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ABSTRACT
Contextual preferences take the form that item i1 is preferred to
item i2 in the context of X . For example, a preference might
state the choice for Nicole Kidman over Penelope Cruz in drama
movies, whereas another preference might choose Penelope Cruz
over Nicole Kidman in the context of Spanish dramas. Various
sources provide preferences independently and thus preferences
may contain cycles and contradictions. We reconcile democrat-
ically the preferences accumulated from various sources and use
them to create a priori orderings of tuples in an off-line preprocess-
ing step. Only a few representative orders are saved, each corre-
sponding to a set of contexts. These orders and associated contexts
are used at query time to expeditiously provide ranked answers.
We formally define contextual preferences, provide algorithms for
creating orders and processing queries, and present experimental
results that show their efficacy and practical utility.

1. INTRODUCTION
The curse of abundance has arrived with vengeance for database-
centric web applications. The online comparison site, Bizrate.com,
now carries more than 30 million product offers from more than
40,000 stores. Another site, shopping.com, carries more than 1.5
million product offers in the category of home furnishing alone.
The conventional query-processing technology that simply returns
the set of tuples satisfying the query predicate is woefully inade-
quate for such applications. These applications require the result
tuples to be ranked, factoring in the context of the query, without
sacrificing the query performance.

We present a solution framework for addressing the above problem,
comprising of the following components:

1. Use of mass collaboration to accumulate contextual prefer-
ences of the form i1 � i2 | X , meaning that item i1 is
preferred to item i2 in the context of X .
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2. Techniques for using these preferences to generate a few rep-
resentative orderings of the tuples and their associated con-
texts.

3. Techniques for using these pre-orderings to quickly provide
ranked answers to the queries taking into consideration the
condition part of the query.

EXAMPLE 1: Consider the movie relation with schema (title, ac-
tor, genre, language). Assume that we have the following contex-
tual preferences (written omitting attribute names):

1. Nicole Kidman � Penelope Cruz | Drama

2. Penelope Cruz � Nicole Kidman | Drama and Spanish

3. Daniel Brühl � Nicolas Cage | German

These preferences illustrate that the ranking of the tuples of a rela-
tion is subjective. Nicole Kidman has played in many more movies
than Penelope Cruz and has been nominated for many more academy
awards. However, in the context of Spanish dramas the latter ac-
tress is considered more important. Similarly, for Nicolas Cage
and Daniel Brühl. Cage has much richer movie repertoire. How-
ever, in the context of German movies, Brühl can be considered
more important. This example shows that one cannot rank objects
independently of the context in which they appear. Now, consider
the following query:

SELECT actor
FROM movie
WHERE genre = ’Drama’ and

language = ’Spanish’

Since the WHERE clause of the query contains the set {drama,
Spanish}, the preferences that refer to either or both drama and
Spanish, i.e. preferences 1 and 2, should be taken into considera-
tion in the ranking of the query results. �

1.1 Problem
We address the following problem: Given a database table r and
a set of contextual preferences P , incorporate the knowledge of P
into the query-answering mechanism. More specifically, for a given
query, the contextual preferences that are related to it are taken into
consideration in order to provide ranked top-k results.

For the purposes of this paper, we will assume that the set of con-
textual preferences P is available to us. In practice, this set will



be collected using various forms of mass collaboration. There may
be volunteer users willing to provide preferences much in the same
way users voluntarily rate products and services on the web. They
may be automatically collected by observing the selections of will-
ing users with the help of browser plug-ins or taskbars. In some
domains, these preferences can be learned from past data. In fact,
we employed association-rule mining to generate preferences from
the internet movie database for use in our experiments. We admit
conflicts and cycles in the user-provided preferences and resolve
them democratically.

1.2 Related Work
There is marked similarity between our framework and the ap-
proach taken by web-search engines to handle the abundance of
web pages. Much like Google’s page rank [8], we “rank” tuples a
priori, independent of a specific query, and then use the information
in the query and the saved “rankings” to quickly provide ranked an-
swers. The use of contexts also bears resemblance to personalized
page rank [21, 32]. However, while in the case of the web, the
hyperlinks between the pages define a natural graph structure that
yields a good ranking of the web pages, there is generally no cor-
responding meaningful structure in the relational data. We, there-
fore, use a graph induced by user-provided preferences between tu-
ples for this purpose. Additionally, unlike web searches where all
queries are essentially of the same form (Boolean expressions over
terms), the database queries are much more diverse, which has a
bearing on the specific techniques employed.

There has been fruitful research on inducing a graph structure based
on the contents of tuples of a database. For instance, in [6], tuples
constitute the nodes, connected by edges induced by foreign key
and other relationships. Answers to keyword queries are ranked us-
ing a notion of proximity coupled with the prestige of nodes based
on incoming edges. Other examples of efforts in this direction in-
clude [4, 20, 23]. Although very interesting, this line of work fur-
ther reinforces that while in the case of the web the structure of the
web graph is apparent, there is no globally accepted graph structure
that can represent relational data.

