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ABSTRACT
Consider each row of a 0-1 dataset as the subset of the
columns for which the row has an 1. Then a dataset is
nested, if for all pairs of rows one row is either a superset or
subset of the other. The concept of nestedness has its ori-
gins in ecology, where approximate versions of it has been
used to model the species distribution in different locations.
We argue that nestedness and its extensions are interesting
properties of datasets, and that they can be applied also to
domains other than ecology.

We first define natural measures of nestedness and study
their properties. We then define the concept of k-nestedness:
a dataset is (almost) k-nested if the set of columns can be
partitioned to k parts so that each part is (almost) nested.
We consider the algorithmic problems of computing how far
a dataset is from being k-nested, and for finding a good
partition of the columns into k parts. The algorithms are
based on spectral partitioning, and scale to moderately large
datasets. We apply the methods to real data from ecology
and from other applications, and demonstrate the usefulness
of the concept.

Categories and Subject Descriptors: F.2.2 [ANAL-
YSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY]: Nonnumerical Algorithms and Problems; H.2.8
[DATABASE MANAGEMENT]: Database Applications—
Data mining

General Terms: Algorithms, Experimentation, Theory

Keywords
nestedness, 0-1 matrices, presence/absence data

1. INTRODUCTION
The analysis of 0-1 data is one of the recurring themes in

data mining. One of the key issues in the area is to look for
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interesting concepts that would be useful to compute from
such datasets.

In this paper, we consider the concept of nestedness of
0-1 matrices. The concept has its origins in ecology; in the
study of presence/absence matrices of sites (locations) and
species. There, the nestedness hypothesis states that the
species found in a site with few species should be a subset
of the species found in a site with more species. That is,
the sets of species found in the different sets should form
a chain of subsets. Since the original publication [19], the
nestedness concept has been studied a lot; see, e.g., [4, 11,
14] for some recent work.1

In general, consider each row of a 0-1 dataset as the subset
of the columns for which the row has an 1. Then a dataset
is nested, if for all pairs of rows one row is either a superset
or subset of the other. Equivalently, the dataset is nested
if the rows and the columns can be reordered so that in
the reordered matrix the 1s in each row form a contiguous
segment starting from the first column.

Nestedness is of course an extreme state, and there has
also been some interesting work on quantifying the degree
of nestedness in a dataset [6, 5, 23, 9, 21]. See Figure 1
for examples of datasets that are completely nested, almost
nested, and very far from being nested. In the figure the
rows and columns have been ordered so that the degree of
nestedness is easy to see; in general, it is not easy to deter-
mine the degree of nestedness.

Figure 1: Examples of fully nested, almost nested
and non-nested datasets. Black = 1, white = 0.

Nestedness is a concept that makes sense also for other
types of datasets than ecological presence/absence data. Con-
sider for example data about students and courses. Then,
assuming that students follow a suggested study program
with no electives, the set of courses that a student has taken
is a sub- or a superset of the set of courses taken by another
student. Deviations from this behavior tell us something
about the students, the courses, or both.

1Note that this concept of nestedness is different from the
concept of nestedness of model classes that is sometimes
used in model selection.



As another example, consider a set of documents about a
single theme, say probability. Most documents contain the
basic terms “probability”, “random variable”, “expectation”
etc., while fewer contain terms such as “limit theorems”, and
still fewer documents contain terms such as “martingales”.
The set of terms in a document talking about martingales is
most likely to be a superset of the set of terms in a document
about the basic concepts of probability. In general, if the
collection of documents is about a single topic and there are
terms of different levels of difficulty or specialty, then the
dataset can be expected to be nested.

Most datasets are not nested, but identifying the degree
of their nestedness can give useful insight into the processes
that produced the datasets.

In some cases the whole dataset might not be nested, but
when limited to a subset of the variables, it is. Starting again
with an ecological example, consider presence/absence data
of species in sites distributed widely over space, say from
north to south. Then the dataset as a whole is not nested:
the northernmost and southernmost sites might each have
many species, but very few species are found in both places.
Thus, the subset/superset phenomenon does not occur.

However, the set of species can be partitioned into two sets
such that when projected on those sets the data is nested.
In this example the sets of species could be the ones that
are prevalent in the south and those that are prevalent in
the north. Such segmented nestedness has not, to our knowl-
edge, been considered in the literature. See Figure 2 for an
example.
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Figure 2: Example of a dataset that has segmented
nestedness.

Segmented nestedness can be applied to other domains, as
well. For example, in the course data we can find that the
courses can be partitioned into two sets so that on those sets
the data is nested; this would correspond to two different
curricula. In the document example we could find that the
terms can be divided into two sets in such a way that the
use of the terms from both sets fall into a nested pattern.

In this paper we consider the concepts of nestedness and
segmented nestedness, their use in data analysis, and the al-
gorithmic properties of the concepts. We argue that nested-
ness and its extensions are interesting properties of datasets
that can be applied also to domains other than ecology. We
study the algorithmic properties of computing how far from
being nested a dataset is. We then define the concept of
k-nestedness: a dataset is (almost) k-nested if the set of
columns can be partitioned to k parts so that each part is
(almost) nested. We consider the algorithmic problems of
computing how far a dataset is from being k-nested, and for
finding a good partition of the columns into k parts. The
algorithms are based on spectral partitioning. We apply the

methods to real data from ecology and from other applica-
tions, and demonstrate the usefulness of the concept.

