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ABSTRACT

Daily-Deal Sites (DDS) like Groupon, LivingSocial, Ama-
zon’s Goldbox, and many more, have become particularly
popular over the last three years, providing discounted offers
to customers for restaurants, ticketed events, services etc. In
this paper, we study the following problem: among a set of
candidate deals, which are the ones that a DDS should fea-
ture as daily-deals in order to maximize its revenue? Our first
contribution lies in providing two combinatorial formulations
of this problem. Both formulations take into account factors
like the diversification of daily deals and the limited consum-
ing capacity of the userbase. We prove that our problems
are NP-hard and devise pseudopolynomial – time approxi-
mation algorithms for their solution. We also propose a set
of heuristics, and demonstrate their efficiency in our exper-
iments. In the context of deal selection and scheduling, we
acknowledge the importance of the ability to estimate the ex-
pected revenue of a candidate deal. We explore the nature of
this task in the context of real data, and propose a framework
for revenue-estimation. We demonstrate the effectiveness of
our entire methodology in an experimental evaluation on a
large dataset of daily-deals from Groupon.

Categories and Subject Descriptors

K.4.4 [Computers and Society]: Electronic Commerce;
H.2.8 [Database Management]: Database applications—
Data mining
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1. INTRODUCTION
Daily Deal Sites (DDS), like Groupon1, LivingSocial2, and

Amazon’s Goldbox3 are among the latest Internet sensation-

1www.groupon.com
2www.livingsocial.com
3http://www.amazon.com/gp/goldbox
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s, recommending group deals to users on a daily basis. The
deals offered by DDSs are typically geographically localized
and include discounted prices to restaurants, cafes, event
tickets, spa services etc. Groupon is a characteristic example
of a DDS. Since its introduction in 2008, it has been one of the
fastest-growing Internet-sales businesses in history. Groupon
has since gone public, with its Initial Public Offering (IPO)
valuing the company at almost 13 billion dollars.

The business model of DDSs: Every day, a DDS fea-
tures a small number of daily deals. Each deal provides a
discounted rate (usually a 40-60% discount) to some item
or service. These deals are usually geographically localized,
corresponding to services or products that are available to
residents of a particular city or a bounded geographic area.
For example, deals often correspond to discounted rates to a
local restaurant or beauty salon. Every day, the registered
DDS users receive an email that notifies them of the avail-
able daily deals in their area. Once a user decides to buy
the discounted item, he logs in the DDS and expresses his
interest in participating in the deal. If a sufficiently large
number of users has expressed such interest by the end of a
pre-specified period of availability (usually one or two days),
the deal gets materialized. Then, the users who expressed
interest get charged the pre-specified amount and are given
a coupon, which they can subsequently use in return for the
advertised service. In our work, we refer to the number of
coupons sold per deal as the size of the deal. The revenue
of the deal is then equal to its size multiplied by the price of
the coupon. The DDS typically retains a percentage of the
revenue of every deal. For example, for Groupon, a 50% [14]
commision is applied on every deal.

Existing work on DDSs: The new e-commerce model
adopted by DDSs has motivated a significant body of rel-
evant work. Economists have tried to analyze the factors
that affect the generated revenue [1], as well as the effect of
daily deals on the merchants that provide the discounted ser-
vices [11, 12]. More recently, data-mining researchers have
been intrigued by the daily-deal phenomenon and conducted
large-scale data-analytic studies on datasets from DDSs [5,
4, 21]. These studies focus on discovering (i) the effect of d-
ifferent factors on the revenue and size of daily deals [4], (ii)
the effect of daily deals on customers’ reviews [5] and (iii)
the impact of the users’ social network on the propagation of
daily deals [21].

Our contribution: Although the above studies provide use-
ful insights on some aspects of the daily-deal paradigm, the
algorithmic problems that arise in this domain have not yet
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been tackled. In fact, despite the immense popularity of
DDSs, there has been little research on modeling and solv-
ing the relevant computational problems in a principled and
efficient manner. Our work is the first to formalize these
problems and present appropriate algorithmic techniques for
revenue-maximization. Specifically, the contributions of this
paper are the following:

• Our work is the first to formalize the following problem:
given a set of deals from local businesses, which of them
should the DDS select, in order to maximize its ex-
pected revenue? In addition to revenue maximization,
our formulation takes into account relevant factors with
significant impact, such as the diversity [18, 15] of the
selected set and the limited consuming capacity (size)
of the market [7].

• From the computational point of view, we study two
variants of the above problem, which we refer to as
the Deal Selection and the Deal Scheduling prob-
lems. The first problem handles the selection of a set
of deals for singly day, while the second one models a
long-term scheduling strategy for multiple days. In a
detailed analysis, we discuss the intricacies of the two
problems and prove that they are both NP-hard.

• Considering the large amounts of data that need to
be considered by a deal-selection algorithm, we iden-
tify the need for efficiency and scalability. Motivated
by this, we present a pseudopolynomial optimal algo-
rithm for the Deal Selection problem, and a pseu-
dopolynomial 2-approximation algorithm for the Deal
Scheduling problem. We also consider even more effi-
cient heuristics for both problems, and use experiments
on real data to demonstrate their competitiveness.

• In order for a deal-selection mechanism to be effective,
it requires the ability to estimate the popularity and
expected revenue of a deal. We develop a machine-
learning methodology that estimates user-interest in a
particular deal, by considering a number of contribut-
ing factors. These include, among others, the domain,
location, and reputation of the participating merchan-
t, the coupon price, and the discount percentage. Our
framework performs well on real data and motivates
interesting observations on the factors that affect the
success of a deal.