There is also work on defining the importance of a tuple in a rela-
tion via user-expressed numeric preferences and using them to rank
query results [2]. The skyline operator [7, 31] also considers nu-
meric preferences to output only the interesting query results. A
result is considered interesting if it dominates the constants appear-
ing in the query predicates. In [3, 9, 19], the importance scores are
extracted automatically by mining past workloads, that can reveal
what users are looking for and what they consider as important. We
do not have a workload mining step, but we do admit the possibility
of mining contextual preferences from the data. We then incorpo-
rate pairwise preferences into the formulation of final rankings in a
combinatorial manner.

The problem of incorporating personal preferences to create per-
sonalized rankings of database query results has been studied in [28].
Atomic user preferences are expressed via simple predicates. Each
such predicate is associated with a numeric value that corresponds
to the degree of interest of the user to this specific preference. Com-
plex preferences are expressed via composition of atomic ones. The
result is a user preference profile. The preferences expressed in
the profile are taken into account when answering a query. More
specifically, for query q, the subset of user preferences related to q
is identified, and is used to alter the query via a rewriting mecha-
nism. This basic model has been enhanced in [27, 29]. In [27] the

ranking of query results not only depends on the user’s preferences
but also on other constraints like the execution cost or the size of its
output. Our approach and preference language are very different.
Our focus is not on personalizing answers for individual users, but
on using a common set of preferences for efficiently answering and
ranking query results of a large number of users.

There is a rich body of research on the properties and the expres-
sive power of preference languages. For instance, the work in [25]
proposes a generic model for expressing preferences. The model
defines some basic preference constructors and more complex pref-
erences are built by their composition. The framework admits pref-
erences that are partial orders. In [10], preferences are specified as
first-order formulas. Arbitrary operations on preference formulas
are allowed. An operator (the winnow operator) is defined so that
complex preference formulas are embedded into relational algebra.
Query-rewriting mechanisms for doing this are given. In this case,
the tuples are output in such a way that no preference constraint is
violated. The focus of our work is different, since we formulate the
contextual preference satisfaction as an optimization problem. We
do not restrict the nature of input preferences, and we allow outputs
that do not satisfy all the input preferences but agree with them as
much as possible.

Closely related is the work reported in [12] wherein simple pair-
wise preferences over a set of objects are considered and a total
ordering of the input objects that agrees as much as possible with
the given preferences input is extracted. We make use of some of
these ideas, but enhance the preferences with contexts and focus on
how the preferences associated with different contexts have impact
on the query results. Finally, we note that our preference language
bears resemblance to the triples of training data of the form “with
respect to object c, object a is closer than b” used for learning dis-
tances in the clustering applications discussed in [30, 33].

1.3 Roadmap
The rest of the paper is structured as follows. In Section 2 we for-
mally define contextual preferences. In Section 3 we define the
problem addressed and its decomposition into three subproblems.
The algorithmic solutions for each one of them are discussed in
Sections 4, 5 and 6. The impact of tuples for which preferences
have not been explicitly expressed is discussed in Section 7. The
experimental evaluation of our proposal is given in Section 8. We
conclude with a summary and directions for future work in Sec-
tion 9.

2. CONTEXTUAL PREFERENCES
Consider a database relation r with n tuples r = {t1, . . . , tn} with
schema R(A1, . . . , Ad). Let Dom(Ai) represent the active domain
of attribute Ai.

Contextual preferences, or simply preferences, are of the form {Ai =
ai1 � Ai = ai2 | X}, where X is

V

j∈l (Aj = aj), with ai1, ai2 ∈

Dom(Ai), l ⊆ {1, . . . , d} and aj ∈ Dom(Aj). The left-hand side
of a preference specifies the choice while the right-hand side is the
context. The semantics of such a contextual preference in terms
of the database tuples is the following: all tuples t ∈ r such that
t.Ai = ai1 and ∀j ∈ l: t.Aj = aj are preferred to tuples t′ ∈ r
for which t′.Ai = ai2 and ∀j ∈ l: t′.Aj = aj . Note that our pref-
erences are set-oriented; a single preference can specify choices
between a large number of tuples.

EXAMPLE 2: Consider the toy relation of Table 1 with schema



A1 A2 A3 A4

t1 a β x u
t2 a γ y u
t3 b δ w u
t4 c ε y u
t5 a γ z v

Table 1: Toy relation

R(A1, A2, A3, A4) and the following preferences for tuples in this
relation:

p1 = {A1 = a � A1 = b | A4 = u}

p2 = {A2 = β � A2 = δ | A4 = u}

p3 = {A3 = w � A3 = x | A4 = u}

p4 = {A1 = c � A1 = a | A3 = y ∧A4 = u}

Preference p1 suggests that in the context of “A4 = u”, tuples
t1 and t2 are preferred to tuple t3. In the same context, from p2,
tuple t1 is preferred to t3, and from p3 tuple t3 is preferred to t1.
Finally, from p4, tuple t4 is preferred over tuple t2 in the context of
“A3 = y” and “A4 = u”. �

For any single preference p and any pair of tuples (ti, tj), p either
prefers ti to tj (denoted by ti �p tj ) or tj to ti (denoted by ti �p

tj ) or it is inapplicable with respect to ti and tj (denoted by ti ∼p

tj ). Thus, every preference p defines PREF over any pair of tuples
t, t′ that evaluates as follows:

PREF(t, t′, p) =

8

<

:

1 if t �p t′,
0 if t′ �p t,
⊥ if t ∼p t′.

