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Abstract. Item reviews are a valuable source of information for poten-
tial buyers, who are looking for information on a product’s attributes
before making a purchase decision. This search of information is of-
ten hindered by overwhelming numbers of available reviews, as well as
low-quality and noisy content. While a significant amount of research
has been devoted to filtering and organizing review corpora toward the
benefit of the buyers, a crucial part of the reviewing process has been
overlooked: reviewer satisfaction. As in every content-based system, the
content-generators, in this case the reviewers, serve as the driving force.
Therefore, keeping the reviewers satisfied and motivated to continue sub-
mitting high-quality content is essential. In this paper, we propose a
system that helps potential buyers by focusing on high-quality and in-
formative reviews, while keeping reviewers content and motivated.

1 Introduction

Item reviews are among the most prominent instances of opinionated text found
on the Web. By authoring a review, a reviewer can share his experience and
express opinions on the advantages and disadvantages of an item’s features. The
accumulated corpus of reviews can then serve as a valuable source of information
for interested users and potential buyers. Due to their immense popularity and
important role in the modern e-commerce model, reviews have been the focus
of numerous interesting research problems. The challenges that emerge in a real
review-hosting system can be grouped in the following two categories:

Volume and Redundancy: Users are often faced with an overwhelming vol-
ume of reviews. As of April 2011, Amazon.com hosts almost 21,000 reviews on the
popular Kindle reading device. Clearly, it is impractical for a user to go through
hundreds, or even thousands, of reviews in order to obtain the information she
is looking for. Moreover, a large portion of the reviews are often redundant, ex-
pressing the same opinions on the same attributes. A number of approaches have
been proposed to address these challenges, mainly focusing on summarization [6,
22, 12] and search-based methods [11].

Review quality: As is the case in every system that hosts user-generated con-
tent, the quality of the submitted information is a primary issue. Several notions
of review quality have been proposed and evaluated in the relevant literature [12,
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11, 14]. The quality of a review is based on the volume and validity of the infor-
mation it conveys, as well as its readability and structural features.

While significant contributions have been made toward addressing these chal-
lenges, we identify two major parts of the review-management process that are
still lacking: (a) review presentation and visibility and (b) reviewer motivation
and utilization. Next, we discuss these two in more detail.

Review presentation: In the context of a review-hosting website, the review
presentation component determines the visibility of each review in terms of both
time and placement on the site’s interface. Since the attention span of the users
is limited, decisions about which reviews to show can have a major impact on
their browsing experience and overall satisfaction.

In major contemporary review portals, reviews are usually sorted based on
the date of submission. This approach clearly does not address any of the chal-
lenges discussed above. Alternative sorting methods are based on user feedback.
On sites like Amazon.com and Yelp.com users can rate the helpfulness of a re-
view. These ratings can be then used for ranking purposes. Further, reviewers
inherit the ratings of their authored reviews, providing a measure of expertise.
This information can then be considered for future reviews. Recently, Yelp.com
has introduced a method called YelpSort. The website claims that this measure
evaluates reviews based on “recency, ratings and other review quality factors”.
Even though this is a step toward the right direction, no details on the actual
computation are provided. While user ratings can be a useful source of infor-
mation, they also suffer from significant drawbacks [12]. For example, reviews
that already have many votes are more likely to attract even more, since they are
granted increased visibility (e.g. ranked higher) by the system. In addition, older
reviews have more time to accumulate helpfulness votes and tend to overwhelm
new (and potentially superior) reviews.

Reviewer motivation and utilization: In existing review-hosting portals,
reviewers have no interaction with the system. This leads to two significant
shortcomings:

1. Underutilization of expertise: Writing a review is an expression of the re-
viewer’s motivation to comment on a particular subset of the item’s at-
tributes. However, even though the same person may be perfectly capable to
comment on more attributes, he may refrain from doing so due to negligence
or lack of motivation. In other words, existing systems fail to get the most
out of the reviewer and thus deprive potential customers from informative
content.

2. Lack of motivation: Fully understanding the process that motivates certain
users to review certain items is a non-trivial task. Possible causes include a
genuine desire to help others, frustration or excitement due to the reviewed
item, the desire to influence others and gain acknowledgment via positive
ratings, or simply the need to express one’s self. In any case, it is safe to
say that, when a user submits a review on a public website, he does so in
anticipation that his opinions will be read by others. Hence, visibility is the
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primary means that the system can utilize in order to motivate reviewers.
For this to work in practice, there needs to be a clear connection between the
usefulness of the submitted review and the visibility it is granted. However,
current systems either completely disregard the satisfaction of the reviewers,
or try to indirectly motivate them with the promise of user-submitted help-
fulness votes. We have already discussed the biases that ail such mechanisms
earlier in the paper.