Note that our algorithms for the Deal Selection and
Deal Scheduling problems can also be applied retrospec-
tively on a set of deals that have already been featured. The
size and revenue of each deal are then already known. In
this setting, our methods for deal-selection can be used to
a-posteriori evaluate the strategies of deal allocation. While
this is an interesting application, the ability to estimate the
interest of users allows us to utilize our framework for proac-
tive deal selection and scheduling. We consider this latter
setting as the main application of our work.

Roadmap: The rest of the paper is organized as follows:
in Section 2 we present the Deal Selection and the Deal
Scheduling problems. In Section 4 we discuss our method-
ology for estimating user-interest in a daily deal. We discuss
our experimental results in Section 5 and summarize related
work in Section 6. We conclude the paper in Section 7.

2. DEAL SELECTION
In our setting, we focus on the operation of a DDS with-

in a particular geographic area. Within each area, we as-
sume that there are m possible markets M = {M1, . . . ,Mm}.
Each market corresponds to a particular type of business, e.g.,
restaurants, beauty & spa, coffee shops etc. That is, all the
businesses in a particular market serve the same needs for
the users. Each market Mi consists of a set of ni businesses.
We assume the current mode of operation of DDSs, where
each daily deal is about a single business.

Every business b, when featured as the vendor of a daily
deal, has an (expected) revenue, denoted by R(b). Typically,
the revenue of a deal is computed by multiplying the price of
the coupon with the (estimated) number of sold coupons (re-
call that the DDS keeps a constant percentage of this amount
for every deal). We adopt this definition in our experiments.
Alternatively, one could opt for a different instantiation of
revenue (e.g. the number of new users that register to the
DDS because of this deal). In addition, the DDS may choose
to incorporate its marketing strategy to the revenue function.
For example, this can be done by adopting a function that fa-
vors deals in emergent and promising markets, or deals from
high-quality businesses that can help the public image of the
DDS. In any case, our methodology is compatible with any
definition of the revenue function.

A basic assumption in our framework is that it considers
the financial, as well as the time-based resources of the reg-
istered DDS users. That is, users cannot spend an infinite
amount of money, neither do they have the time to accept
the services from a very large number of businesses within a
limited time interval. Given the population of users (e.g., the
registered users of a DDS), we use C to represent the popu-
lation’s (consuming) capacity. As with revenue, the capacity
of the population can be quantified in different ways 4. These
include the total number of coupons the users are willing to
buy, the total number of hours they can spend on recreation-
al activities, and the total amount of dollars they can spend
on coupons. In our experiments, we measure C using the
total number of coupons the users are willing to buy within
a fixed time interval. Capacity can be estimated in a number
of different ways by the DDS. These include studying past
coupon sales in area and considering the area’s population,
demographics and income levels. The estimation of capaci-
ty is an interesting problem that we plan to study in future
work. In this paper, we assume that C is provided as part of
the input, and explore its effect on revenue maximization in
our experiments. Once a deal from a business b is material-
ized, it consumes a portion of C. We refer to this portion as
the deal’s (expected) size and denote it by S(b).

The goal of the DDS is to select a set of deals that maxi-
mize each revenue within a pre-specified period of time (e.g.,
a day, a week or a month), given the limited consuming ca-
pacity of the user-base. In addition, our framework consider
the additional constraint of diversity [18, 15]. This constraint
enforces the diversification of the set of featured deals, ensur-
ing that it includes different types of markets. In addition to
providing users with more options, showing a diverse set also
makes the set of deals appealing to a wider range of user-
s. Further, the diversity constraint can be used to limit the
number of deals from a specific market, based on estimates on

4http://www.marketingprofs.com/Tutorials/
marketsize1.asp
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the demand of the user-base for such deals. We capture this
intuition by imposing an upper bound on the total number
of deals that can be selected per market. That is, we im-
pose that at most Ki deals with businesses from market Mi

can be selected. Taking into consideration the capacity and
diversity constraints, we formalize the problem as follows:

Problem 1 (Deal Selection). Assume a population
with capacity C and m markets M = {M1, . . . ,Mm}, where
each market Mi includes of a set deals from different busi-
nesses. Then, given the expected revenue and size for each
deal, select a set of deals D such that the total revenue

TotalR(D) =
∑

b∈D

R(b)

is maximized and for every i = 1, . . . ,m

|D ∩Mi| ≤ Ki [diversity constraints],

and
∑

b∈D

S(b) ≤ C [capacity constraint].

The above problem definition assumes that the Ki’s and
the value of C are given as part of the input. The effect of
these parameters in the obtained results are demonstrated in
the experimental section.

From the computational point of view, the Deal Selec-
tion problem is NP-hard. This is due to the fact that Deal
Selection is a generalization of Knapsack, which is NP-
hard [10]. More specifically, for m = 1 and K1 = n1, the
problem is identical to Knapsack. In other words, our prob-
lem without the diversity constraints becomes identical to the
Knapsack problem. The way the diversity constraints affect
the algorithmic solution to the Deal Selection problem is
explored further in the next section.

2.1 An optimal algorithm for the Deal Selec-

tion problem
In this section, we present an optimal algorithm for the

Deal Selection problem. Since our Problem 1 is a a gen-
eralization of the Knapsack problem [10], known techniques
for the latter are not applicable. Therefore, we present a
new algorithm, based on nested dynamic-programming, that
is appropriate for our formulation. We refer to this algorithm
as DP-DP.

In order to present the DP-DP algorithm we first need to
define the global revenue and market revenue functions. The
global revenue function, GR(i, c), represents the maximum
benefit of the optimal solution considering businesses from
markets M1 through Mi, and a population capacity equal to
c. Using this definition, the optimal solution to the Deal
Selection problem corresponds to the value GR(m,C).