For any two contexts X1 =
V

j∈l1
(Aj = aj) and X2 =

V

j∈l2

(Aj = bj) with l1, l2 ⊆ {1, 2, . . . , d}, we say that they are equal
if and only if l1 = l2 = l and aj = bj for all j ∈ l. We say
that two preferences {Ai = ai1 � Ai = ai2 | X1} and {Aj =
aj1 � Aj = aj2 | X2} belong to the same preference class if
X1 = X2 = X . We use PX to denote the set of all preferences
in the same class defined by context X . For example, preferences
p1, p2 and p3 from Example 2 belong to the same class defined by
context “A4 = u”, while p4 belongs to a different class.

The set of preferences PX in a class, partitions the tuples in the rela-
tion in two sets, the set of indifferent and the set of asserted tuples.
A tuple t is called indifferent with respect to a context X if ∀p ∈
PX it holds that: ∀t′ 6= t, PREF(t, t′, p) =⊥ ∧PREF(t′, t, p) =⊥.
In other words, a tuple is indifferent with respect to a context if no
explicit preferences that involve it have been expressed within the
context. All tuples that are not indifferent are asserted. Intuitively,
a tuple is asserted if there exists one or more preferences within a
context that explicitly compare this tuple against another tuple of
the relation.

Lets consider again preferences p1, p2 and p3 from Example 2.
These preferences are all in the same class defined by context “A4 =
u”. With respect to this class, tuples t1, t2 and t3 are asserted since

they are explicitly compared to each other via one of the three pref-
erences of the class. Tuples t4 and t5 however are indifferent with
respect to this class since there does not exist a preference in the
class that compares neither of those two tuples against other tuples
of the relation.

The set of preferences of a class defines the effective preference
(EFF-P) for ordered pairs of tuples (t, t′): For any ordered pair of
asserted tuples (t, t′) such that there exists a p ∈ PX for which
PREF(t, t′, p) = 1 ∨ PREF(t′, t, p) = 1 we have that:

EFF-P(t, t′, PX) =

P

p∈PX
PREF(t, t′, p)

P

p∈PX
(PREF(t, t′, p) + PREF(t′, t, p))

.

If for a pair of asserted tuples (t, t′) there does not exist a p ∈ PX

for which PREF(t, t′, p) = 1 ∨ PREF(t′, t, p) = 1, then

EFF-P(t, t′, PX) = EFF-P(t′, t, PX) =
1

2
.

If for a pair of tuples (t, t′), t or t′ (or both) are indifferent with
respect to context X , then: EFF-P(t, t′, PX) =⊥.

Let us go back to Example 2 and consider the preference class
PA4=u, which we denote by Pu for brevity. For this preference
class, the effective preferences for the tuples are as follows:

EFF-P(t1, t2, Pu) = EFF-P(t2, t1, Pu) = 1
2

, since both t1 and
t2 are asserted tuples, but no preference has been expressed
between them.

EFF-P(t1, t3, Pu) = 1+1
3

= 2
3

, EFF-P(t3, t1, Pu) = 1
3

, since two
preferences in the class prefer t1 to t3, but only one prefers
t3 over t1.

EFF-P(t2, t3, Pu) = 1 and EFF-P(t3, t2, Pu) = 0.

EFF-P(·, ·, Pu) =⊥ for all other pairs of tuples.

Notice that for every pair of asserted tuples (t, t′) and every context
X the value of EFF-P(t, t′, PX) is a value in [0, 1] and has a prob-
ability interpretation. It corresponds to the probability that there
exists a preference p ∈ PX as part of the input such that t �p t′. In
other words, it is the probability of a user preferring t to t′ among
the users that have provided preferences. When such a preference
does not exist, the probabilities of the events “t is preferred to t′”
and “t′ is preferred to t” are equal (and thus equal to 1

2
).

For a given class of preferences PX and a relation r, we define the
X-preference graph GX(VX , EX) as follows: The set of nodes is
the set of all asserted tuples in r. For every ordered pair of nodes
(t, t′) there exists a directed edge e(t→ t′) ∈ EX , with weight:

wX(t→ t′) = EFF-P(t, t′, PX), (1)

and wX(t→ t′) + w(t′ → t) = 1.

Figure 1 shows the preference graph for PA4=u for the toy relation
and preferences p1, p2 and p3 given in Example 2. Note that tuples
t4 and t5 do not appear in the graph as they are indifferent.