1.1 Contribution

In this paper, we present practical and theoretically grounded solutions for ad-
dressing the above shortcomings. More specifically, we present a framework that
keeps the users informed and the reviewers motivated to contribute high-quality
content. Our system guarantees that users are presented with a compact set of
high-quality reviews that cover all the attributes of the item of their interest.
We also guarantee reviewer satisfaction by proposing a mechanism which peri-
odically shuffles the existing set of reviews, instead of statically ranking them
with respect to certain criteria. The design of the shuffling mechanism is such
that the chances of the review to be brought into the spotlight are proportional
to its usefulness to the user. Finally, we present a mechanism for suggesting to
reviewers how to extend their reviews in order to gain more visibility.

1.2 Roadmap

The rest of the paper is organized as follows: we review the related work in
Section 2. After a brief introduction of our notation in Section 3, we present our
methods for review shuffling and user motivation and utilization in Sections 4
and 5. In Section 6 we provide a set of experiments that demonstrate the practical
utility of our approach. We conclude the paper in Section 7.

2 Related Work

Our work is the first to propose a complete review management system that
balances the satisfaction of customers, as well as reviewers. Nonetheless, our
methodology has ties to areas relevant to the domain of item reviews.

Review Quality: The problem of formalizing and evaluating the quality of a
review has attracted considerable attention. A large volume of work has been
devoted to evaluating the helpfulness of reviews [14, 21], typically formulating
the problem as one of classification or regression. Jindal and Liu [8] focus on
the detection of spam (e.g. duplicate reviews). Liu and Cao [12], formulate the
problem as a binary classification task, assigning a quality rating of “high” or
“low” to reviews. In recent work, Lu et al. [13] discuss how mining information
from social networks can be used toward the evaluation of review quality. A
different notion of quality deals with the readability of a review, as defined by as
its structural characteristics. The Flesch Reading EASE [9] is indicative of this
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line of work. Although our framework includes a component for the evaluation
of review quality, our ultimate goal is to build a system that balances user and
reviewer satisfaction.

Attribute Extraction and Opinion Mining: Given a review corpus on an
item, opinion mining [4, 7, 16, 17], looks for the attributes of the item that are
evaluated in each review, as well as the respective opinions expressed on each
attribute. For our experiments, we implemented the technique proposed by Hu
and Liu [7] for attribute extraction.

Review Management: The accumulation of overwhelming volumes of online
reviews has created the need for methods to manage and present such data. A
relevant field is that of opinion summarization [10, 12, 22], in which the review
corpus is processed to produce a statistical summary with information on the
distribution of positive and negative opinions on the attributes of the item. Other
relevant approaches [11, 19] propose methods for finding a compact and infor-
mative set of reviews. Finally, the Information Systems community has explored
the problem of review placement and its effect on customers [18]. Contrary to
our own approach, none of these methods take into consideration the motivation
and satisfaction of the reviewers. We present a framework that helps customers
deal with the large number of reviews, while keeping reviewers motivated to
submit high-quality and informative content.

3 Notation

We use A to denote the set of attributes associated with the given item. We also
use R to denote the set of all reviews that have been written for the item. We
assume that |A| = m and |R| = n. Every review r ∈ R is represented as a subset
of the item’s attributes; that is, r ⊆ A. We assume that every reviewer writes a
single review for each item, and therefore every review r uniquely identifies its
author.

4 Spotlight Shuffling

In this section, we present our method for selecting the set of reviews to be
shown to the users. We call the set of reviews shown at any point in time to the
visitors of the host site, the spotlight set. If R is the set of all the reviews of an
item, then the spotlight set S is a subset of the reviews from R (i.e., S ⊆ R).
Our mechanism for review selection is based on creating different spotlight sets
at different points in time. Therefore, the output of our method is a sequence
of N spotlight sets, S = {S1, S2, . . . , SN}. Ideally, we would like the following
properties for the spotlight sequence.

– Attribute coverage: each spotlight set needs to cover all the attributes of
the item, in order to provide a thorough presentation to the interested user.

– Review Quality: each spotlight set has to include only high-quality reviews,
that are both informative and easy to read.
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– Fair spotlight share: each eligible review needs to have a fair chance of
inclusion in the spotlight sequence, according to the information it conveys.

– Compactness: every spotlight set of S needs to be compact, so that users
can read through it in a reasonable amount of time.