Within a particular market Mi, we define the market rev-
enue MRi(ℓ, c, k) to be the maximum revenue that the DDS
can earn from businesses in market Mi, given that (a) it can
feature up to k out of the the first ℓ businesses of Mi, and
(b) the total size of the selected businesses is no more than
c. For a fixed capacity c, the optimal revenue that the DDS
can have from market Mi is then MRi(ni, c,Ki). Note that,
although this definition assumes an order of the businesses
within Mi, this order can be arbitrary.

Using the notation above, the optimal value of the op-
timization function TotalR() (Problem 1) is equal to the

value of GR(m,C). Next, we show that the computation of
GR(m,C) can be done optimally using the following dynamic-
programming recursion:

GR(m,C) = (1)

max
c=0,...,C

{

GR(m− 1, C − c) +MRm(nm, c, Km)
}

.

Observe that the second term in the above recursion, (i.e.,
MRm(nm, c,Km) is the optimal revenue from market Mm

given that only Km businesses can be selected from Mm and
the capacity allocated to this market can be at most c.

In order to compute the value of MRm(nm, c,Km), we
need to invoke another dynamic-programming computation;
in this case the recursion requires the evaluation of a 3-
dimensional table. Next, we show the recursion for evalu-
ating this table for market Mi. Observe that the same re-
cursion can be used for every i ∈ {1, . . . ,m}. If for every
market Mi we assume that the businesses within Mi are ar-
ranged in some random order b1, . . . , bni

, then we can evalu-
ate MRi(ni, c,Ki) using the following recursion:

MRi(ni, c, Ki) = (2)

max
{

MRi(ni − 1, c,Ki),

MRi(ni − 1, c− S(bni
), ki − 1) +R(bni

)
}

.

This recursion can be evaluated using dynamic programming.
Observe that the running time for evaluating Recursion (2)
is O(niCKi). One such evaluation needs to be done for each
one of the m markets. However, since every business be-
longs to only one market, these computations can be done
separately (and in parallel) for every market. Given that
the values MRi(ni, c, Ki) are precomputed, evaluating Re-
cursion (1) requires O(mC2) time. Therefore, the running
time of the DP-DP algorithm depends on C, which is not nec-
essarily polynomial in the size of the input, making the over-
all running time of DP-DP to be pseudopolynomial.

Evaluating the dynamic-programming recursion expressed
in Equation (1) requires another dynamic-programming com-
putation, i.e., the one expressed by Recursion 2. For that
reason, we say that DP-DP is a nested dynamic-programming
algorithm. For DP-DP, we can state the following:

Lemma 1. The DP-DP algorithm solves the Deal Selec-
tion problem optimally.

If each market Mi is viewed as a super-item with revenue
given by the function MRi(), then Recursion (1) is a standard
Knapsack-type recursion that computes the optimal global
revenue GR(m,C). In turn, the optimality of the market-
revenue values can be argued through Recursion (2). In this
recursion, the optimal values for every MRi(ni, C,Ki) are
computed. Given optimal market revenues, the global rev-
enue computed by Recursion 1 is also optimal.

2.2 Efficient heuristics for the Deal Selec-
tion problem

Although solving the Deal Selection problem is an of-
fline computation for the DDSs, the computational complex-
ity of DP-DP could make it inefficient for very large datasets.
In this section, we present some alternative heuristic algo-
rithms for the Deal Selection problem. As we show in
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our experiments, this algorithms achieve high-revenue solu-
tions, while having a clear advantage over DP-DP in terms of
computational cost.

The Fast-DP algorithm: The Fast-DP algorithm is based
on the same principles as DP-DP. However, Fast-DP sacrifices
optimality for efficiency. Recall that the inefficiency of DP-
DP is due to the fact that the dynamic-programming tables
GR and MRi for i = 1 . . .m have a single dimension of size
C. When the value of C is very large, then DP-DP becomes
rather inefficient. We overcome this computational problem
by splitting the value of C into intervals (buckets) of size c.
This way, the dimensionality of the dynamic-programming
tables GR and MRi for i = 1 . . .m reduces to m × C/c and
ni ×Ki ×C/c respectively. Therefore, instead of computing
the global and the market revenue functions for all possible
number of coupons, we only compute their values for incre-
ments of size c. We refer to this version of the DP-DP algo-
rithm as Fast-DP(c); we parameterize it with the value of the
increment c. In our experiments, we consider two values of
c, namely c = 10 and c = 100. Other than that, Fast-DP
is also a nested dynamic-programming algorithm that eval-
uates Equations (1) and (2) in a manner identical to that
of DP-DP. The only difference is that Fast-DP operates on
dynamic-programming tables that keep less information and
have smaller size.

Observe that creating buckets of size c does not decrease
the worst-case running time of Fast-DP, which remains equal
to that of DP-DP. However, our experiments illustrate that, in
practice, the Fast-DP algorithm is considerably faster than
DP-DP, while achieving near-optimal revenue.

The Sort algorithm: The Sort algorithm is a heuristic
approach that ignores the categorization of businesses into
markets. The algorithm first sorts all the available business-
es in decreasing order of the sorting criterion. Then, it tra-
verses the set of businesses in this order and adds into the
solution a deal with every business that satisfies the diver-
sity and capacity constraints. Given that the sorting crite-
rion can be computed for every business in constant time,
the running time of the Sort algorithm is O(n log n). In
our case we sort the businesses using the benefit-to-size ra-
tio (BSR). Given business b, the benefit-to-size ratio of b is
BSR(b) = R(b)/S(b).