In order to simplify exposition, we will assume in the next four
sections that there are no indifferent tuples in the relations we are
considering. The implications of indifferent tuples to our proposed
algorithms are discussed in Section 7.
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Figure 1: Preference graph for context “A4 = u”

3. THE RANK SELECTION PROBLEM
Consider a conjunctive selection query q over relation r = {t1, . . . , tn}
with schema R(A1, . . . , Ad). Let the active domain of attribute Ai

be Dom(Ai). The query is of the form q = σ∧j∈{1,...,u}

`

Aij
= aj

´

,
where aj ∈ Dom(Aij

). Let q(r) ⊆ r be the subset of tuples in r
that are in the answer of q. The goal of the paper is to address the
RANK SELECTION PROBLEM defined as follows:

PROBLEM 1 (RANK SELECTION PROBLEM): Assume a set of pref-
erences P = {PX1

, . . . , PXm} and a selection query q. The rank-
selection problem asks for a permutation of τ of q(r) such that

τ = arg max
τ ′

m
X

i=1

sim(q, Xi)AGREE(τ ′, PXi
),

where

AGREE(τ, PX) =
X

(t,t′):τ(t)<τ(t′)

EFF-P(t, t′, PX).

The intuition of the problem formulation is that we want to find the
permutation τ over the set of tuples in q(r) that agrees as much
as possible with the input preferences. Additionally, the degree of
agreement with a class of preferences is weighted by the similarity
between the contexts of those preferences and the imposed query
q.

For an adequate definition of Problem 1 we need to quantify the
similarity between a query and a context. We adopt a typical def-
inition of similarity, the cosine similarity. For this to be defined
we first need to form the vector representations of a context and a
conjunctive selection query.

Consider the set D of all distinct 〈attribute, attribute-value〉 pairs
appearing in the r, that is,D = {〈Ai, a〉 | ∀i ∈ {1, . . . , d} and ∀a ∈
Dom(Ai)}. Since Dom(Ai) is the active domain of attribute Ai the
cardinality of this set is finite. Let it be N = |D| and let OD be an
arbitrary but fixed order on the pairs appearing in D. We refer to
the i-th element of D based on the ordering OD by D[i]. A vector
representation of a context X =

V

j (Aj = aj) is a binary vector
VX of size N . The i-th element of the vector corresponds to pair
D[i]. IfD[i] appears among the conjunctions of X then VX [i] = 1.
Otherwise it is 0.

Analogously, the vector representation of a conjunctive query q is
a binary vector Vq of size N . The i-th element of the vector cor-
responds to pair D[i]. If D[i] is one of the conjuncts of q, then
Vq[i] = 1; otherwise it is 0.

Now we can define the similarity between context X and selection
query q using their vector representations VX and Vq as follows:

sim(q, X) = cos(Vq, VX) =
Vq · VX

|Vq ||VX |
.

We can additionally define the similarity between a query q and a
set of contexts X as follows:

sim(q,X ) =
X

X∈X

sim(q, X).

After this, the RANK SELECTION PROBLEM is fully defined. From
the results of [12], it is easy to see the following:

THEOREM 1: The RANK SELECTION PROBLEM is NP-hard.

3.1 Approach
Given that Problem 1 is NP-hard, we have to think of approxima-
tion algorithms for solving it. Any such algorithm would require
at least going through all preferences for each pair of tuples. This
would have running time quadratic to the number of tuples in the
database, not to mention the fact that the number of preferences
themselves can be exponential. This time complexity is unaccept-
able for query-time operations on large databases. We therefore
propose a hybrid approach that consists of some preprocessing, per-
formed offline, followed by online query processing. The results of
the offline computations make online processing of queries fast.
The offline phase consists of two steps:

Step 1: For every class of preferences, construct a single order of
the n input tuples. That is, for each preference class PXi

find
a permutation τi of the tuples in r such that

τi = arg max
τ ′

i

AGREE(τ ′
i , PXi

). (2)

The output of this step is a set of m 〈context,order〉 pairs of
the form 〈Xi, τi〉, where Xi is the context for the preferences
in PXi

and τi is the ordering of the tuples in r that (approx-
imately) satisfies Equation 2. Due to the output ordering of
tuples, each tuple t has a score that is associated with the po-
sition of t in each order τi. Thus, the score of tuple t in τi

that corresponds to context Xi is:

s(t | Xi) = n− τi(t) + 1,

where τi(t) represents the position of tuple t in order τi. Tu-
ples in the head of the order have high scores, while low
scores are reserved for tuples that are towards the tail of the
order.

Step 2: Reduce the number of 〈context,order〉 pairs to be kept.
That is, given the set of m initial pairs 〈Xi, τi〉, find ` rep-
resentative permutations τ̄1, . . . , τ̄` with ` < m. These per-
mutations partition the space of the m initial 〈context,order〉
pairs into ` groups. Each group i is characterized by order τ̄i

and a disjunction of contexts X̄i ⊆ {X1, . . . , Xm} such that
for each Xj ∈ X̄i order τ̄i is a good representative for the
initial order τj . The score of tuple t in 〈X̄i, τ̄i〉 is now given
by:

s(t | X̄i) = n − τ̄i(t) + 1. (3)



The notion of a “good representation” of one order by an-
other will become clear momentarily. For now, one can trans-
late it as “closeness” or “similarity”.