In the remaining of this section, we identify concepts and methods that will
allow us to produce spotlight sequences that satisfy the above requirements.

4.1 Attribute coverage

We first define the notion of the cover, which is central to our analysis:

Definition 1. Given the corpus of reviews R on an item with attributes A, a
a subset of the reviews R′ ⊆ R is a cover of the item if every attribute of A is
evaluated in at least one of the reviews in R′. That is, ∪r∈R′r = A.

In order to satisfy the attribute-coverage requirement we require every set in
the spotlight sequence to be a cover. In fact, for the rest of the discussion, we
will use the terms spotlight set and cover interchangeably.

4.2 Review quality

The second requirement demands that all the spotlight sets in the sequence
consist only of high-quality reviews. That is, if q(r) is a numeric measure of
the quality of the review r, then we say that a spotlight set S is high-quality
if for every r ∈ S q(r) > τ . Here, τ is a minimum threshold imposed on the
quality of the reviews in S. The next step is to find an intuitive definition that
accurately captures the quality of a review. Our methodology is compatible
with any approach for review-quality evaluation. We refer the reader Section 2
for a thorough overview on related work. In our implementation, we adopt the
Flesch Readability Ease (FRE) formula [9] . Formally, the FRE score of a given
(English) review r is defined as:

FRE(r) = 206.835− 1.015×
words(r)

sents(r)
− 84.6×

syllables(r)

words(r)
,

where words(r), sents(r) and syllables(r) denote the number of words, sen-
tences and syllables in d, respectively. This is very popular formula, the weights
of which have been derived by means of regression on training data. The formula
yields numbers from 0 to 100, expressing the range from “very difficult” to “very
easy”, and is meant to be used for measuring the readability of texts addressed
to adult language users. In our experiments, we discard reviews that score less
than τ = 60, a typically used threshold for FRE [9]. We choose FRE for its
popularity and its use as a standard for readability by many organizations (e.g.,
by the U.S. Department of Defense).
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4.3 Fair spotlight share

For a given item, one can pick a high-quality spotlight set S by simply appending
to S high-quality reviews until all the attributes in A are covered. Of course, one
can see that there are exponentially many distinct high-quality spotlight sets.
For the rest of the discussion, we denote the complete collection of spotlight
sets by C. The question that we consider here is: “how can we fairly construct a
spotlight sequence by picking spotlight sets from C?”.

In order to address this problem, we propose a shuffling scheme that con-
structs a spotlight sequence S in a fair way that ensures the satisfaction of both
customers and reviewers: customers see a compact and informative set of re-
views, while each reviewer receives a fair share of participation in the spotlight
sequence. Clearly, the design of the shuffling method largely depends on the def-
inition of “fair participation”. In a fair shuffling scheme, valuable reviews should
be rewarded. Intuitively, a review is valuable if it evaluates a large number of
attributes or if it comments on significant attributes that are overlooked by the
majority of the reviewers. As an example, consider an expert review that pro-
vides insightful opinions on attributes that are too hard for the average reviewer
to evaluate (e.g. the advanced technical features of a laptop computer). Tak-
ing the above into consideration, we formalize the spotlight privilege of a given
review r as follows:

Definition 2. Let C be the collection of all covers of a particular item. Then,
the spotlight privilege p(r) of a given review r is equal to the number of spotlight
sets in C that include r:

p(r) = |{S ∈ C | r ∈ S}|.

Conceptually, the more spotlight sets a review participates in, the higher
its spotlight privilege. Thus, in the shuffling scheme, every time we need to
extend the spotlight sequence, it is sufficient to choose a new spotlight set from
C, uniformly at random. If we repeat this sampling process for an appropriate
number of times, the expected number of times a review r is included in the
spotlight sequence will converge to p(r).

The spotlight shuffling algorithm: Given the above discussion, the next
issue is how to sample uniformly at random from the collection of covers C.
An intuitive algorithm is the following: pick random subsets R′ ⊆ R and check
whether R′ is a spotlight set. If it is, then it is presented to the users and the
algorithm proceeds in the same fashion to pick the spotlight set to show in
the next timestamp. Although this algorithm is both natural and simple, its
time complexity is exponential. The reason for this is that C can be very small
compared to the 2n possible subsets of R. Therefore, the algorithm needs to pick
many subsets before actually finding a valid spotlight set.

An alternative is to explicitly construct spotlight sets from C. Such an algo-
rithm could initialize the spotlight sequence S with the spotlight set S1 = R (i.e.
the full set of reviews). Spotset Si is then created from spotset Si−1 by removing
from Si one review at a time, as long as the remaining set is still a spotlight
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Algorithm 1 The ImportanceSampling algorithm.

Input: Set of minimal covers M, number of desired samples N .
Output: Spotlight sequence S of length N .

1: S ← ∅
2: while |S| < N do

3: pick Mi fromM with probability 2
n−|Mi|

P

M∈M 2n−|M|

4: Generate a superset S ∈ Ci of Mi by appending each review r ∈ R \Mi with
probability 1/2.

5: Let i∗ be the Canonical Representative of S.
6: if i∗ = i then S = S ∪ {S}

7: return S

set. Although this algorithm guarantees the construction of many spotsets in
polynomial time, it still does not solve our problem. This is because it does not
guarantee uniform sampling from C. In fact, by using this algorithm, several
elements from C might never be discovered.

In order to address the problems discussed above, we employ importance
sampling [15] in order to uniformly sample solutions from C. Next, we discuss
how the technique can be applied to our setting.

The ImportanceSampling algorithm: The importance sampling technique re-

quires as input the set of all minimal spotlight sets. Recall that a spotlight set
S is minimal if it is not a proper super-set of any other possible spotlight set. In
other words, every review in a minimal spotlight set S is the only review in S
that covers at least one of the item’s attributes. As before, we use C to denote
the collection of all possible covers of the attribute-set A. We also use M to
denote the set of all minimal spotlight sets. It is easy to see that every cover
in C is a superset of at least one of the covers in M. Even though |M| << |C|,
computing M can still be a non-trivial task. For the sake of our analysis, we
assume that M is available. Towards the end of this section, we show how to
effectively sample from M.

Let Mi ∈ M be a minimal cover and Ci be the collection of all supersets of
Mi. In order for the technique to be applicable, the following three conditions
need to be met [15]

1. We can can compute |Ci| in polynomial time.

2. We can sample uniformly at random from Ci.

3. Given any subset of reviews R′ ⊆ R, we can verify in polynomial time if
R′ ∈ Ci.

In our case, all 3 conditions are satisfied: for (1) we have |Ci| = 2n−|Mi|. For (2),
we can sample uniformly from the sets in Ci by appending each review in R \Mi

with probability 1/2. For (3), given any R′ ⊆ R, we can verify if R′ is included
in Ci by simply checking if R′ is a superset of Mi.

The importance sampling technique is based on considering the multi-set U =
C1⊎. . .⊎C|M|, where the elements of U are pairs of the form (C, i), corresponding
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to a cover C ∈ Ci. In other words, for every cover C ∈ C, U contains as many
copies of C as there are Ci’s for which C ∈ Ci. The multi-set U is then divided
into equivalence classes, where each class contains all pairs (C, i) that correspond
to the same cover C ∈ C. A single pair (C, i) is defined to be the canonical
representation of each class. The intuition is that, instead of sampling from the
space of size 2n that contains all possible subsets of reviews, we sample only
from U . This guarantees that the sampled subsets are indeed review covers. The
algorithm is polynomial to the number of minimal reviews in M [15].

Selecting a seed of minimal covers: So far, we have assumed that the set
of minimal covers M is available. However, enumerating all the minimal covers3

is computationally expensive. In fact, using any of the existing algorithms [2, 3,
5] we were unable to generate all minimal covers, even for very small datasets.
Therefore, we propose to execute ImportanceSampling with a smaller seed set.
We abuse notation and denote this set by M. We generate elements of M by
starting with set R and randomly removing elements until we reach a minimal
solution. We repeat this process until we generate a seed of the desired size. Our
intuition is that even a small seed is adequate to capture a subset for most of
the solutions in U . As we show in our experiments, |M| = O(n) is sufficient.

Covering opinions: The standard definition of the spotlight set requires the

covering of all the attributes of an item. An interesting alternative is to cover
opinions. Given a review r, we first apply a method to extract the expressed
opinions, where an opinion is defined as a mapping of an attribute to a positive
or negative polarity. Then, a review with a positive opinion on attribute a1 and
a negative opinion on attribute a2 would be represented by {a+

1 , a−
2 }, instead

of {a1, a2}. It is important to note that our methodology is entirely compatible
with this formulation (see also the example in Section 6.2).

4.4 Compactness

Compact spotlight sets that cover all the attributes of the item in a small number
of reviews are preferred by the users, since they require much less effort to
process. In order to give precedence to covers with a small number of reviews,
we modify ImportanceSampling to give higher preference to small covers. For
this, we associate with every cover S a weight w(S) that only depends on the
number of reviews in S. In our implementation, we use w(S) = e−λxs , where
λ > 0 and xs is the size of S. In order to sample correctly from this weighted
sample space, we need to modify the ImportanceSampling algorithm as follows:
first, the minimal elements from M are sampled with probability proportional
to the sum of the weights of their supersets. Second, the selected minimal set
M ∈ M is extended as follows: Using an exponential prior, we select xs with
probability proportional to e−λxs . Then, we form S by expanding M using xs

random reviews from R \M . The rest of the algorithm proceeds as shown in the

3 This is also known as the transversal hypergraph problem
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pseudocode in Algorithm 1. We explore the effect of the exponential prior in the
experimental evaluation (Section 6).

5 Reviewer Motivation and Utilization
In this section, we discuss our methodology for improving the utilization of
reviewer expertise. Our goal is to motivate reviewers to submit more high-quality
content. Given a review r, we want to recommend to the author of the review
a set of attributes Q ⊆ {A \ r}, such that the new extended review r′ = r ∪ Q
has better spotlight privileges. That is, r′ appears in more spotlight sets in the
spotlight sequence than the original review r.

Our attribute-recommendation system is based on the observation that the
spotlight privileges of a review r increase with the number of reviews in R that
it dominates. We say that a review ri dominates a review rj if rj ⊆ ri. That is,
every attribute from A that is covered by rj is also covered by ri. We use D(r)
to denote the number of reviews from R that r dominates. Then, given a review
r, our goal is to recommend its extension with attributes Q ⊆ {A \ r} such that
D(r ∪Q) is maximized. Our attribute-recommendation system can be activated
after the review is submitted (and parsed to extract attributes) or before (by
asking the user to state the attributes he intends to review).

Clearly, if any reviewer was able to provide high-quality comments for all the
attributes of a product, then the above problem would have a trivial solution:
simply set Q = A \ r and make the extended review r′ dominate all the reviews
in R. However, not all reviewers have the potential to comment on all attributes.
Instead, the typical reviewer has the background and experience to comment on
a subset of the item’s attributes. For example, some reviewers might be in a
better position to comment on the hardware parts of a laptop, while others may
be able to provide a more comprehensive review on the accompanying software.
To a certain extent, the ability of a reviewer to comment on a set of attributes
is also encoded on his original review r. That is, the attributes that r covers are
indicative of the attributes that this reviewer can comment on. Formally, we use
Pr(a | r) to denote the probability that the author of review r is able to provide
high-quality comments on a certain attribute a ∈ A. For now, we assume that
these probabilities are given. Toward the end of the section, we discuss how we
can compute them from the available data. Given a set of attributes Q ⊆ A,
and the individual probabilities Pr(a | r),∀a ∈ Q, we compute the probability
that a reviewer that wrote r can effectively evaluate the attributes in Q using
the following independence assumption:

Pr(Q | r) =
Y

a∈Q

Pr(a | r).

Given the above, the attribute-recommendation problem can now be formalized
as follows.

Problem 1 (Attribute Recommendation - AR). Given an item with at-
tributes A and a review r ⊆ A, find the set of attributes Q ⊆ {A \ r} to
recommend to the author of r such that

Ed(r ∪Q) = Pr(Q | r)D(r ∪Q) =

 

Y

a∈Q

Pr(a | r)

!

D(r ∪Q). (1)
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is maximized.

We call the quantity Ed(r ∪ Q) the expected dominance of the extended review
r′ = r ∪ Q and we refer to Problem 1 as the Attribute Recommendation
problem (or AR for short). Note that the trivial solution r′ = A \ r is no longer
optimal for the AR problem. In fact, as Q becomes larger, the Pr(Q | r) decreases.
Also, as Q becomes larger, the second part of the objective (i.e., D(r ∪ Q))
increases. This is because more reviews are getting dominated by r ∪ Q.

Solving the AR problem: Although we do not know the particular complexity
of the AR problem, we know that the version of the problem where Pr(a | r) = 1
for every a ∈ A and the goal is to pick k attributes to form set Q such that
D(r ∪ Q) is maximized is an NP-Complete problem.4

In our experiments, we deploy the following Greedy heuristic for the AR
problem. At first, the algorithm sets Q = ∅. At iteration t, the algorithm forms
set Qt, by extending set Qt−1 with the single attribute that maximizes Ed(r ∪
Qt)−Ed(r ∪Qt−1). The process repeats until none of the remaining attributes
benefits the objective function. A single iteration of this algorithm has running
time O(nm). In the worst case scenario, the Greedy algorithm can have at most
n iterations. In practice, however, the number is much smaller than n.

Computing the probabilities Pr(a | r) for a ∈ A: Next, we discuss how
we can compute Pr(a | r), i.e., the probability that the author of review r is
able to provide high-quality comments on attribute a of an item. This is a chal-
lenging problem on its own. While we propose and experimentally evaluate a
way to address this, we do not claim that we have exhaustively explored this
particular problem. Instead, our purpose is to advocate the concept of attribute-
recommendation for improved expertise utilization. In fact, our overall method-
ology is compatible with any method that can effectively compute Pr(a | r).

Consider the following motivating example. In the domain of digital cam-
eras, the attributes camera lens, digital zoom and optical zoom are very often
discussed in the same review, due to their close connection and interdependence.
Intuitively, a person with particular interest for the zoom capabilities of a cam-
era, is much more likely to also focus (and comment) on the camera’s lens. We
capture this intuition by computing the probability Pr(a | r) as follows:

Pr(a | r) = max
s∈P(r)

freq(s ∪ a)

freq(s)
, (2)

where P(r) is the power set of the attributes in r and freq(s) the number of
reviews in the corpus that cover all the attributes in a given set s. Observe
that Equation (2) is the confidence measure, as defined in the context of mining
association rules [1]. Hence, we can apply well-known rule-mining techniques to
pre-compute the probabilities and reduce the processing time.

One can also take into account the reviewer’s inherent ability and expertise
on the item’s domain. Then, if the reviewer has authored a number of well-
received reviews on a topic, the probability that he is able to expand his initial

4 The reduction is from the well-known Set Cover problem.
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review is elevated accordingly. This can be easily incorporated into Equation (2),
by multiplying the left-hand side by a prior that captures the relevant expertise
of the given review’s author. The computation of such a factor falls within the
area of expertise mining, and is orthogonal to our work. In our experiments, we
assume a uniform prior distribution for all reviewers.

6 Experiments

In this section, we experimentally evaluate the methods presented in this paper.
All the components of our system assume that we know the attributes that
are discussed in every available review. To extract these attributes, we use the
method proposed by Hu and Liu [7], which also mines opinions. An additional
pass was made over the produced attribute-lists to verify their validity and also
to address synonymy issues (e.g. bathroom=restroom=toilet).

6.1 Datasets

We use four item-review datasets provided by Lappas and Gunopulos [11]. The
GPS and TVS datasets include the complete review corpora from Amazon.com

for 20 GPS systems and 20 TV sets, respectively. The VEG and SFR datasets
include the complete review corpora from Yelp.com for 20 Las Vegas Hotels and
20 San Francisco restaurants, respectively. The average number of reviews per
item for GPS, TVS, VEG and SFR was 203.5, 145, 266 and 968, respectively.

6.2 Qualitative evidence

First, we present qualitative evidence that demonstrate the validity of the spot-
light sets produced by ImportanceSampling. Figure 1 shows examples for two
different items. For each item, we present the set of considered attributes, which
are underlined in the reviews of the respective spotlight set. For lack of space, we
consider a subset of the complete set of each item’s attributes. We also anonymize
the reviews for the sake of discretion. The first spotlight set corresponds to an
item from the TVS dataset, and contain at least one evaluation for each con-
sidered attribute. The second spotlight set follows the variation we discussed at
the end of Section 4. In this case, we want to include at least one positive and
one negative opinion for each of the item’s attributes. In both examples, the
spotlight sets produced by our method successfully covers the attributes.

6.3 Evaluation of ImportanceSampling on the spotlight-shuffling task

Next, we compare our ImportanceSampling algorithm against three alterna-
tive baselines for spotlight set selection. The considered approaches are evalu-
ated in terms of how well they can balance the compactness of the produced
spotlight sets and the visibility they offer to the reviews in the corpus. (1)
GreedySampling begins by selecting a review from the corpus uniformly at ran-
dom. It then greedily appends reviews, picking the review that covers the most
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Item 1 (TVS), Attributes: { picture, price, warranty, sound, design, menu}:

“...Of all the LCD Tvs the ∗ ∗ ∗ overall seemed to have a brighter picture, has 120Hz,
2 year warranty, reasonably priced and...”

“...The ∗ ∗ ∗ delivers outstanding picture quality and sound...”

“...Intuitive menu, easy to plug and play with most any hook up and source... The
design of the TV is stunning, beautiful work all around...”

Item 2 (SFR), Attributes: {food, price, staff (service), restrooms (bathrooms) }

“...The food is delicious, prices are fair, venue is nice, staff is friendly, restrooms are
clean...”

“...BAD SERVICE, WORSE ATTITUDES, AND EXTREMELY HIGH PRICES ...”

“...The food was substandard, unfortunately...”

“...the only drawback were the bathrooms...”

Fig. 1. Examples of spotlight sets

new attributes at every step, until all the attributes at covered. The random
choice in the first step is required to introduce variety in the spotlight sequence.
The greedy choice at every step is also diversified by randomly picking among all
the reviews that maximize the number of new attributes. (2) RandomSampling

populates the spotlight set by picking reviews from the corpus uniformly at ran-
dom, until all the attributes are covered. (3) HelpSampling works in a similar
manner, except that the probability of choosing a review is proportional to the
number of (user-submitted) helpfulness votes it has accumulated.

First, we pick the item with the most reviews from each of the four datasets
(the results for the remaining items were similar and are omitted for lack of
space). We then use each approach to sample 1000 spotlight sets for each item. To
account for compactness, we allow for a maximum of 10 reviews per spotlight set.
This is also the number of reviews that can fit in a typical webpage Amazon.com

and is thus in tune with the limited attention span of the average user. If an
approach reaches the bound without covering all the attributes, it stops and
returns the incomplete set of reviews. To account for this, we report for each
approach the percentage of reported sets that were incomplete.

The results are shown in Table 1. The second column shows the percentage
of reviews that were not included in any spotlight set. Columns 2-6 show the
number of reviews that were included a number of times that falls within the
corresponding intervals (i.e. between 20 and 40 times for column 2). The intervals
in Table 1 are chosen based on a step of 20. The prevalence of our method is not
affected by this choice. The last column shows the percentage of the reported
sets that were incomplete (i.e., they did not cover all the attributes).

The first observation is that RandomSampling and HelpSampling consistently
report high percentages of incomplete spotlight sets, reaching up to 100%. This is
due to the fact that they do no consider the complementarity among reviews. As
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Table 1. Evaluation on the spotlight-set shuffling task

0 [1-20) [20-40) [40-60) [60-80) 80 ≤ Inc. %

TVS

ImportanceSampling 0.0 0.67 0.17 0.06 0.05 0.05 8%
GreedySampling 0.78 0.14 0.03 0.03 0.0 0.02 0%
RandomSampling 0.0 0.0 0.32 0.68 0.0 0.0 90%
HelpSampling 0.41 0.19 0.18 0.09 0.02 0.1 48%

GPS

ImportanceSampling 0.0 0.81 0.08 0.02 0.05 0.04 11%
GreedySampling 0.88 0.03 0.03 0.02 0.01 0.04 0%
RandomSampling 0.0 0.02 0.92 0.06 0.0 0.0 98%
HelpSampling 0.47 0.31 0.09 0.04 0.02 0.07 79%

SFR

ImportanceSampling 0.15 0.82 0.01 0.02 0.0 0.0 16%
GreedySampling 0.93 0.04 0.01 0.0 0.0 0.02 0%
RandomSampling 0.0 1.0 0.0 0.0 0.0 0.0 100%
HelpSampling 0.5 0.37 0.08 0.02 0.01 0.01 100%

VEG

ImportanceSampling 0.01 0.81 0.1 0.04 0.02 0.02 14%
GreedySampling 0.67 0.27 0.02 0.02 0.0 0.02 0%
RandomSampling 0.0 0.09 0.91 0.0 0.0 0.0 99%
HelpSampling 0.43 0.15 0.22 0.1 0.05 0.05 97%

a result, they can require an arbitrarily large number of reviews to be included in
order for all the atttributes to be covered. On the other hand, GreedySampling
reports no incomplete spotlight sets, since it ensures complete coverage with a
minimal set of reviews. However, this approach fails to fairly distribute visibility
privileges to the reviews. In fact, a consistently high percentage of the reviews
were not included in any spotsets. The greedy nature of the algorithm forces it
to focus on a small subset of the review population, while completely overlooking
the majority. Finally, our ImportanceSampling method successfully balances a
consistently low percentage of incomplete spotlight sets and a fair distribution
of visibility; the percentages of completely neglected reviews (column 1) was
consistently low, going down to zero for two of the items. In general, even though
some reviews were rightly sampled more often than others by our approach,
almost all the reviews were given a fair chance to be in the spotlight.

6.4 The effect of the seed of minimal covers on ImportanceSampling

As discussed in Section 4, we compute only a subset of the complete set of
minimal covers required by ImportanceSampling. We call such subset a seed
and denote it by M. Next, we evaluate the effect of |M| on the algorithm’s
results. We used the version of the algorithm given in Section 4.4, with λ = 0.5.
The results for different values of λ were similar and are omitted for lack of
space.
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Fig. 2. Figure 2(a): Stability of ImportanceSampling with respect to seed size. Fig-
ure 2(b): y-axis: Size of spotlight set, x-axis: value of the parameter λ.

Given the review corpus R on an item, we use the method discussed in
Section 4 to obtain a seed M of size d. We then use ImportanceSampling

to sample spotlight sets from R, until convergence. The standard principles of
ImportanceSampling are applied to determine convergence [15]. Let count(r)
be the number of times a review r was included in a sampled spotlight set. We
then rank the reviews by their respective counts. The process is repeated to
obtain a new ranking for different values of d = |M|. Figure 2(a) shows the
AP correlation coefficient [20], computed by comparing the rankings obtained
for d ∈ {n, 5n, 10n, 20n, 40n}, with the ranking given for d = 80n. AP takes
values in [−1, 1] and is a variant of Kendall τ used to compare two rankings by
giving more importance to the top of the ranks. Figure 2(a) shows the AP values
(y-axis) obtained for different values of d (x-axis). The results clearly show that
a seed of size linear to the number of reviews is sufficient to approximate the
counts. The AP values steadily increase with d, until, for d = 40n, they reach a
near-perfect value of 0.9.

6.5 Compactness evaluation

Here, we evaluate the spotlight sets produced by the ImportanceSampling with
respect to their compactness. We sample spotlight sets using the pseudocode
given in Algorithm 1, using a seed M of size 40|R| = 40n. We repeat the process
for different values of λ ∈ [0.05, 0.2, 0.4, 0.8, 1.6], the parameter of the exponential
prior. Figure 2(b) shows the average cardinality of the sampled spotlight sets,
taken over all items in each dataset (y-axis) as a function of the λ values (x-
axis). As expected, increasing the value of λ leads to smaller spotlight sets. We
observe that setting λ ∈ [0.1, 0.2] consistently produces spotlight sets of size
around 10. This is also the number of reviews that can fit in a typical webpage
of Amazon.com and is thus in tune with the limited attention span of the average
user. In any case, the λ parameter is an intuitive way to tune the size of the
presented spotlight sets according to one’s own specifications.
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6.6 Evaluating the attribute-recommendation system

Next, we evaluate our attribute-recommendation system, presented in Section 5.
We first pick the item with the most reviews from each of the four datasets. For
each item, we randomly pick 100 reviews from its corpus and extend each review
r with the set of attributes Q suggested by our method. We then record the
ratio of the review’s expected dominance after the extension, over the number of

reviews that r initially dominates (i.e. Ed(r∪Q)
D(r)+1 ).

The results are shown in Table 2. The first column shows the average ratio
over all 100 reviews picked per item. The second column shows the respective
standard deviation. The third and fourth columns show the same quantities,
calculated only over the subset of the reviews that benefited by the extension.
The fifth column shows the maximum ratio observed for each item, and the sixth
column shows the percentage of reviews that benefited from the extension. For
smoothing purposes, all the average and standard-deviation computations were
done after removing the top and bottom 5% of reviews, with respect to the ratio.

Table 2. Results of the Attribute-Recommendation System.

Avg StDev Avg* StDev* Max Improved (%)

TVS 1.5 1 2.1 1.2 21 50%
GPS 1.7 1.5 2.5 1.9 8.8 58%
VEG 1.3 0.7 2.2 0.9 12.2 34%
SFR 1.8 1.2 2.6 1.1 20.1 56%

The results show that a significant portion of the reviews consistently ben-
efited from the extension. The average improvement ratio was between 1.3 and
1.8 for all reviews, rising to 2.1 and 2.6 respectively when considering only the
benefited reviews. Further, the observed maximum ratios show that an appro-
priate extension can have a tremendous effect on the dominance of a review. The
effects of the recommendation system depend largely on the computation of the
Pr(a|r) probabilities (see Section 5); higher probabilities increase the expected
dominance (see Equation (1)) and thus make extensions more beneficial.

7 Conclusion

In this paper, we presented a novel review-management system that considers
the satisfaction of the customers, as well as the reviewers. We showed how infor-
mative and compact sets of reviews can be sampled from a corpus in way that
takes into consideration the contribution and quality of each review. Further,
we proposed an attribute-recommendation system that can help reviewers im-
prove their reviews in order to gain visibility in the system. We concluded the
paper with a thorough experimental evaluation on real review data. Overall, our
framework considers both users and reviewers and try to optimize both the user
satisfaction and utilization of reviewer expertise while motivating reviewers to
submit high-quality content.
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