The rest of this paper is organized as follows. In Section 2
we give the definitions of almost nestedness and segmented
nestedness. Section 3 gives the algorithms, and Section 4
the empirical results. Section 5 discusses related work, and
Section 6 is a short conclusion.

2. PROBLEM DEFINITION

2.1 Nestedness
Consider an n × m 0-1 matrix M . In an ecological appli-

cation, the rows could correspond to sites and columns to
species. In a course enrollment data, the rows would corre-
spond to students and the columns to courses. We denote
the ith row of M by Mi and the jth column of M by M j .
The rows and the columns of matrix M have also set inter-
pretations. That is, Mi, except for being a 0-1 vector, is also
used to denote the subset of the species that appear in the
i-th site. We use vector and set interpretation of the rows
and columns of M interchangeably.

Definition 1. An n×m 0-1 matrix M is fully nested if

for any two rows i and j we have Mi ∩ Mj ∈ {Mi, Mj}.

That is, any two rows of a fully nested matrix have a
subset-superset relationship. Alternatively, a matrix M is
fully nested if there is a permutation of the rows of M such
that in the permuted matrix Mπ, Mπ

i ⊇ Mπ
j for every

i < j. From the definition above, it is obvious that checking
if a matrix is fully nested can be done in polynomial time.

In practice, the input matrices are not expected to be fully
nested. Therefore, we need to define a measure of how far a
0-1 matrix is from being fully nested. We do so by looking
at the minimum number of 0s that need to be transformed
into 1s so that the matrix M becomes nested and we de-
note this by N (M). Therefore, for a fully nested matrix
N (M) = 0. We loosely call matrices with non-zero, but
small values of N , almost nested. Next, we formally de-
fine the corresponding optimization problem that we call
the Minimum Nestedness Augmentation (or Mna).

Problem 1 (Minimum Nestedness Augmentation).
Given a 0-1 matrix M , find the minimum number of 0s

that have to be transformed into 1s so that M becomes fully

nested.

We have the following.

Proposition 1. The Minimum Nestedness Augmen-
tation problem is NP-complete.

The hardness proof of the problem is easy if we consider
the graph-theoretic interpretation of the Mna problem. The
input matrix M defines a bipartite graph G(M) = (B, S, E).
Every node b ∈ B corresponds to a row in M and every
node s ∈ S corresponds to a column in M . There exists an
undirected edge between b and s if and only if M(b, s) = 1.
Therefore, |B| = n, |S| = m and |E| is the number of 1s in
M .

A bipartite graph (B,S, E) is a chain graph [26] if there
is a bijection π : {1, . . . , |B|} → B (an ordering of B) such
that Γ (π(1)) ⊇ Γ (π(2)) ⊇ . . . ⊇ Γ (π(|B|)), where Γ is a
function that maps a node to its neighbors.



The Minimum Chain Completion problem is as follows.
Given a bipartite graph G(M), find the minimum set of
edges F that need to be added in G(M) such that the bi-
partite graph (B,S, E ∪ F ) is a chain graph. This problem
is NP-hard [26]. It is easy to see that the Minimum Chain
Completion problem is equivalent the Minimum Nested-
ness Augmentation problem, and hence Mna is also NP-
hard. It is trivially in NP.

The equivalence of the matrix and graph formulations also
implies the following result.

Proposition 2. For any matrix M we have N (M) =
N (MT ), where MT denotes the transpose of M .

Lemma 1 in [26] states that a bipartite graph is a chain
graph if and only if it does not contain a pair of edges that
do not share any endpoints (independent edges). We can
restate this lemma in terms of the 0-1 matrix M as follows.

Lemma 1. A 0-1 matrix M is fully nested if and only if

it does not contain any submatrix of the form
0
BBBBBBBB@

...
...

. . . 0 . . . 1 . . .
...

...

. . . 1 . . . 0 . . .
...

...

1
CCCCCCCCA

.

We call such submatrices switch boxes. We show in Section 3
how we use Lemma 1 to design a greedy algorithm for Mna.

Note that Mna considers only transformations of 0s into
1s, and charges for each such transformation. The reason for
this is that in the paleontological/ecological datasets there
is high certainty associated with 1s and low certainty as-
sociated with 0s. In terms of problem definitions, we can
generalize Mna so that we allow changes of 1s into 0s as
well. We call this generalized version of Mna, Bidirec-
tional Mna problem (or BMna), and we formally define
it as follows.

Problem 2 (BMna). Given a 0-1 matrix M , find the

minimum number of 0s or 1s that have to be transformed

into 1s or 0s, respectively, so that M becomes fully nested.

We denote by B(M) the cost of the optimal solution of the
BMna problem for input matrix M . The complexity of the
BMna problem is unknown (see [17]). Although the focus
of the paper is on the Mna problem, we also show how algo-
rithms for Mna can be adopted to solve the BMna problem
as well. It is rather easy to see the following straightforward
relationship between the optimal solutions to the Mna and
BMna problems.

Proposition 3. For a 0-1 matrix M we have

N (M) ≥ B(M).

2.2 Segmented nestedness
In this subsection we consider the problem of finding a

good partition of the columns of a matrix so that the pro-
jections of the dataset to the parts are (almost) nested.

Consider the 0-1 matrix shown in Figure 2. Clearly, this
matrix is not almost nested. However, there are evidently

two almost nested submatrices that are induced by the first
and the last 20 columns of the input matrix.

As mentioned in the introduction, such matrices motivate
the definition of the segmented version of the Mna prob-
lem.2 In the segmented version of the problem we wish to
partition columns of the matrix into k parts so that the sub-
matrices induced by each part are fully or almost nested. If
{P1, . . . , Pk} is a partition of the columns of M into k parts,
we denote by M [Pi] the matrix of size n×|Pi| obtained from
M by just considering the columns in Pi. We can extend
the definitions of the fully and almost nested matrices for
segmented nestedness.

Definition 2. An n×m 0-1 matrix M is fully k-nested
if there is a partition of its columns into k parts {P1, . . . , Pk}
such that each M [Pi] is fully nested.

An immediate consequence of the above definition is the
following.

Proposition 4. For integers k2, k1 with k2 > k1, if a 0-1

matrix M is fully k1-nested, then it is also fully k2-nested.

The matrices that appear in practice are not expected to
be fully k-nested, but rather almost k-nested. That is, the
submatrices M [Pi] are almost nested.

For input matrix M , the segmented version of the Mna
problem asks for a partition {P1, . . . , Pk} of the columns of
M such that the total number of conversions of 0s to 1s in
the M [Pi]’s is minimized. We call this problem the k-Mna
problem and we formally define it as follows.

Problem 3 (k-Mna). Given a 0-1 matrix M and an

integer k, find a partition of the columns of M into k parts

{P1, . . . , Pk}, such that

Nk(M) =

kX

i=1

N (M [Pi])

is minimized.

Therefore, fully k-nested datasets have Nk(M) = 0, while
almost k-nested datasets have small values of Nk(M). Fig-
ure 2 is an example of a dataset M that has high value of
N (M) but a small value of N2(M).

Proposition 5. For a 0-1 matrix M and integers k1, k2

such that k2 > k1 we have Nk1
(M) ≥ Nk2

(M).

Since the k-Mna is a generalization of the Mna problem,
k-Mna is also NP-hard.

Instead of looking for a partition of the columns that de-
fines nested submatrices one can alternatively define the
problem of removing the minimum number of rows and
columns from the input matrix, so that the remaining (maxi-
mal) submatrix is almost nested. By using the results of [25]
one can show that this variation of the segmented nestedness
problem is also NP-hard. In the case where we are restricted
in removing only rows or only columns of the input matrix,
the problem becomes solvable in polynomial time. The rela-
tionship between these alternatives and the k-Mna problem
is the following: while k-Mna looks for groups of columns (or
rows) so that there is a nesting structure within each group,

2The term segmented comes from the definition of “Segmen-
tation Problems” given in [15].



the aforementioned variants look for removal of columns and
rows so that a nesting structure appears. Therefore, if one
thinks of the k-Mna problem as an analogue for cluster-
ing, then the above alternatives correspond to problems like
outlier detection or finding a single cluster.

We will also refer to the segmented version of Problem 2
as the k-BMna problem. The problem definition and the
corresponding properties are in accordance to those of Prob-
lem 3 and thus omitted. For input matrix M , we use Bk(M)
to denote the optimal solution of the k-BMna problem for
M .

3. ALGORITHMS

3.1 Algorithms for estimating nestedness
In this section we consider algorithms for estimating

N (M) for a matrix M . As the task is NP-hard, we cannot
hope for an exact solution; rather, we will compute scores
bN (M) that are upper bounds for N (M).

Two simple heuristics have been used in the ecology lit-
erature for the nestedness and related problems [6, 5]. The
first algorithm is RowSum. For input matrix M , the algo-
rithm counts the number of 1s in each row and reorders the
rows of M in decreasing order of their row sums. The algo-
rithm then converts the necessary 0s to 1s so that the final
matrix becomes fully nested. The complexity of the algo-
rithm is O(mn + n log n). The following example shows the
cost of the solution output by the RowSum algorithm can be
arbitrarily bad compared to the cost of the optimal solution.

Example 1. Consider the (p + 2) × (3m) matrix M that

has the following structure

M =

0
BBBBB@

0 . . . 0 1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1 0 . . . 0
...

...
...

...
...

...
...

...
...

1 . . . 1 1 . . . 1 0 . . . 0
1 . . . 1 0 . . . 0 1 . . . 1

1
CCCCCA

The RowSum algorithm can keep the order of the rows of M
unchanged, causing a cost of 2m + mp. The cost of the

optimal solution would be just 2m, achieved by moving the

last row of M on top. Therefore, the performance ration of

RowSum is 2m
2m+mp

, which goes to 0 as p grows.

Some straightforward alternatives to RowSum can be the
ColSum and the BestSum algorithms. The ColSum is exactly
the same as the RowSum but it operates on the columns of M .
That is, the columns of M are rearranged in decreasing order
of their column sums and the necessary 0s are converted
into 1s so that the final matrix is fully nested. For given
input matrix M , the BestSum algorithm is the best of RowSum
and ColSum for the given input. Both these algorithms can
give solutions with cost arbitrarily bad with respect to the
optimal with input the matrix given in Example 1.

Some other algorithms for quantifying nestedness have
also been considered in the ecological literature (see,
e.g., [23, 9, 21]), but they are fairly heuristic and difficult to
analyze.

In the rest of the section we give a simple greedy algorithm
for the Mna problem. We also show how we can adopt this
algorithm to solve the BMna problem as well.

Consider an input matrix M of size n×m. By Lemma 1,
M is fully nested if it does not contain any switch boxes.
Given this, we can design a greedy algorithm that switches
0s into 1s one at a time. At every step, the algorithm con-
verts the 0 that participates in the largest number of distinct
switch boxes. Consider entry (i, j) of the matrix. The cov-

erage C(i, j) of entry (i, j) is the number of switch boxes
this entry participates in. By converting the value in (i, j)
from 0 to 1, all the C(i, j) switch boxes are resolved.

After each conversion, the algorithm recalculates the cov-
erages of the remaining 0s in the matrix and proceeds in
the next greedy step. Algorithm 1 gives an outline of the
Greedy algorithm.

Algorithm 1 The Greedy algorithm for computing bN (M).

1: Input: An n × m 0-1 matrix M .

2: Output: bN (M), an approximation of N (M).

3: bN (M) = 0;
4: for i = 1 to m do
5: for j = 1 to n do
6: C(i, j) = coverage of entry (i, j) with M(i, j) = 0;
7: end for
8: end for
9: while M is not fully nested do

10: (i, j) = the entry with the largest coverage;
11: M(i, j) = 1

12: bN (M)++
13: update the coverages;
14: end while
15: return bN (M)

The running time of the Greedy algorithm is O(mn +
IT1T2), where I is the number of iterations of the while

loop, T1 the time required for finding the maximum cover-
age, and T2 the time required for updating the coverages.

By using a heap, T1 is O(1) and T2 is O (mn log(mn)).
When entry (i, j) is converted from 0 to 1, we only have to
make the following updates: (i) decrease by 1 the coverages
of entries (v, u) with Mvu = 0, Miu = 1, and Mvj = 1; (ii)
increase by 1 the coverages of entries (i, u) and (v, j) with
Mvu = 1, Miu = 0, and Mvj = 0. These are due to (i) switch
boxes that (i, j) participated in and that are removed, and
(ii) switch boxes that are created by the conversion.

As the maximum number of iterations is O(mn), the to-
tal time is O((mn)2 log(mn)). In practice the number of
iterations is much smaller than O(mn), indicating that the
method scales reasonably well.

The same greedy principle can be used for solving the
BMna problem. The corresponding Bi-Greedy algorithm
is essentially the same as the Greedy algorithm above, with
the only difference that since both 0s are transformed into
1s and 1s into 0s, the coverages of both 0 and 1 entries are
computed in the beginning and updated in every iteration.
Whenever entry (i, j) is converted from 0 to 1 the following
updates need to be done by the Bi-Greedy algorithm: (i)
decrease by 1 the coverages of entries (v, u) with Mvu = 0,
Miu = 1, and Mvj = 1; (ii) increase by 1 the coverages of
entries (v, u) with Mvu = 1, Miu = 0, and Mvj = 0; (iii)
increase by 1 the coverages of entries (i, u) and (v, j) with
Mvu = 1, Miu = 0, and Mvj = 0; (iv) decrease by 1 the
coverages of entries (i, u) and (v, j) with Mvu = 0, Miu = 1,
and Mvj = 1. The complementary updates are made when



entry (i, j) is converted from 1 to 0. The running time of
the Bi-Greedy algorithm is of the same order as the running
time of the Greedy algorithm discussed above. Note that
the algorithm is designed so that at most one conversion is
allowed per entry.

3.2 Algorithms for estimating segmented
nestedness

In this section we give algorithms for the k-Mna problem.
The algorithms for the k-BMna problem are easily devel-
oped using the same principles, and thus their discussion
is omitted. Remember that the task is to find a partition
{P1, . . . , Pk} of the columns of the matrix M so that the
projections M [Pi] of M to these columns have a small value
of N (M). Again, as the problem is NP-hard, we have to be

content with producing upper bounds bNk(M) for Nk(M).
We approach the problem as a clustering problem for the

columns of the input matrix M . When should two columns
be placed to the same group in the partition? Obviously, if
the columns a and b are similar, i.e., they tend to have 1s in
the same rows, then it makes sense to have them in the same
part Pi. On the other hand, if a and b are independent or
negatively correlated, then they should be in different parts
of the partition.

This simple observation leads to an algorithm for comput-
ing an approximation to N2(M): define a similarity notion
between columns, use a spectral bisection method [22] to
obtain the two parts of the partition, and then compute
the score for both parts using the Greedy algorithm. By
recursive applications of the algorithm we obtain a way of
approximating Nk(M) as well.

We first define two simple and intuitive similarity func-
tions between the columns of the input matrix M . Then,
we combine these functions with a simple spectral bisection
algorithm to solve the 2-Mna problem.