Given the offline computations, the query-time processing becomes
computationally inexpensive. The only online task is to appropri-
ately combine the a-priori formed rankings of the tuples to return a
ranked answer to the given query.

Thus, instead of solving Problem 1 directly, we will solve the sub-
problems discussed below.

3.1.1 The ORDERING problem
PROBLEM 2 (ORDERING - OFFLINE): Given a relation r = {t1,
. . ., tn} and a set of preferences P (all from the same class), find a
permutation τ of the asserted tuples in r such that:

τ = arg max
τ ′

AGREE(τ ′, P ).

The ORDERING problem construes step 1. We discuss the com-
plexity of the problem and the algorithmic solutions in Section 4.

3.1.2 The CLUSTERORDERS problem
We call the problem that step 2 defines CLUSTERORDERS prob-
lem. In order to quantify how well a permutation τ of the tuples in
r is represented by another permutation ρ we need to define a dis-
tance measure between permutations over the same set of tuples.
Several distance functions have been proposed in the literature for
this purpose.We focus on two most well-known ones: the Spear-
man footrule and the Kendall tau [13].

• Given two permutations ρ and τ the Spearman footrule dis-
tance dF is defined as the sum over all n tuples of the dif-
ferences between the positions of those tuples in the two per-
mutations:

dF (ρ, τ ) =

n
X

i=1

|τ (ti)− ρ(ti)|.

• The Kendall tau distance dK counts the number of pairwise
disagreements between the two permutations:

dK(ρ, τ ) = |{(i, j) : i < j and ρ(ti) < ρ(tj)

and τ (ti) > τ (tj)}|.

We will use the generic symbol d to denote either of the two dis-
tance functions. Given the above definitions, the CLUSTERORDERS

problem is defined as follows:

PROBLEM 3 (CLUSTERORDERS - OFFLINE): Assume an input con-
sisting of m context-permutation pairs 〈Xi, τi〉 and let Tm be the
set of the m permutations over the tuples of relation r: Tm =
{τ1, . . . , τm}. Find a set of ` < m permutations T` = {τ̄1, . . . , τ̄`}
such that

cost(T`) =
X

τ∈Tm

d(τ, T`) (4)

is minimized. The distance of a single permutation τ from a set of
permutations T is defined as:

d(τ, T ) = min
ρ∈T

d(τ, ρ).

We call the permutations in set T` representative permutations and
associate with each representative permutation τ̄i a set of contexts
X̄j = {Xi | τ̄j = arg minj′ d(τi, τ̄j′ )}.

This problem exhibits some resemblance to the catalog segmen-
tation problem proposed in [26]. However, there are significant
differences between the two problems as well. For example, we
are considering “ordered” catalogs, while they view catalogs as un-
ordered sets. We discuss the complexity of the problem and algo-
rithmic solutions in Section 5. Note that the problem of clustering
orders into few clusters has also been studied in [24]. However, we
adopt a different algorithmic approach and we give approximation
bounds for our methods.

3.1.3 The QUERYING problem
With the ` representative orders at hand and the corresponding `
sets of contexts, we are ready to define the online query-processing
problem:

PROBLEM 4 (QUERYING - ONLINE): For a given selection query
q over relation r compute, using the output of step 2, the set qk(r) ⊆
q(r) ⊆ r with |qk(r)| = k, such that ∀t ∈ qk(r) and t′ ∈ {r −
qk(r)} it holds that score(t, q) > score(t′, q), with score(t, q) =
P

X̄i
sim(q, X̄i) · s(t | X̄i).

Section 6 discusses the solution to this problem.

For the purposes of this paper, we will assume that the orderings
are computed periodically as the set of preferences evolve and the
database is updated. Note that on the web also, page ranks are not
immediately readjusted as soon as a page is updated or deleted.

4. CONSTRUCTING ORDERS FROM PREF-
ERENCES

We first discuss the complexity of Problem 2 and then describe
three algorithms for solving it.

Consider the following MAXIMUM ACYCLIC SUBGRAPH prob-
lem, which is known to be NP-Hard [34]: for an input directed
weighted graph G find the maximum-weight subgraph of G that is
acyclic.

OBSERVATION 1: The ORDERING problem is as hard as the MAX-
IMUM ACYCLIC SUBGRAPH problem.

The connection between the MAXIMUM ACYCLIC SUBGRAPH and
the ORDERING problem becomes intuitively clear via the X-preference
graph. In the ORDERING problem the goal is for a given X-preference
graph GX(r, EX) to find a permutation τ of r = {t1, t2, . . . , tn}
that induces an acyclic subgraph Gτ (V, Eτ ) of GX , such that the
sum of the weights of the edges in Eτ is maximized. However this
is exactly the MAXIMUM ACYCLIC SUBGRAPH problem on the
preference graph GX . A consequence of the above observation is
the following corollary:

COROLLARY 1: The ORDERING problem is MAX-SNP complete.

The implication is that the ORDERING problem can be approxi-
mated within a fixed error ratio. However no PTAS can be found
for this problem.



4.1 Algorithms
We next give three algorithms for the ORDERING problem. Two
of them have a bounded approximation ratio, while the third is a
heuristic that seems to perform extremely well in practice.

4.1.1 The PICK-PERM Algorithm
The PICK-PERM algorithm is inspired by the 2-approximation al-
gorithm for the MAXIMUM ACYCLIC SUBGRAPH problem, that
works as follows [5]: for a given input directed graph G(V, E)
with |V | = n impose an arbitrary numbering of the nodes in V as-
signing randomly to each node a unique number from 1 to n. The
set of edges E are then partitioned into two groups: E1 = {e(i→
j) ∈ E | i > j} and E2{e(i → j) ∈ E | i < j}, where i and j
refer to the numbers assigned to the nodes in the imposed number-
ing. Clearly, the subgraphs G1 and G2 induced by E1 and E2 are
acyclic. The algorithm outputs the subgraph having the maximum
sum of edge weights.

In a similar spirit, PICK-PERM first constructs a random permuta-
tion of the tuples. Denote this permutation by τ . The reverse of
permutation τ , τ−1 is also constructed. That is, if τ (t) is the posi-
tion of tuple t in τ then τ−1(t) = n − τ (t) + 1. The number of
agreements between τ and τ−1 with the input context preferences
is computed. The algorithm outputs either τ or τ−1, favoring the
one that has the larger number of agreements.

Algorithm 1 The PICK-PERM algorithm

Input: Relation r = {t1, t2, . . . , tn}; a set of preferences from a
single class PX defined by context X .

Ouput: A pair 〈X, τ 〉 where τ is an ordering of the tuples in r
such that as many of the preferences in PX are satisfied.

1: τ = random permutation of r
2: τ−1 = reverse(τ )
3: Return τ∗ = arg max{τ,τ−1}{AGREE(τ, PX), AGREE(τ−1, PX)}

The following lemma shows that the PICK-PERM algorithm is a
2-approximation algorithm for the ORDERING problem.

LEMMA 1: Let PX be the set of input preferences with context X .
Denote by APP be the number of agreements between the order out-
put by the PICK-PERM algorithm and the input set of preferences
and let Nopt be number of agreements between the optimal permu-
tation of the tuples with the input preferences. Then, APP ≥ Nopt/2.

PROOF. First observe that:

Nopt ≤ AGREE(τ, PX) + AGREE(τ−1, PX).

The solution given by the PICK-PERM has the following property:

APP = max
{τ,τ−1}

AGREE(τ, PX) + AGREE(τ−1, PX)

≥ (AGREE(τ, PX) + AGREE(τ−1, PX))/2

≥ Nopt/2.

�

4.1.2 The GREEDY-ORDER Algorithm
The GREEDY-ORDER (Algorithm 2) is an adaptation of the algo-
rithm proposed in [12]. It is also a 2-approximation algorithm for
the ORDERING problem. The intuition behind the algorithm is
straightforward, particularly if we consider it operating on the X-
preference graph. At every step (rank) a greedy selection is made.

Algorithm 2 The GREEDY-ORDER algorithm

Input: Relation r = {t1, t2, . . . , tn}; a set of preferences from a
single class PX .

Ouput: A pair 〈X, τ 〉 where τ is an ordering of the tuples in r
such that as many of the preferences in CX are satisfied.

1: CANDIDATES = {t1, t2, . . . , tn}
2: rank = 0
3: for all i ∈ {1, . . . , n} do
4: p(ti) =

Pn

j=1 wX(ti → tj)−
Pn

j=1 wX(tj → ti)
5: end for
6: while CANDIDATES 6= ∅ do
7: rank = rank + 1
8: tv = arg maxtu∈CANDIDATES p(tu)
9: τ (tv) = rank

10: CANDIDATES = CANDIDATES− {tv}
11: for all t ∈ CANDIDATES do
12: p(t) = p(t)− wX(t→ tv) + wX(tv → t)
13: end for
14: end while

The tuple tv (node in the X-preference graph) with the highest
p(tv) value is picked and it is assigned in position rank in the out-
put order. The p(tv) value of a tuple is its out-degree minus its
in-degree in the preference graph that is induced after every greedy
step.

4.1.3 The MC-ORDER Algorithm
Let GX(VX , EX) be the X-preference graph, where as before VX

corresponds to the set of tuples of r. The MC-ORDER algorithm
starts by creating the graph ḠX(VX , ĒX), where ĒX are all edges
in EX but reversed. A random walk is performed on graph ḠX and
the nodes VX are ranked according to their values in the stationary
distribution of this random walk.

Recall that a directed edge e(ti → tj) ∈ EX indicates that there
exists a preference in PX for which tuple ti is preferred over tuple
tj . The intuitive meaning of the reversed edge ē(tj → ti) in the
graph ḠX is that since ti is preferred to tj , in the random walk tj

propagates some of its weight to ti.

Let Ā and A be the adjacency matrices of graphs ḠX and GX

respectively. Then it holds that Ā[i, j] = A[j, i] = wX(j → i) (as
in 1). Now consider the Markov chain on the following stochastic
matrix:

M = αS(Ā) + (1− α)E.

The operator S converts the input matrix Ā into a stochastic matrix.
The matrix E is a matrix with E[u, v] = 1

n
for all (tu, tv) pairs.

Finally, parameter α is a real number between 0 and 1. This param-
eter allows the random walk to make random jumps to arbitrary
nodes at any time and guarantees the convergence of the random
walk to a stationary probability distribution. We denote this proba-
bility distribution by π. The algorithm computes an ordering τ of
the nodes of the graph, such that τ (tu) < τ (tv) iff π(tu) > π(tv).
Ties are broken arbitrarily.

Although no approximation guarantees are known for the algo-
rithm, the intuition behind it is simple. One naturally expects that
the random walk would end-up more often in a node that is pre-
ferred more. This means that the value of such a node in the sta-
tionary distribution would be higher and this node will be placed
higher in the output order τ . As we shall see, this algorithm gives



high-quality results in practice.

5. FINDING REPRESENTATIVE ORDERS
We first discuss the complexity of the CLUSTERORDERS problem
and then present algorithms for dealing with it. First we observe
the following theorem:

THEOREM 2: The CLUSTERORDERS problem is NP-hard for both
the Kendall tau and the Spearman footrule distance metrics.

Note that the special case of the CLUSTERORDERS problem where
` = 1 and the cost function employs distance dF can be solved in
polynomial time using a standard algorithm for maximal bipartite
graph matching [14]. This reveals an artifact of the segmented ver-
sions of standard optimization problems (see [26] for a thorough
discussion). While the simple version of the problem (` = 1 and
d being dF ) is polynomially solvable, the segmented version of the
problem ` > 1 is NP-hard.

5.1 Algorithms
We next present two algorithms for the CLUSTERORDERS prob-
lem. The input to both of them is a set of m pairs of the form
〈Xi, τi〉 with 1 ≤ i ≤ m. Each Xi is a context and each τi

is a permutation of the n tuples of relation r. The output is a
set of ` pairs of the form 〈X̄i, τ̄i〉. Each X̄i is a set of contexts
(X̄i ⊆ {X1, . . . , Xm}) such that ∀Xj ∈ X̄i, it holds that τ̄i =
arg mini′ d(τ̄i′ , τj). Additionally, each initial context Xj is mapped
to a unique final set of contexts X̄i.

Before discussing the algorithms for the CLUSTERORDERS prob-
lem we provide some useful results that will help with the analysis
of the algorithms.

FACT 1: (due to [13]) For any two permutations ρ and τ over the
same set of n objects, the following inequality is true:

dK(τ, ρ) ≤ dF (τ, ρ) ≤ 2dK(τ, ρ).

The consequence of this fact is that the optimal solution to the
CLUSTERORDERS problem for distance d being dF is a 2-approximation
of the optimal solution for the CLUSTERORDERS problem and dis-
tance being dK . Thus, any bounded factor approximation algo-
rithm for CLUSTERORDERS using dF , is also a bounded factor
approximation algorithm for the same problem using dK .

FACT 2: Triangle inequality holds for both dF and dK . That is,
if τ1, τ2 and τ3 are any three permutations over a set of n objects.
Then, the following inequalities are true:

dF (τ1, τ2) + dF (τ2, τ3) ≤ dF (τ1, τ3).

and

dK(τ1, τ2) + dK(τ2, τ3) ≤ dK(τ1, τ3).

Now consider a restricted version of the CLUSTERORDERS prob-
lem, where the ` representatives are constrained to be chosen from
the set of initial input orders. We call this restricted version of the
problem the DISCRETE-CLUSTERORDERS problem. The follow-
ing adaptation of the folklore theorem for clusters of points is true:

THEOREM 3: Let OPT be the cost of the optimal solution of the
CLUSTERORDERS problem and D-OPT the cost of the optimal so-
lution for the DISCRETE-CLUSTERORDERS problem, for distance

metric d. Then it holds that:

D-OPT ≤ 2OPT.

5.1.1 The GREEDY algorithm
Algorithm 3 The GREEDY algorithm for finding representative or-
ders
Input: A set of m orders of the n tuples in r: Tm = {τ1, . . . , τm}.
Ouput: A set of representative ` orders T` = {τ̄1, . . . , τ̄`}.
1: CANDIDATES = Tm

2: for all i = m down to k do
3: ρ = arg mini∈CANDIDATES

P

τ∈Tm
d(τ, CANDIDATES −

{τi}) −
P

τ∈Tm
d(τ, CANDIDATES)

4: CANDIDATES = CANDIDATES− {ρ}
5: end for
6: T` ← CANDIDATES

The GREEDY algorithm (Algorithm 3) for the CLUSTERORDERS

problem is a variation of a greedy algorithm provided in [11] for
the facility-location problem. The apparent similarity between the
two problems is that the ` output orders can be considered as the fa-
cilities that serve the initial m input orders (` < m). The GREEDY

algorithm starts by considering all the m input orders as candidates
to be representatives. In each iteration the algorithm removes from
the candidate set the order which when removed, causes the least
increase in the total cost. The algorithm stops when ` orders remain
in the candidate set.

PROPOSITION 1: (due to [11]) The GREEDY algorithm is an O(log m)
approximation algorithm for the DISCRETE-CLUSTERORDERS prob-
lem with m initial input orders. Therefore if cost(G) is the cost of
the solution found by the GREEDY algorithm and D-OPT the cost
of the optimal solution for the DISCRETE-CLUSTERORDERS prob-
lem, then it holds that:

cost(G) ≤ O(log m)D-OPT.

The above proposition holds irrespective of whether the cost is cal-
culated using dF or dK , due to Fact 2.

PROPOSITION 2: The GREEDY algorithm is an O(log m) approx-
imation algorithm for the CLUSTERORDERS problem with m ini-
tial input orders. That is, if cost(G) is the cost of the solution found
by the GREEDY algorithm and OPT the cost of the optimal solution
for the CLUSTERORDERS problem, then it holds that:

cost(G) ≤ O(log m)OPT.

PROOF. Follows from Proposition 1 and Theorem 3.

5.1.2 The FURTHEST algorithm
The FURTHEST algorithm (Algorithm 4) is a top-down algorithm.
It is inspired by the furthest-first traversal algorithm for which
Hochbaum and Shmoys [22] showed that it achieves a 2-approximation
for the p-centers clustering problem.

The algorithm starts by picking an arbitrary order as a representa-
tive, say order τi1 , and adds it to the output orders T` = {τi1},
while it removes it from Tm. Then it picks order τi2 , which is
furthest from τi1 . The algorithm continues for ` steps. Finally, it
assigns the remaining orders in Tm to their closest representative.



Algorithm 4 The FURTHEST algorithm for finding representative
orders
Input: A set of m orders of the n tuples in r: Tm =
{τ1, τ2, . . . , τm}

Ouput: A set of representative ` orders T` = {τ̄1, τ̄2, . . . , τ̄`}
1: T` = ∅
2: Pick arbitrary τ̄ ∈ Tm

3: T` = T` ∪ {τ̄}
4: Tm = Tm − {τ̄}
5: for all i = 2 to ` do
6: τ̄ = arg maxτ ′ d(τ ′, T`)
7: T` = T` ∪ {τ̄}
8: Tm = Tm − {τ̄}
9: end for

10: for all τ ∈ Tm do
11: Assign τ to its closest order in T`

12: end for

5.2 Refinements
Both the above algorithms output ` representative orders from the
set of initial input orders. That is, in both cases T` ⊆ Tm. As-
sume that the m initial orders are partitioned into ` groups and let
this partitioning be G = {G1, . . . , G`}. Consider partition Gi of the
input orders that has as a representative order τ̄i. The above algo-
rithms do not guarantee that τ̄i = arg minτ∈Gi

P

τ ′∈Gi
d(τ, τ ′).

To overcome this shortcoming we introduce two possible refine-
ments:

1. Discrete Refinement: For each partition Gi of the input or-
ders, replace the representative τ̄i found by the GREEDY or
the FURTHEST algorithm with τ̄i

∗ ∈ Gi such that

τ̄i
∗ = arg min

τ∈Gi

X

τ ′∈Gi

d(τ, τ ′).

2. Continuous Refinement: For each partition Gi of the input
orders, replace the representative τ̄i found by the GREEDY

or the FURTHEST algorithm with τ̄i
∗ such that

τ̄i
∗ = arg min

τ

X

τ ′∈Gi

d(τ, τ ′).

That is pick any permutation from the set of all possible per-
mutations that best represents the orders in partition Gi. The
problem of picking such a representative when d is dK is
computationally hard. Algorithms from [14] and [15] can be
used for approximating the best representative.

Neither of the refinements changes the partitioning of the m ini-
tial orders; only the representative of each group of the partition
changes so that the total cost of the partitioning is reduced.

6. RANKED TOP-K QUERIES
This section describes the solution of Problem 4: how the computa-
tions made in the offline steps are exploited to provide ranked top-k
results. The setting is the following: There are ` different orderings
of all the tuples of relation r. Each ordering τ̄i is associated with
a set of contexts X̄i ⊆ {X1, . . . , Xm} forming ` pairs 〈X̄i, τ̄i〉.
Additionally, each tuple t ∈ r in each such pair i is associated with
the s(t | X̄i) as defined in Equation 3.

We adapt TA algorithm [18] to retrieve the top-k answers to a query.
Another alternative would be to use the MedRank algorithm pro-
posed in [17]. In the TA algorithm there are two modes of access to
the data. Sorted access obtains the score of an element in an order
by traversing the order of the tuples sequentially from the top. Ran-
dom access obtains the score of a tuple in an order in one access.
The algorithm in our setting works as follows:

1. Do a round-robin access to each one of the ` orderings of the
tuples. As a tuple t with t ