALS, Local, NMF,
and DMM were executed 3 times with each dataset and the
best result was selected. This was done to avoid the adverse
effect of a bad random starting point. In Figures 1–3 every
point represents an average over 5 datasets generated with
identical parameters.

4.2.1 Convex quadratic programming vs. projection
We start with an experiment that aims at justifying our

choice to use the projection approach instead of convex qua-
dratic optimization when solving X and C̃. For the experi-
ment we fixed k = 10, and let the noise level vary between
0.01 and 0.5. We used the cvx software5 for the convex
optimization.6

Figure 1 shows the reconstruction errors of SVD, ALS,
Local, ALS CVX, Local CVX and OPT CVX algorithms.
The ALS and Local are the versions of our algorithms in
which the projection approach was used. ALS CVX and Lo-
cal CVX are the versions of our algorithms in which we used
convex optimization in the routines Solve_X_Given_C and
Solve_~C_Given_X. Finally, since these are experiments on
synthetic data we also report OPT CVX that uses the cor-
rect columns (used in the data-generation process) to form
matrix C and computes X using convex optimization.

From Figure 1 we observe that the ALS algorithm con-
stantly achieves the optimal solution even with the projec-
tion. With low levels of noise, Local is also reporting op-
timal results, but as the noise level increases, so does the
Local’s error. As the error increases, convex optimization
benefits the algorithm more. Figure 1 also shows that while
the error curve of ALS follows that of SVD the latter is still
clearly lower. Overall, the experiment verified our expecta-
tion that using projection instead of convex optimization

4We are not aware of any technique that could generate data
that can have an arbitrary NNCUR (or even CUR) decomposi-
tion with zero error.
5http://www.stanford.edu/~boyd/cvx/
6Convex quadratic optimization is a special case of convex
optimization.

0 0.1 0.2 0.3 0.4 0.5
10

−2

10
0

10
2

10
4

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

noise

SVD

ALS

local

ALS CVX

local CVX

OPT CVX

Figure 1: Reconstruction error in the NNCX decomposition
as a function of noise. OPT CVX, ALS CVX and Local
CVX use convex optimization as a post-processing step to
compute X, and OPT CVX knows the correct columns to
put in C. ALS and Local (with and without CVX) were
restarted 3 times for each dataset, and the best result was
selected. All points represent an average over 5 datasets with
identical parameters. Logarithmic scale in y-axis. Lines for
ALS, ALS CVX, and OPT CVX are on top of each other.

does not deteriorate the quality of the results. Therefore,
we adopted it for the rest of our experiments.

4.2.2 Effects of noise and basis size
Figure 2 shows the reconstruction errors of the NNCX de-

compositions with synthetic datasets as a function of the
noise level ` and the value of k used in the data-generation
process (Figures 2(a) and 2(b)). ALS and Local perform
consistently far better than Kmeans and the nonnegative
versions of 844 and DMM. Note that in all of the experi-
ments at least one of our algorithms achieves a reconstruc-
tion error very close to that of SVD. Finally, it must be
noted that the relatively poor performance of DMM does
not violate the results in [5, 6, 7] – i.e., that DMM should
be at most twice as bad as SVD – as for that claim to hold,
one must have k′ � k columns in C instead of k. Indeed,
all algorithms return the same number of columns in C.

In Figure 2(a), as k increases, the quality of ALS de-
creases while the quality of Local is almost unchanged,
but in Figure 2(b), when noise level increases, the behavior
of the algorithms is reversed. One must note that the value
of k represents both the parameter for the algorithms, and
the number of i.i.d. vectors used to create the data. Thus
the behavior of the ALS algorithm in Figure 2(a) does not
contradict Proposition 2.

Figure 3 shows the reconstruction errors for NNCUR. Our al-
gorithms are again consistently better than all of the other
NNCUR methods. Moreover, their reconstruction errors are
again very close to that of SVD and NMF. ALS is clearly
the best method with Local being the second (though con-
siderably worse).

4.3 Real data
To compare the performance of the different methods to

solve the CX and CUR problems on real data we have used
four different datasets. The newsgroup dataset is a sub-
set of the 20Newsgroups collection7 containing frequencies
of 800 words in 400 messages from 4 newsgroups (‘sci.crypt’,

7http://people.csail.mit.edu/jrennie/20Newsgroups/

‘sci.med’, ‘sci.space’, and ‘soc.religion.christian’). The data
was preprocessed with the Bow Toolkit8, by Andrew Mc-
Callum, with stemming and stop word removal, and taking
800 most frequent words.

The dblp dataset contains conference–author pairs giv-
ing the number of articles authors have published in confer-
ences. The data is collected from the DBLP Bibliography
database9. For the purposes of our experiments, we selected
19 conferences, viz. www, sigmod, vldb, icde, kdd, sdm,
pkdd, icdm, edbt, pods, soda, focs, stoc, stacs, icml,
ecml, colt, uai, and icdt. We then extracted all authors
that had in total at least 2 publications in the selected con-
ferences, yielding a 19× 6980 matrix.

The dialect dataset [8, 9] consists of the distribution of
1334 dialect features (rows) across 506 municipalities of Fin-
land (columns). Each municipality is additionally character-
ized by two spatial coordinates.

The Jester joke dataset [10] contains users’ ratings of
100 jokes in a real range [−10, 10]. We considered only users
that had rated all 100 jokes, yielding 14 116×100 matrix. We
made this matrix nonnegative via adding 10 to all ratings
so that the ratings are in the range [0, 20]. Apart from this
nonnegativization step, the same dataset was used in [7].
This dataset was used to mimic an experiment from [7].

4.3.1 Reconstruction errors
We present the reconstruction errors for the newsgroup

dataset in Figure 4. Figure 4(a) shows the errors for CX and
NNCX decompositions and Figure 4(b) for CUR and NNCUR de-
compositions. From Figure 4(a) we observe that the Kmeans
and DMM methods perform consistently worse than the
other methods and that Local and ALS are at least as good
as 844. These results verify that the solid performance of
our algorithms in terms of reconstruction error is not an ar-
tifact of the synthetic data, but it is also observed in real-life
datasets. Note also, that the smallest error achieved for the
NNCX decompositions is very close to that of NMF and SVD.
In other words, restricting ourselves to NNCX decompositions
does not increase the reconstruction error much compared to
arbitrary (nonnegative) decompositions. It seems that the
newsgroup dataset indeed has an inherent NNCX structure.

The observation that NNCX and NNCUR decompositions are
natural in real datasets is strengthened by the experimental
results of Figure 4(b). This figure shows the reconstruction
errors achieved by the Local, ALS and 844 algorithms for
both CUR (algorithms ALS, Local, 844) and NNCUR decom-
positions (algorithms ALS nn, Local nn and 844 nn). The
reconstruction errors of CUR and NNCUR are very close to each
other, implying that not only is the CUR decomposition nat-
ural, but also the nonnegativity constraint is natural in this
setting. Moreover, the NNCUR decompositions obtained by
Local and ALS are better than the CUR decompositions
(that is, without the nonnegativity constraint) obtained by
844. This shows that when the data admits to NNCUR de-
composition, our methods can outperform the previously-
proposed methods even if the latter are not restricted to
nonnegative decompositions. We believe that this further
emphasizes the fact that our algorithms are producing good
results and that studying NNCX and NNCUR decompositions is
meaningful.

8http://www.cs.cmu.edu/~mccallum/bow/
9http://www.informatik.uni-trier.de/~ley/db/

2 8 14 20

10
0

10
5

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

k

SVD

844

ALS

NMF

local

kmeans

DMM

0 0.1 0.2 0.3 0.4 0.5
10

−2

10
0

10
2

10
4

10
6

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

noise

SVD

844

ALS

NMF

local

kmeans

DMM

(a) (b)

Figure 2: Reconstruction errors in the CX and NNCX decompositions as a function of (a) k and (b) noise. Best results from 3
restarts is selected and the points represent an average over 5 datasets with identical parameters. Logarithmic scale in y-axes.

2 8 14 20

10
0

10
5

10
10

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

k

SVD

844

ALS

NMF

local

kmeans

DMM

0 0.1 0.2 0.3 0.4 0.5

10
0

10
5

10
10

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

noise

SVD

844

ALS

NMF

local

kmeans

DMM

(a) (b)

Figure 3: Reconstruction errors in CUR and NNCUR decompositions as a function of (a) k and (b) noise. Best results from 3
restarts is selected and the points represent an average over 5 datasets with identical parameters. Logarithmic scale in y-axes.

0 5 10 15
180

200

220

240

260

280

300

320

340

k

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

SVD

normD

844

ALS

NMF

local

kmeans

DMM

0 2 4 6 8 10 12
180

200

220

240

260

280

300

320

340

k

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

SVD

normD

844_nn

844

ALS_nn

ALS

local_nn

local

(a) (b)

Figure 4: Errors for the NNCX (a), and CUR and NNCUR (b) decompositions of newsgroup data. In (b) solid lines represent
NNCUR decompositions. Best of 3 restarts is reported.

0.02 0.04 0.06 0.08 0.1 0.12

(a) ALS with NNCUR de-
composition

0.02 0.04 0.06 0.08 0.1 0.12

(b) Local with NNCUR
decomposition

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

(c) DMM with CUR de-
composition

0.005 0.01 0.015 0.02 0.025

(d) 844 with CUR decom-
position

Figure 5: The newsgroup data; mixing matrices U of NNCUR decompositions for algorithms ALS and Local and CUR

decompositions for algorithms DMM and 844. Column and row labels for the matrix elements are in Tables 1 and 2,
respectively.

Table 1: Terms selected by algorithms in CUR decompositions
of newsgroup data with k = 4. Ordering corresponds to
the order of matrix columns in Figure 5.

ALS Local DMM 844

diet atlant year venu
god diet launch god
encrypt encrypt studi launch
atlant god system encrypt

Table 2: Newsgroups corresponding to the news selected by
algorithms in CUR decompositions of newsgroup data with
k = 4. Ordering corresponds to the order of matrix rows in
Figure 5.

ALS Local DMM 844

space space crypt space
christian med med med
crypt crypt space crypt
med med crypt med

4.3.2 Quality and interpretability of results
A key motivation of this work was to find factors and

coefficients which have a clear interpretation. That is, all
matrices C, U , and R (or C and X) must be intuitive. To
study this, we start with the results from CUR (for DMM
and 844) and NNCUR decompositions (for ALS and Local)
of the newsgroup dataset. Table 1 gives the terms selected
by algorithms with k = 4 (a term is selected if the row cor-
responding to it appears in the matrix R), and Table 2 gives
the newsgroups related to the news selected by algorithms.
Finally, Figure 5 shows the mixing matrices U obtained from
these four algorithms. The columns of Tables 1 and 2 give
names to the columns and rows of matrices in Figure 5.

From Table 1 one can easily see that ALS and Local
select one term corresponding to each newsgroup. This
one-to-one correspondence between terms and newsgroups
is further confirmed by examining the mixing matrices. Es-
pecially for ALS the one-to-one correspondence between the
rows (news articles) and columns (terms) is clearly observ-
able in matrix U (Figure 5(a)), the rows of which represent
from top to bottom the newsgroups space, christian, crypt
and med. So in this case U is simply a weighted permutation
matrix. For Local (Figure 5(b)) this is almost the case, but
not quite. A reason for this is visible from Table 2: Local
has failed to select a news article from the christian news-
group, so the weight of the element corresponding to the
term picked from this newsgroup is small. A similar phe-
nomenon is found in 844’s column in Table 2 and, indeed,
in Figure 5(d). The mixing matrix for DMM (Figure 5(c))
is clearly different from the rest: all selected terms are used
for all groups with some nonzero weight. Note, that DMM
also uses negative values in U , e.g., by relating newsgroup
‘sci.space’ negatively to term ‘studi’.

We used only NNCX decomposition with the dblp dataset
since it only has 19 rows, and we only report the columns
selected by ALS and Local with k = 6 (Table 3). The
columns are again very intuitive; for example, in ALS’s re-
sults Umesh V. Vazirani is selected to represent theoretical
computer scientists that publish in focs and stoc. In Lo-

Table 3: Results for dblp data using ALS and Local with
k = 6.

ALS Local

Naoki Abe Divesh Srivastava
Craig Boutilier Leonid A. Levin
Uli Wagner Souhila Kaci
Umesh V. Vazirani Xintao Wu
Hector Garcia-Molina Uli Wagner
Dirk Van Gucht John Shawe-Taylor

Southeastern

Northern

S.E.Tavastian

Central Tavastian

Savonian

Southwestern

S.Osthrobotnian

Figure 6: The dialect data. The symbols show the spread
of each feature selected in the rows in NNCUR. The solid dots
mark the columns selected by NNCUR: each of those corre-
spond to one municipality. The ALS algorithm was used.

cal’s results, Vazirani’s role is given to Leonid A. Levin.
Equivalently, John Shawe-Taylor (in Local’s results) repre-
sents a group of machine learners, and Hector Garcia-Molina
(in ALS) and Divesh Srivastava (in Local) a group of data-
management researchers.

We further demonstrate the usefulness of our decomposi-
tions using the dialect dataset. The NNCUR decomposition
of this dataset reflects the underlying dialect groups. In Fig-
ure 6 we plot with different (non-solid) symbols the features
(rows) picked in the NNCUR. Each symbol appears in the map
coordinates of a municipality if the corresponding dialect
feature has a non-zero value in this municipality. The mu-
nicipalities selected are plotted as solid dots. There is little
overlap between the spreads of the selected features, mean-
ing that the algorithm picks the rows that best characterize
certain regions.

4.3.3 The Jester joke dataset
The purpose of our final experiment on the Jester joke

dataset was to mimic the experimental setting of the recent
paper by Drineas et al. [7]. Thus, the setup of this experi-
ment differs somewhat from our other experiments; here we
study the reconstruction accuracy of CX and NNCX decom-
positions with different values of k relative to that of SVD
with a fixed value of k. Namely, we let k vary from 5 to
30 for ALS, Local, and DMM, and report the Frobenius
error of this decomposition divided by the reconstruction
error of SVD with k = 5. All experiments were repeated 3
times and the best result is reported. Thus our results are
analogous to those in [7, Figure 3] with the exception of the
‘nonnegativization’ of the matrix. It should be noted that,
as the decompositions can have rank higher than 5, they can
achieve reconstruction errors below that of SVD. The results
are given in Figure 7.

5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15

k

R
e
la

ti
v
e
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

ALS

Local

DMM

DMM_nn

Figure 7: Reconstruction error of CX and NNCX decompo-
sitions with Jester joke data relative to that of SVD with
k = 5. Solid lines represent NNCX decompositions. All exper-
iments were repeated 3 times and the best result is reported.

Figure 7 shows that in this experiment Local is the best
method. Only DMM without nonnegativity constraint in X
can achieve comparable results. When the matrix X in the
decomposition returned by DMM is projected to the non-
negative quadrant, the results of DMM do not have much
improvements after k = 20. This behavior of DMM resem-
bles that of ALS. This experiment again confirms that with
nonnegative data our algorithms can perform better than
general CX decomposition methods.

5. RELATED WORK
To the best of our knowledge we are the first to intro-

duce and study algorithms for the nonnegative versions of
CX and CUR decompositions. However, matrix decomposi-
tions in general have been a recurrent research theme.

One of the best-known matrix-decomposition approaches
is the singular value decomposition (SVD) [11]. SVD has
been utilized in a wide range of data-mining applications [4].
SVD gives the optimal rank-k approximation of the matrix
A = UΣV T , where U and V are real-valued orthogonal ma-
trices and Σ is diagonal. Although the resulting decomposi-
tions achieve low reconstruction errors, in many applications
they may be hard to interpret. Nonnegative matrix factor-
ization (NMF) (see [1] and references therein) is an attempt
to overcome this problem by restricting the factor matrices
to be nonnegative and avoiding the restriction to orthogonal
matrices.

General CX and CUR decompositions have been studied pre-
viously in the fields of numerical linear algebra and theoret-
ical computer science. A very recent and comprehensive
study can be found in [7]. From the two algorithms used
here 844 stems from the field of numerical linear algebra,
while DMM stems from theoretical computer science.

6. CONCLUSIONS
We have introduced the nonnegative CX and CUR problems

and proposed algorithms for solving them. Via an exten-
sive set of experiments on synthetic and real datasets we
have demonstrated that the decompositions we propose give
naturally interpretable factors with very low reconstruction
errors. More specifically, our algorithms for NNCX and NNCUR

achieve reconstruction errors that are consistently smaller
than the errors achieved by the nonnegative versions of the
844, DMM and Kmeans algorithms. More importantly,

in many cases, our obtained solutions give errors that are
smaller or equal to the reconstruction errors obtained by
844, DMM and Kmeans even without the nonnegativity
constraints. This implies that the decompositions we pro-
pose are natural and that our algorithms make good choices
in the selection of the columns and rows in the factor ma-
trices. This last statement is further supported by the fact
that the NNCX and NNCUR decompositions achieve reconstruc-
tion errors very close to those of NMF and SVD, which are
lower bounds on the errors one should expect.

Developing new algorithms for NNCX and NNCUR decompo-
sitions is of course the main direction for the future work.
Also, the model-selection question, i.e., of how many columns
one should select to C and how many rows to R, is an in-
teresting direction for future research.

7. REFERENCES
[1] M. W. Berry et al. Algorithms and applications for

approximate nonnegative matrix factorization.
Computational Statistics & Data Analysis,
52(1):155–173, 2007.

[2] M. W. Berry, S. A. Pulatova, and G. W. Stewart.
Algorithm 844: Computing sparse reduced-rank
approximations to sparse matrices. ACM Trans. Math.
Softw., 31(2):252–269, 2005.

[3] A. Çivril and M. Magdon-Ismail. Finding maximum
volume sub-matrices of a matrix. Technical Report
07-08, Department of Computer Science, Rensselaer
Polytechnic Institute, 2007.

[4] S. C. Deerwester et al. Indexing by latent semantic
analysis. J. of the American Society for Information
Science, 41(6):391–407, 1990.

[5] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.
Subspace sampling and relative-error matrix
approximation: Column-based methods. In
APPROX-RANDOM, pages 316–326, 2006.

[6] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.
Subspace sampling and relative-error matrix
approximation: Column-row-based methods. In ESA,
pages 304–314, 2006.

[7] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.
Relative-error CUR matrix decompositions, Aug.
2007. arXiv:0708.3696v1 [cs.DS].

[8] S. M. Embleton and E. S. Wheeler. Finnish dialect
atlas for quantitative studies. J. of Quantitative
Linguistics, 4(1–3):99–102, 1997.

[9] S. M. Embleton and E. S. Wheeler. Computerized
dialect atlas of Finnish: Dealing with ambiguity. J. of
Quantitative Linguistics, 7(3):227–231, 2000.

[10] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

[11] G. H. Golub and C. F. Van Loan. Matrix
Computations. JHU Press, 1996.

[12] M. K. Kozlov, S. P. Tarasov, and L. G. Hačijan.
Polynomial solvability of convex quadratic
programming. Soviet Math. Dokl., 20(5):1108–1111,
1979.

[13] C. Papadimitriou and K. Steiglitz. Combinatorial
Optimization Algorithms and Complexity. Dover
Publications, 1998.