One straightforward measure of similarity that serves our
purposes is the correlation similarity. We define the corre-
lation similarity between two columns Ma and Mb as

CorrS(Ma
, M

b) = 1 + ρab, (1)

where ρab is the Pearson correlation between columns a and
b. As ρab takes values in the range [−1, 1], CorrS takes values
in [0, 2]. Value 2 is obtained if the columns are identical, and
value 0 when they are perfectly anticorrelated.

Alternatively, we use the following inclusion similarity be-
tween columns Ma and Mb:

InclS(Ma
, M

b) =
Ma ∩ Mb

min{|Ma|, |Mb|}
. (2)

The inclusion similarity captures our intuition that two
columns need to be in the same cluster if the one includes
the other. For example, when column a is included in col-
umn b (or vice versa), then InclS(Ma, Mb) = 1, and thus
columns a and b are considered very similar. Similarly, the
inclusion similarity of two non-intersecting columns is zero.

Spectral algorithms are important tools for a wide range
of problems such as, solving linear systems [20], ordering
problems [1, 16], data clustering [18, 10] and many more.
Before describing the spectral bisection algorithm we use,
we give some background for the spectral method in general.

Consider a weighted undirected graph G = (V, E) where
each (i, j) ∈ E has a weight wij . Let A be the matrix with
A(i, j) = wij if (i, j) ∈ E and A(i, j) = 0 otherwise. The

Laplacian of A is defined to be the symmetric and zero-sum
matrix L = D − A, where D is a diagonal matrix whose
(i, i)-th entry is di =

P
(i,j)∈E

wij . The eigenvalues of L
are real and nonnegative, and the smallest eigenvalue is 0
(corresponding to the eigenvector of all 1s). The eigenvector
v that corresponds to the second smallest eigenvalue of L is
also known as the Fiedler vector.

We consider the graph A, whose nodes are the columns of
the input matrix M . There is an edge between all pairs of
nodes, and the weight of the edge (a, b) is CorrS(Ma, Mb)
(Equation (1)) or InclS(Ma, Mb) (Equation (2)). We form
the Laplacian matrix LA of the graph A and compute the
Fiedler vector v. Then v is a vector with m components.

Each element va of v defines a partition by P1 = {b|vb ≤
va} and P2 = {b|vb > va}. For each va, we evaluate
bN (M [P1]) + bN (M [P2]) and return the partition with the
smallest value of the sum.

The algorithm can be augmented by local moves. That
is, we start from the initial partition given by the spectral
bisection method, and then repeatedly search for columns
that can be moved from one part to the other so that the
score improves.

If k > 2, then we recursively call the algorithm on each of
the parts to check which one should be divided further. The
method, called Partition, is described also in Algorithm 2.

Algorithm 2 The Partition algorithm for computing
bNk(M).

1: Input: An n × m 0-1 matrix M , and an integer k > 1.
2: Output: A partition of the columns of M to k parts

and an upper bound bNk(M) for Nk(M).
3: Compute the similarity graph A, with entries A(a, b) =

CorrS(a, b).
4: Form the Laplacian LA of A, and compute the Fiedler

vector v.
5: Find the column a such that the bisection P1 = {b|vb ≤

va} and P2 = {b|vb > va} has the best score of
bN (M [P1]) + bN (M [P2]);

6: if k > 2 then
7: Recursively call Partition on the restriction of M to

P1 and to P2 to check which gives the larger decrease

in the bN2(M) score
8: end if
9: Do local moves: for each column a, test whether it can

be moved to another part of the partition so that the
score improves

Every call of the Partition algorithm requires time
O(Tλ +mTp), where Tλ is the time needed for the eigenvalue
computation and Tp is the time required for the approxi-
mation of N at step 5 of the algorithm. The dominating

factor is the computation of bN for k = 1 for both sets of
m different partitions, resulting a total time complexity of
O(m3n2 log(mn)). In practice the method scales to datasets
of moderate size, as the above bound is a worst-case one.

We will compare the performance of the Partition al-
gorithm with the CorrS and InclS similarity functions
with two straightforward heuristics, the kmeans and the
InclS-kmeans. The kmeans algorithm performs a clustering
of the columns considering each column as an observation
consisting of n attributes (where n is the number of rows
of the input matrix). We use the Hamming distance func-



tion as the optimization criterion for the kmeans algorithm.
The InclS-kmeans again clusters the columns of the input
matrix, this time using as input the similarity matrix in-
duced by the InclS function. In this case, the centers of the
k-means procedure are bound to be from the input points,
since only the similarity matrix is given as input.

3.3 Selecting the value of k

The concept of k-Mna has the parameter k that can vary.
For any dataset M , we have Nk(M) ≥ Nk+1(M), as the
ability to divide the columns into k + 1 sets instead of k
sets will make it easier to have small number of nestedness
violations. At the limit, when k = m, the number of columns
in M , we have Nm(M) = 0. So how should a good value of
k be chosen?

This is, of course, a classical example of the model se-
lection problem. Different solutions abound: one can use
MDL, BIC, AIC, cross-validation, etc. (see, e.g., [12] for a
description of some of the methods).

Here we use a fairly simple alternative: we monitor the

change of the score bNk(M) as a function of k; when the
score flattens, the correct value of k is reached. This, of
course, is a heuristic approach, but seems to be sufficient.
We also compare the change in the score with the change in

the score bNk(Mπ), where Mπ is a dataset obtained from M

by permuting each column of M independently at random.3

That is, we test whether the score on real data drops clearly
faster than for random data with the same density. Other
methods of selecting k are left for further study.

4. EXPERIMENTS
In this section, we give experimental evidence of the utility

of the nestedness concept. For this, we use both synthetic
and real datasets; the latter come from a variety of applica-
tion domains like ecology, paleontology and students’ course
enrollment data.

4.1 Synthetic datasets
To test the behavior of the algorithms we generated syn-

thetic data as follows. For given n and m we first generate a
fully nested 0-1 matrix by first sampling row counts ri uni-
formly between 0 and m, and sorting them so that ri ≥ rj

for every i < j. Then we generate rows so that row i has
1s in its first ri columns and 0s in the other columns. Let
such a matrix be H , and let H1 be all the cells in H that
have value 1 and H0 all the cells that have value 0. Given
H we generate our synthetic matrices by altering entries of
H1 from 1 to 0, and entries of H0 from 0 to 1. An entry
in H1 keeps its original value with probability 1 − p, and it
is converted to 0 with probability p. Similarly, the entries
in H0 are switched to 1 with probability q and they main-
tain their original value with probability 1 − q. Thus, p is
the probability of an 0-entry in H1 and q the probability of
an 1-entry in H0. The interesting parameter values are ones
where p > q and q is fairly close to 0; this is due to the asym-
metry of 0s and 1s mentioned earlier. Figure 3 shows the
relative performance of the three algorithms Greedy, RowSum
and ColSum algorithms for synthetic datasets generated as
above. Note that when p = 0 and q = 0, the generated

3Note that in a fully nested dataset there are no switch
boxes; thus we cannot use the swap randomization
method [13].
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Figure 3: Comparative performance of algorithms
for Mna problem on synthetic datasets for q = 0.05.

x-axis: parameter p; y-axis: the quantity bN (M) of
the input M for RowSum, ColSum and Greedy algorithm

and the quantity bB(M) for Bi-Greedy algorithm.

matrices are fully nested and all algorithms find the opti-
mal solution that has cost 0. In Figure 3 we compare the
number of flips done by the different algorithms for datasets
generated with q = 0.05 and p ∈ [0.1, 0.95]. Among these
three algorithms we can clearly see that the Greedy algo-
rithm consistently outperforms the other two, and the dif-
ference is fairly high especially for smaller values of p. In the
same figure we additionally report the cost of the Bi-Greedy
algorithm using cost function B instead of N . Note that al-
though the results of Bi-Greedy are not comparable with
the results of the other algorithms, they are given here for
completeness.

4.2 Habitat datasets
We have also tested the relative performance of the differ-

ent algorithms for Mna by using a set of real datasets avail-
able by AICS Research Inc, University Park, New Mexico,
and The Field Museum, Chicago. The datasets are avail-
able online4 and they have been used for a wide range of
ecological studies [3, 9, 7, 2, 23]. The collection contains
280 datasets in the form of presence/absence matrices, that
cover a wide variety of taxa (mammals, bats, land and fresh-
water birds, reptiles and amphibians, fish, terrestrial arthro-
pods, terrestrial mollusks, plants and other miscellaneous
species). Figure 4 serves as a summary of comparisons be-
tween the Greedy algorithm and the best of the RowSum and
ColSum algorithms (BestSum). For the purposes of the ex-
periment, we group the datasets with respect to their den-
sities (number of 1’s in the matrix divided by the size of
the matrix). For each density range, we count the number
of datasets in the range for which Greedy performs better,
equal or worse than BestSum algorithm. For most datasets
with small density the Greedy algorithm performs consid-
erably better than BestSum, and throughout the datasets
Greedy is only seldom worse than BestSum. Figure 5 shows

4http://www.aics-research.com/nestedness/



Fullglas dataset; Input

5 10 15 20 25 30 35

10

20

30

40

50

60

70

80

90

100

(a) Fulglas dataset; Input matrix

Fullglas dataset; Rearranged by BestSum

5 10 15 20 25 30 35

10

20

30

40

50

60

70

80

90

100

(b) Fulglas dataset; Rearrangement
by BestSum

Fullglas dataset; Rearranged by Greedy

5 10 15 20 25 30 35

10

20

30

40

50

60

70

80

90

100

(c) Fulglas dataset; Rearrangement
by Greedy

Figure 5: Rearrangements of the Fulglas dataset matrix
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Figure 4: The performance of the algorithms on the
habitats datasets. The columns show the number
of datasets for which the Greedy algorithm or the
BestSum algorithm (the better of RowSum and ColSum)
gives better results or whenever they are equal.

an indicative example of this performance for the Fullglas

dataset. The dataset has 102 rows, 39 columns and 1503
non-zero entries. Figure 5(a) renders the input matrix.
The matrix corresponds to presence/absence information of
prairie plants (goldenrods, milkweeds, and legumes) in 102
prairie fragments in Iowa and Minnesota. The BestSum algo-
rithm makes 2026 conversions, while the Greedy only needs
959. The rearranged matrices output by the two algorithms
are shown in Figures 5(b) and 5(c). The example above il-
lustrates the philosophy of the Greedy algorithm. Instead
of a rearrangement that brings rows with larger row sum
before rows with smaller row sum, it rather prefers bringing
some sparse rows on the top for the sake of creating a ma-
trix with a clear triangular form. Notice that the rearranged
matrices output by the Greedy algorithm have no 1s in their
right lower part.

4.3 Segmented nestedness
In this section we test the algorithms for computing

bNk(M). There are two problems to consider: whether the al-
gorithm is able to recognize the cases where the dataset has a
clear k-nested structure, and whether there are clear cases of
k-nested structure in real data. We evaluate the algorithms

for approximating Nk(M) via experiments on both synthetic
and real datasets. We generate the synthetic datasets using
the same method described in Section 4.1. For given m and
n, we use the method described in Section 4.1 to generate
two matrices M1 and M2 of sizes n × m1 and n × m2, such
that m1 + m2 = m. By random permutations of the rows
and the columns of M1 and M2, we obtain the permuted
matrices M ′

1 and M ′

2. The final matrix M is obtained by
concatenating the i-th row of M ′

1 with the i-th row of M ′

2.
The matrices generated in such a way are almost 2-nested,
i.e., they have a small value of N2(M). We use such ma-
trices as input to the bisection algorithms we described in
Section 3.2. The same technique can be used to generate
almost k-nested datasets for any k. Figure 6 shows the per-
formance of the Partition algorithm using the CorrS and
InclS similarity functions and the effect of the local moves.
We compare the performance of these algorithms with the
performance of two straightforward heuristics, the kmeans

and the InclS-kmeans (see Section 3.2). As a baseline, we

also compare the quantity bN2 returned by the algorithms
to the ground truth, i.e., the value determined by the gen-
eration process. As shown in Figure 6 the Partition algo-
rithm for both the similarity measures defined in Section 3.2
outperforms the other heuristics. This performance is inde-
pendent of how balanced the sizes of the planted nests are
(Figure 6(a)) or the noise level of the dataset (Figure 6(b)).
The cost achieved by the Partition algorithm is quite close
to the ground truth. The effect of the local moves step
becomes more obvious for datasets generated to have com-

ponents of unequal sizes. In many cases, the bNk score of
the Partition algorithm with local moves and the InclS

similarity function is better than the score obtained by the
ground truth partition.

The next experiment investigates the selection of the cor-
rect value of k. We generated datasets that have 1, 2, or

3-nested structure, and tested the values of bNk and bBk for
k = 1, 2, 3, 4, 5. Table 1 shows the results, together with
the results for the permuted version of the datasets. We

observe that for 1-nested data the score bNk stays about the
same for all values of k, while for 2-nested data the score
bNk(M) drops a lot when moving from k = 1 to k = 2, and

for 3-nested data the score bNk(M) drops a lot when moving
from k = 1 to k = 2 and k = 3. I.e., the drop rate can be
used as an indication of the correct value of k. The same
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Figure 6: Comparative performance of bisection al-
gorithms for approximating N2. Upper panel: Data
set generated with p = 0.5 and q = 0.01 (see text),
with two matrices of 200 rows and varying number
columns in two nested parts. x-axis: the sizes of

the nested parts; y-axis: bN2. Lower panel: Data
set generated with q = 0.01 and varying p; 200 rows,
and two nested parts of 100 columns. x-axis: the

value of p; y-axis: bN2. Algorithms: kmeans and the
InclS-kmeans: see Section 3.2; InclS-Spectral and
CorrS-Spectral: the Partition algorithm with the
InclS and CorrS similarity metrics, but without lo-
cal moves; Local-Moves: the Partition algorithm with
the InclS similarity metric and with local moves;
GTruth: the ground truth from the data generation
process.

patterns are observed even more clearly for the values of
bBk. (The drop in the score of the permuted datasets tells
us something about how large changes should be expected
on the average.) Table 2 shows the same type of results

true k=1

k bNk(M) bNk(Mπ) std bBk(M) bBk(Mπ) std
1 6643 18717 67 2194 9861 25
2 5263 18523 45 2170 9810 54
3 4202 17383 330 2156 9741 40
4 3944 16731 587 2139 9661 53
5 3789 15954 354 2121 9561 59

true k=2

k bNk(M) bNk(Mπ) std bBk(M) bBk(Mπ) std
1 12790 18107 51 6021 10162 55
2 7163 17814 68 2212 10134 46
3 6270 17395 246 2200 10079 12
4 5744 16037 92 2186 10023 59
5 5481 15353 225 2166 9906 51

true k=3

k bNk(M) bNk(Mπ) std bBk(M) bBk(Mπ) std
1 14622 18768 73 7405 10280 49
2 10442 18532 56 4525 10256 32
3 6579 17508 194 2195 10216 40
4 6248 16816 524 2183 10077 10
5 5842 15824 44 2155 10088 37

Table 1: The k-nestedness count on generated
datasets with 1, 2, or 3 components. True k: the
number of components in the data; k: the input

parameter given to the Partition algorithm; bNk(M)

( bBk(M)): the Mna (BMna) score of the partition;
bNk(Mπ) ( bBk(Mπ)): the Mna (BMna) score for the
dataset where each column has been permuted in-

dependently; std: standard deviation of bNk(Mπ) and
bBk(Mπ). The size of the generated data is 200 rows
and 200 columns. The parameters are p = 0.1 and
q = 0.01 (see text).

for the paleontological and course datasets. We observe that
the drop continues until k = 3 for the paleontological data
and until k = 2 for the course data, but levels off after that.
In all cases the drop is larger for the real dataset than for
the permuted one. The interpretation of the results is fairly
clear for both real datasets. The paleontological dataset has
a 3-nested structure, and the same is true also for the course
dataset. In the course dataset there are actually students
from two different curricula: the names of the courses have
changed, and some students have moved from one system to
another. This explains why there are clearly more than one
components in the data.

Figure 7 shows the results on the paleontological dataset.
Panels (a) and (b) show the results of partitioning the
columns into two or three parts so as to maximize nest-
edness. The dataset is drawn so that the order of the rows
corresponds to the temporal order of the sites, and the order
of the columns corresponds to the order of the occurrence
times of the species. The sets of columns are nicely consec-
utive in the figure, indicating the expected result that the
nested subsets of columns are temporally connected. Panel
(c) shows how the subsets of the data projected to 3 parts
look like, with the rows reordered so as to show maximum
nestedness. We observe a quite strong nested structure in
each plot.
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(b) Paleo dataset; 3-partitioning of the columns,
with 25, 47, and 61 columns

(c) The three subsets of the columns of the pa-
leontological dataset, with rows and columns re-
ordered by the Greedy algorithm.

Figure 7: Segmented nestedness in the paleontolog-
ical dataset.

Paleo data

k bNk(M) bNk(Mπ) std bBk(M) bBk(Mπ) std
1 12156 12534 92 1749 1912 13
2 6375 10662 66 1566 1829 21
3 4674 9058 163 1397 1773 26
4 3933 7971 73 1277 1720 15
5 3505 7360 295 1181 1673 14

Course data

k bNk(M) bNk(Mπ) std bBk(M) bBk(Mπ) std
1 105814 140310 892 20013 27676 65
2 66196 126990 345 16546 27069 85
3 60713 109660 331 14124 26831 35
4 49420 93397 1140 13842 26555 92
5 47485 86102 1201 13503 26407 109

Table 2: The k-nestedness count on real datasets.
k: the input parameter given to the Partition al-

gorithm; bNk(M) ( bBk(M)): the Mna (BMna) score of

the partition; bNk(Mπ) ( bBk(Mπ)): the Mna (BMna)
score for the dataset where each column has been
permuted independently; std: standard deviation of
bNk(Mπ) and bBk(Mπ). The data sizes are paleontolog-
ical: 124 × 139 and course: 2401 × 106.

5. RELATED WORK
The concept of nestedness has its roots in ecological

studies where nested subsets have been observed in pres-
ence/absence matrices of species in biotas. The main focus
of the ecological studies has been applying the concept to
the study of species distribution. In more computationally
oriented work, the main effort has been towards defining
measures of nestedness and devising randomization tests for
checking whether the nestedness score of a given matrix is
significant or whether it can appear by chance.

Several indices of nestedness have been proposed like for
example the temperature of a matrix [3], the N0 index [19,
24] the N1 index [8, 24], the NC index [24], the U index [8]
and lately the discrepancy [5]. Many of these indices are
rather informally defined.

Randomization tests have been developed for comparing
the nestedness index of a given matrix with that of matrices
generated using an underlying generative model. The mod-
els used and tested in the ecological literature include those
that produce matrices with the same density, or the same
row or (or and) column margins [5, 19, 24]. The randomiza-
tion tests indicate whether the nestedness evaluated using
one of the above indices are significant or they could have
occurred by chance. The nestedness indices and the random-
ization methods have been subject to extensive comparisons
and have been applied to a wealth of ecological datasets;
see [23] for a review.

The study of the computational problems related to the
computation of the nestedness indices has been limited. For
example, [6] studies the properties of discrepancy for a given
family of 0-1 matrices that have decreasing row and column
sums. However, the computational problem of finding the
right rearrangement of rows and columns so that the re-
arranged matrix has the minimum discrepancy has not, to
our knowledge, been addressed before. Also, the concept of
segmented nestedness and its computational analysis is new.



6. CONCLUSIONS
We have studied the concepts of nestedness and segmented

nestedness, arguing that they are useful also outside the field
of ecology. We defined the measures that quantify how far
a dataset is from being k-nested and studied the properties
of the corresponding optimization problem. For the case
k = 1, we proposed a simple greedy algorithm that clearly
outperforms existing algorithms on generated and real data.
For the case k > 1, we showed how spectral methods can
be used to obtain partitions that give good results. We
evaluated the methods both on synthetic and real data. The
algorithms scale to moderately sized datasets.

There are obviously many open questions. One of the
most interesting ones is the selection of the correct value
of k; here we were content to use a simple heuristic, but
it is interesting to study the behavior of more disciplined
methods. The usefulness of the concept of segmented nest-
edness on real data seems clear, and additional experiments
on, e.g., ecological and document data are of interest.
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