3. DEAL SCHEDULING
In this section, we explore the scenario where the DDS

wants to schedule multiple sets of deals to be presented at
different time intervals (e.g. days), instead of selecting a
single set.

Problem 2 (Deal Scheduling)). Assume a sequence
of time intervals T = {t1, . . . , tk}. and a population that has
the same capacity C at every interval. Additionally, assume
m markets M = {M1, . . . ,Mm}, where each market Mi con-
sists of ni deals from different businesses. Then, given the
expected revenue and size for every deal, select the set of deals
Dt to feature at every interval, such that every deal is fea-
tured only once and the following value is maximized (i.e. the
total revenue of the DDS):

TotalR(D1, . . . ,Dt) =
∑

t∈T

∑

b∈Dt

R(b)

under the following constraints:

for every t ∈ T and i = 1, . . . ,m

|Mi ∩ Dt| ≤ Ki [diversity constraint]

for every t ∈ {1, . . . , T}
∑

b∈Dt

S(b) ≤ C [capacity constraint].

Observe that, in the definition of Problem 2, we have as-
sumed that the revenue and the size of every deal are fixed
across time intervals. A similar assumption was made for
the population capacity, which remains the same across in-
tervals. Although we make these assumptions for clarity of
presentation, our algorithmic results carry over for the case
where these parameters are different for each time interval.

The Deal Scheduling problem is a generalization of the
Deal Selection problem and, therefore, it is also NP-hard.
In fact, one can observe that the Deal Scheduling problem
is a generalized version of the Multiple Knapsack prob-
lem [8]; for m = 1, the Deal Scheduling problem is identi-
cal to the Multiple Knapsack problem.

3.1 An algorithm for Deal Scheduling

We solve the Deal Scheduling problem using a greedy
algorithm that works as follows. Let M(t) be the set of deals
that have not been selected up to time t. Then, the algorithm
solves the Deal Selection problem using M(t) as input.
Any of the the DP-DP, Fast-DP or Sort algorithms can be used
for solving this problem. Let Dt be the set of deals selected
by this step. Then, we get M(t+1) = M(t) \ Dt, which is
used as input to the Deal Selection problem that needs to
be solved for interval (t + 1). We refer to this algorithm as
the GreedySchedule algorithm. Depending on the algorithm
we use for solving the Deal Selection problem at every
interval t, we get a different version of the GreedySchedule.
We denote the different versions as GreedySchedule(A) for
A = {DP-DP, Fast-DP, Sort }. Clearly, the running time of
the GreedySchedule algorithm is T times the running time of
the algorithm that is used for solving the Deal Selection
problem, where T is the number of time intervals for which
a different set of deals needs to be selected.

By applying the results of Cohen et al. [9] to our problem,
we get the following result.

Lemma 2. The GreedySchedule(DP-DP) algorithm is a 2-
approximation algorithm for the Deal Scheduling problem.

Although we omit the complete proof, we simply state here
that the results of Cohen et al., translated to our setting,
state that the GreedySchedule(A) algorithm is an (1 + α)
approximation for the the Deal Scheduling problem. The
factor α in this statement corresponds to the approximation
factor achieved by algorithm A, which is used to solve the
Deal Selection problem. When A is DP-DP, then α = 1,
since DP-DP is optimal for the Deal Selection problem.
Therefore, GreedySchedule(DP-DP) is a 2-approximation al-
gorithm for the Deal Scheduling problem.

4. ESTIMATING DEAL SIZE
Our framework for Deal Selection and Deal Schedul-

ing assumes that we can estimate the expected size and rev-
enue for every deal. The size of the deal is taken to be equal
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to the number of coupons that it is estimated to sell. The
revenue can then be computed as the size multiplied by the
price of the coupon. Since the price of the coupon is set by
the merchant and is provided as input, we focus our efforts
to estimating the size of the deal.

A naive way of predicting the size of a deal is by observing
the sequence of past daily deals and then using the average
observed size as an estimator. Obviously, this method dis-
regards the impact of a number of factors that can greatly
affect the number of coupons that a deal sells. Identifying
these factors and measuring their effect on the size of the
deal is a very challenging task. First, we describe the factors
that we consider in our work, and discuss how they can be
learned from real data. We then incorporate these factors
into a machine-learning framework that predicts the size of a
given deal. Given a candidate deal, we consider the following
factors that can affect its outcome:

Deal location: Each deal is usually available in a particular
city or area. It is likely that people in different cities have
different tendencies and preferences with respect to different
types of offers. Therefore, we consider the location of the
merchant (or service) as a factor that influences the size of
the deal. Information about a deal’s location is usually made
available on the DDS’s website and is thus easy to retrieve.

Business reputation: DDSs serve as mediators between
the users and the merchants. As in every e-commerce model,
the reputation of the merchant can greatly affect the number
of interested customers. For example, an offer for a restau-
rant with poor reputation is less likely to be popular.

For some types of merchants (e.g. restaurants), reputation
can be quantified using the reviews that have been submitted
by users. For example, one can adopt the average star rating
or some other review-based quality measure to estimate the
reputation of a restaurant. However, for other merchants,
reviews may be unavailable or extremely rare. To address
this, we quantify the reputation of a business by tapping
into an additional resource: the popularity of the merchant’s
website. A number of portals exists that are dedicated to
website-evaluation. Arguably, the most well-known among
these portals is Alexa (www.alexa.com). For each website,
Alexa reports two interesting popularity measures: the global
traffic rank and the website’s reputation. The former is based
on the amount of traffic observed for the site. The latter
quantifies popularity by counting the number of incoming
hyperlinks to the site. Our intuition is that the reputation of
a merchant’s website is a reflection of the merchant’s overall
reputation and popularity. For example, a coupon for a well
known, high-profile spa center is more attractive than one
from a recently opened competitor. Such phenomena are
bound to be captured by considering the popularity of the
respective websites. In our experiments, we consider both
user reviews and website-evaluation measures as factors that
affect the size of a candidate deal.

Business type: The type of the offered product or service
(e.g., spa, restaurant, ticketed event etc) is also expected to
play a critical role with regards to the deal’s selling potential.
Although users can identify the type of a deal very easily, the
automated extraction of a deal’s type by crawling the DDS’s
website is not a trivial task. The challenge lies in the fact
that deals are typically organized on the DDS’s website by
city, and the type is not always explicitly stated. For the
user viewing the deal’s page on the website, the type is made

clear by pictures and textual information such as the title
and the accompanying text. However, in order to automati-
cally deduce the type of a deal, we need a method that can
parse the deal’s accompanying text and decide the type of the
featured business. For this purpose, we use Latent Dirichlet
Allocation (LDA) [3]. LDA is a well-known technique used
to learn the topic distribution of each document in a given
corpus, as well as the term distribution of each distinct topic.
In our context, the text that accompanies each deal serves
as a single document. We can then group deals based on
the assigned topic distribution. One can think that different
topics correspond to different markets. More details of this
process are given in the experiments section.

Price: Intuitively, a lower-cost deal is expected to sell more
than an expensive one. After all, cheap deals are attractive
to a wider range of customers. The price of a deal is easy to
retrieve, since it is always made available by the DDS.

Discount: The key for the DDSs’ success is that they offer
products and services at a rate lower than their standard
market-price. The size of the discount is thus another factor
to be considered, in addition to the price. For example, even
though the price of a deal may be high, the deal can still be
attractive if it applies a significant discount to the standard
market-price. The original value and the offered discount are
available in virtually every daily-deal website. Seasonality:

Another feature we extract from our data is the time of the
year when the offer is made available. For example, it may
be the case that people are more likely to opt for solarium
treatments before or during the summer months.

Tipping point: The tipping point of a deal is the mini-
mum number of users that need to express interest, in order
for the deal to be materialized. This captures the fact that
merchants are willing to offer their services at the discount-
ed price only if the DDS guarantees to them a significantly
large number of customers. Daily deals featuring established
merchants will attract larger number of users and can thus
tolerate larger tipping points. Hence, we consider the tipping
point as a factor that could correlate with the size of the deal.

Using the above factors as dimensions, we represent every
candidate deal as a point in the respective multidimension-
al space. We can then define the problem of estimating the
number of coupons as a regression or classification problem,
where the goal is to use the training data to build a model
that can then estimate the size of a deal. Our own estimation
mechanism is based on regression. Our experiments with d-
ifferent regression mechanisms revealed that the SVM-based
regression model suggested by Shevade et al. [20] gave the
best results. We evaluate our methodology on real dataset-
s in Section 5.4 of the experiments, and present interesting
findings that provide valuable insight on the estimation task.

5. EXPERIMENTS
In this section, we describe the experimental evaluation

that we performed to verify the efficacy of our methodology.
The section is organized as follows: first, we describe the
dataset that we use in our experiments. Then, we present the
evaluation of our algorithms for solving the Deal Selection
and theDeal Scheduling problems. Our evaluation focuses
both on the quality of the obtained solutions (as expressed
by the objective function, i.e., the total revenue) and on the
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running time of the algorithms. Finally, we conclude this
section with an evaluation of our machine-learning framework
for estimating the size of daily deals.

5.1 Data
In order to evaluate our methodology, we collected a set of

n = 100, 000 materialized and closed (i.e., past) deals offered
by Groupon. These are deals that started within the last
six months, coming from all divisions (i.e., cities) in which
Groupon features daily deals. For each deal, we extracted the
following set of attributes: the date, the city of the merchant
featured in the deal, the name of the merchant, the price of
the offered coupon, the discount from the original value, the
number of coupons sold, the descriptive text accompanying
the deal, and the merchant’s website. For every merchant
that was featured in a deal, we also quantified the merchant’s
reputation in the following two ways. First, using the URL
of the merchant’s website, we probed Alexa (www.alexa.com
to retrieve the website’s Rank and Reputation scores. The
first score quantifies the reputation of the website using as
indication the observed traffic. The second score quantifies
the website’s reputation based on the number of sites that
point to the merchant’s website. In addition to using Alexa’s
scores, we quantify the reputation of a merchant based on
user reviews. Given the name of the merchant appearing in
the deal, we probe the popular review-hosting site Yelp (www.
yelp.com) and we retrieve the set of reviews for this merchant
that are available at Yelp. We do this either by directly
querying Yelp for the merchant’s name or by following the
link to Yelp that is often in Groupon’s page for the deal.

Further, we identify the market that each deal belongs to
(i.e. its type). This refers to the type of service that the deal
is offering (e.g. restaurants, spas, gym memberships etc.).
Unfortunately, the type of each deal is not explicitly men-
tioned by the DDS. However, since we believe that this is
an important feature that will allow us to predict the deal’s
performance, we learn the type of using the descriptive text
of the deal as shown on the DDS website. As we have already
described in Section 4, we do this by applying LDA to the
dataset of collected deals. We learn a model consisting of
50 topics. The number 50 was chosen after experimentation
with different numbers. An inspection of the term distribu-
tion of the learned topics showed that this number led to
cohesive topics that represent real-life concepts. Therefore,
our dataset has m = 50 distinct markets and each business
belongs to one of these markets (or types). Each deal is
assigned to the market corresponding to the topic with the
highest probability in the deal’s topic distribution.

5.2 Evaluating the algorithms for the Deal Se-

lection problem
In this section, we explore the behavior of the DP-DP, Fast-

DP and Sort algorithms for the different values of the param-
eters of the Deal Selection problem. For each experiment
we report the value of the objective function (TotalR) that
was achieved by every algorithm, as well as the running time
for every approach. For all our experiments, we use two in-
stantiations of the Fast-DP algorithm, namely Fast-DP(10)
and Fast-DP(100). In the first instantiation, we consider
coupon increments of size 10, while in the second we con-
sider increments of size 100. For these experiments we use
the dataset we collected from Groupon and we described in
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Figure 1: Total Revenue (Figure 1(a)) and Running
Time (Figure 1(b)) of DP-DP, Fast-DP(10), Fast-DP(100) and
Sort algorithms, as a function of the consuming capacity C
of the population: C ∈ {500, 1000, 2000, 4000, 8000}. For
all markets i ∈ {1, . . . , 50}, Ki = K = 50.

Section 5.1. Recall that this dataset consists of n = 100, 000
deals and m = 50 different markets.

5.2.1 Exploring the effect of the capacity constraint

First, we report the value of the total revenue (TotalR)
and the running times of the DP-DP, Fast-DP and Sort algo-
rithms as a function of the population’s consuming capacity
C. For this, we experiment with values of C ∈ {500, 1000,
2000, 4000, 8000}. We also set the value Ki for all 50 mar-
kets to be equal to 3; i.e., Ki = K = 3. The total revenue of
the solutions found by the different algorithms are shown in
Figure 1(a). The corresponding running times for each one
of the algorithms is shown in Figure 1(b).

As can be seen from Figure 1(a), all the versions of the
nested dynamic-programming algorithms (i.e., DP-DP, Fast-
DP(10) and Fast-DP(100)) clearly outperform Sort. That is,
these algorithms report sets of deals that have significantly
higher revenue. It is worth observing that Fast-DP(10) is
extremely competitive, achieving almost-optimal values for
all values of C. In addition, while the gap in revenue be-
tween Fast-DP(100) and the optimal DP-DP algorithm is larg-
er than the gap between Fast-DP(10) and DP-DP, the revenue
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achieved by Fast-DP(100) is still competitive, and consistent-
ly outmatches Sort.

The results on the revenue of the obtained solutions should
be seen together with the actual running times of these algo-
rithms. These are shown in Figure 1(b). The observed run-
ning times demonstrate that although DP-DP is feasible to use
in real data, it is still significantly slower than the rest of the
algorithms. As expected, the Sort algorithm is the fastest,
yet its results are the worse in terms of revenue. Noteworthy
is the performance of Fast-DP(10) and Fast-DP(100); both
algorithms achieve very low running times. This observation,
combined with the near-optimal solutions reported by these
algorithms, indicates that Fast-DP is an effective algorith-
mic solution to the Deal Selection problem, providing a
balance of efficiency and quality. This observation is consol-
idated by the experiments that follow.

5.2.2 Exploring the effect of the diversity constraints

In this experiment, we explore the effect of the diversity
constraints on the performance of the different algorithm-
s. For this we consider that the same upper bound on the
number of same-market deals is imposed for all 50 markets.
That is for every market i we assume that Ki = K. Given
this, we report the total revenue achieved by the different al-
gorithms (Figure 2(a)) and the corresponding running times
(Figure 2(b)) as a function of K ∈ {1, 2, 3, 4, 5}. For this ex-
periment, the value of C is set to 5000. The findings of this
experiment are similar to the ones we reported in the previ-
ous section. As anticipated, larger values of K allow for more
flexibility, and thus lead to higher revenues. As can be seen
from Figure 2(a), the algorithms that are based on the nested
dynamic-programing principle utilize this increased flexibil-
ity; all three of them clearly outperform Sort for all values
of K. Again, Fast-DP(10) achieves near-optimal revenue val-
ues, overcoming Sort and even Fast-DP(100) – which is still
extremely competitive.

The running times reported in Figure 2(b) verify our previ-
ous observation that Fast-DP(10) can combine near-optimal
results with low computational times. This makes Fast-DP

ideal to use in real settings, where the number of deals is
large.

5.2.3 Scalability experiment

In this section, we evaluate the scalability of the algorithms
for Deal Selection, as a function of the number of candi-
date deals n. For this experiment, we fix C = 5000 and
for each market i we use the same value of Ki = K = 3.
Given the original dataset consisting of N = 100, 000 deals,
we create four more datasets by randomly sampling N/16,
N/8, N/4 and N/2 deals from the whole collection. Then,
we run DP-DP, Fast-DP(10), Fast-DP(100) and Sort on each
one of the five datasets. In Figures 3(a) and 3(b) we show
the total revenue and the running times of these algorithms
as a function of the number of deals in the input. The re-
sults shown in Figures 3(a) and 3(b) consolidate the findings
of the previous experiments, and are a testament to the s-
calability and effectiveness of the Fast-DP algorithm. Both
variants of this approach follow the optimal DP-DP very close-
ly in terms of the achieved revenue. This fact becomes more
impressive as one considers the small running time of these
two algorithms, demonstrated in Figure 3(b). In fact, Fast-
DP algorithms are able to solve the Deal Selection problem
for even the largest of our datasets within few seconds. In
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Figure 2: Total Revenue (Figure 2(a)) and Running
Time (Figure 2(b)) of DP-DP, Fast-DP(10), Fast-DP(100)
and Sort algorithms, as a function of the number of the
upper bound K on the number of same-type deals: K ∈
{1, 2, 3, 4, 5}; C = 5000.

our experiments, the running time of these two algorithms
is comparable to the running time of Sort. However, the
latter fails to find solutions of satisfactory revenue. Finally,
as anticipated, the optimal DP-DP algorithm fails in terms of
scalability, as its computational time rises fast with the size
of the input.

Combining the above scalability results with the findings
we reported in the previous experiments, it becomes clear
that Fast-DP is by far the most attractive algorithm for the
Deal Selection problem, since it consistently offers a com-
bination of near-optimal solutions at a low computational
cost.

5.3 Evaluating the algorithms for the
Deal Scheduling problem

Here, we study the performance of the GreedySchedule

algorithm for the Deal Scheduling problem. As we have
already discussed, GreedySchedule is parameterized on the
algorithm A, that it invokes for solving the Deal Selec-
tion problem for every interval. For solving the Deal S-
election problem we use the four algorithms we experi-
mented with in the previous section. That is, A ∈ { DP-DP,
Fast-DP(10), Fast-DP(100), Sort }. We experiment with the
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Figure 3: Total Revenue (Figure 3(a)) and Running
Time (Figure 3(b)) of DP-DP, Fast-DP(10), Fast-DP(100) and
Sort algorithms, as a function of the number of deals n in the
input: n ∈ {N/16, N/8, N/4, N/2, N} with N = 100, 000.
For all experiments, C = 5000 and Ki = K = 3 for all
i ∈ {1, . . . , 50}.

dataset we described in Section 5.1, which consists of a set of
100,000 candidate deals and 50 markets. We report result-
s for T ∈ {2, 4, 8, 16, 32}. Following the setup and findings
of the previous experiments, we set the maximum number
of same-market deals to be the same across markets (i.e.,
(Ki = K = 3 for all i ∈ {1, . . . , 50}). We also assume that,
for each interval, the population’s capacity is the same and
equal to C = 5000. The results for revenue and compu-
tational time achieved by GreedySchedule(A) are shown in
Figures 4(a) and 4(b), respectively.

Clearly, the performance of GreedySchedule(A) is corre-
lated with the performance of the algorithm that it uses for
the Deal Selection problem (algorithm A). Specifically,
when either version of Fast-DP is used, GreedySchedule(A)
achieves both low computational cost and high-revenue so-
lutions. The revenue achieved by GreedySchedule(Fast-
DP(10)) is almost identical to that achieved by GreedySched-

ule (DP-DP). In fact, even GreedySchedule(Fast-DP(100))
achieves near optimal solutions. On the other hand, while the
revenue of GreedySchedule(Sort) increases with the number
of intervals, its results are far from optimal.
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Figure 4: Total Revenue (Figure 4(a)) and Running
Time (Figure 4(b)) of the GreedySchedule(A) algorithm,
where A ∈ { DP-DP, Fast-DP(10), Fast-DP(100), Sort}, as
a function of the number of intervals T . For every interval
T , C = 5000 and Ki = K = 3 for all i ∈ {1, . . . , 50}.

5.4 Deal-size estimation
In this section, we evaluate our methodology for estimating

the size of deals, i.e., the number of coupons they are expect-
ed to sell. For this experiment, we use the dataset described
in Section 5.1. As discussed in Section 4, we consider a rich
set of features for each deal. Given these features, we es-
timate deal-size by using the SVM-based regression method
proposed by Shevade at al. [20]. We measure the accuracy
of our framework using two standard measures: the corre-
lation coefficient (CC) and the mean absolute error (MAE).
For a given set of deals, CC is the value of the Pearson corre-
lation coefficient between the actual and the predicted sizes
for these deals. Similarly, the MAE is the average absolute
difference between the actual and the predicted sizes. We
use the absolute (rather than the relative) error for the eval-
uation of the accuracy because our algorithms for the Deal
Selection and the Deal Scheduling problems take the
actual size of the deals as input. Therefore, our goal is to
measure the error that our predictor introduces in the input
given to the corresponding algorithms for the two problems.

Market-based grouping of deals: A careful inspection of
our data reveals that, although the 50 markets discovered by
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LDA correspond to real-life concepts, many of these markets
are really sparse, i.e., the have a small number of businesses
in them. Further inspection of the term distribution of the o-
riginal 50 markets reveals that they can be further clustered
into larger marketgroups that correspond to more general
markets. For example, the following 8 of the 50 markets can
be classified under a more general food-related marketgroup:
Indian cuisine, pizza, Japanese cuisine, Mediterranean cui-
sine, Spanish cuisine, restaurants, chocolate & sweets, organ-
ic & healthy food. Another identified marketgroup is “person-
al care”, consisting of the topics tanning, hair & beauty, skin
& face treatment, massage. Intuitively, we expect deals that
belong in the same marketgroup to follow similar trends with
respect to their appeal to the population. Given these ob-
servations, we use the Kullback-Liebler distance to cluster
the initial 50 markets into 12 marketgroups (based on their
term distributions). In this way, each original deal is asso-
ciated with one marketgroup, namely the marketgroup that
contains the original market of the deal. Alternatively, one
could use a clustering method such as hierarchical LDA [2].

Given the 12 marketgroups, our regression mechanism build-
s a different regression model for each marketgroup. Note
that the grouping of markets into marketgroups serves two
purposes: first, by merging the original markets it increases
the density of our data. Second, it provides a way of predict-
ing the size of businesses that belong to smaller or nascent
markets that are strongly correlated with denser markets.

The CC and MAE obtained for the deals within each of
the discovered marketgroups are shown in the 2nd and 3rd
columns of Table 1, respectively. One can observe that the
CC values are more than 0.5 for most markets. The observed
MAE is also a relatively small number when compared to the
actual size of the deals, which is in the order of thousands of
coupons.

Location-based grouping of deals: While the results ob-
tained using this regression mechanism are promising, they
remain far from perfect, especially for specific markets. Mo-
tivated by this, we enhance our methodology by applying a
location-based partitioning of the deals.

Our experiments indicate that the city where the deal takes
place (i.e., the deal’s location) is an extremely influential fea-
ture in the context of size estimation. This is indeed a rea-
sonable and easily interpretable finding: customers from a
particular city share common preferences and requirements
(e.g motivated by geography or local trends), which may be
different from the preferences of people from other areas.

Taking this finding into consideration, we use the city of
every deal to further partition the set of deals into groups
that share the same marketgroup and the same city. In this
case, for every (marketgroup,city) combination we have a
different regression model. The results for this are shown are
shown in the 2nd and 3rd columns of Table 1, respectively.
These are the average values of the CC and the MAE of
the models used for every city for all the deals that belong
in the same marketgroup. As can be seen from the table,
the results are clearly better than those reported without
the location-based grouping step. This is true both for the
CC (which now exhibits higher values) and the MAE (which
exhibits lower values). Observe that, in many of the cases,
CC values are near-perfect (very close to 1). In addition, the
observed MAE values are consistently low, indicating that
the predicted values were close to the actual size of the deals.
Again, one should consider the MAE values as indicative of

how much error the regression model introduces to the input
of the Deal Selection and Deal Scheduling problems.
Observe, that the largest error is no more than 185 coupons
for deals that actually sell thousands.

6. RELATED WORK
Most of the published work on DDSs focuses on data-

analytic studies and economic models that try to explain
several phenomena in the domain of daily-deals. However,
to the best of our knowledge, our work is the first to ex-
ploit data-analytic findings in order to solve a combinatorial
problem that arises in this context.

Recent work by Byers et al. [4] has extensively analyzed
the characteristics of daily-deals and the predictability of
the success of a particular deal. Another relevant line or
work [5, 19, 6, 17] has focused on the propagation of daily
deals in social networks, as well as the effect that deals have
on the customer reviews written for different businesses af-
ter their corresponding deal materializes. The data-analysis
performed by Byers et al. provides a comprehensive view
of the daily-deals domain and the social and business effects
associated with it. In another relevant paper, Ye et al. [21]
analyze data from daily-deal sites to study the propagation
of daily deals within a social network. We consider our own
work complementary to these efforts. Our focus is to analyze
daily-deal datasets, and use our findings to create selection
and scheduling algorithms for revenue maximization.

Models for evaluating the benefits and the drawbacks of
Groupon from the point of view of the merchant have been
considered by Edelman et al. [12]. Along the same lines,
Dholokia [11] performed an empirical study on the experience
of businesses that used Groupon. Finally, models that allow
for merchants to analyze the business model of Groupon and
identify the optimal ways to participate in DDSs has been
studied by Arabshasi [1]. Although related, these papers are
complementary to ours since they focus on analyzing and
modeling the experience of the merchant, while our focus is
to maximize the benefit of the DDS.

Kauffman and Wang [16] studied group-buying paradigms
that can be considered as alternatives to DDSs. The focus
of that work was to empirically analyze behavioral pattern-
s customer data from MobShop.com. Finally, Grabchak et
al. [13] explore a variant of the stochastic knapsack prob-
lem for online Ad campaigns. Their relevance to our work
is limited to the fact that they consider a model similar to
Groupon’s mass-deal setting, in which a deal is activated on-
ly if a minimum number of users opt for it. Nonetheless,
their application setting, problem formulation and algorith-
mic contribution are radically different from ours.

7. CONCLUSIONS
In this paper, we studied the problem of selecting daily

deals in order to maximize the expected revenue of the DDS.
We provided two combinatorial formulations for this prob-
lem and proposed algorithms for their solution. Both for-
mulations take into account natural constraints, such as the
limited consuming ability of the population and the diver-
sification of deals across different markets. Our algorithms
combine greedy and dynamic-programming techniques and
have provable approximation bounds. We also discussed ef-
ficient variants of these algorithms that perform extremely
well in practice. In order to utilize our deal-selection frame-
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Table 1: Regression results per marketgroup: Correlation Coefficient (CC) and Mean Absolute Error (MAE)

(Without location-based grouping) (With location-based grouping)

Marketgroup CC MAE CC MAE

Food 0.26 385.08 0.67 185.07
Personal Care 0.44 248.14 0.76 65.14
Art & Photography 0.54 105.84 0.84 25.91
Fashion & Apparel 0.6073 159.9062 0.72 50.38
Children/Parenthood 0.504 234.96 0.81 42.76
Fitness 0.57 118.015 0.81 43.65
Cars 0.52 207.50 0.91 37.25
Cinema/Theater 0.4717 173.95 0.7 19.51
Medical 0.5952 51.19 0.95 3.56
Hunting & Fishing 0.6653 175.61 0.96 31.72
Bed and Breakfast 0.52 170.92 0.96 46.91
Bowling 0.65 92.34 0.97 11.13

work, the DDS needs to have an estimate of how popular
a deal about a particular business (or service) is going to
be. We showed that predicting the popularity of a daily deal
is feasible, given a set of different characteristics of the deal.
Our experimental results demonstrated the efficacy of our al-
gorithms for deal selection and scheduling, and the accuracy
of our predictor for the success of a deal. Our work open-
s up a lot of directions for further research. For example,
in the future, we plan to explore how correlations between
businesses or markets, as well as external parameters (e.g.,
news stories, political and economic events), can help DDSs
towards even more effective choices.
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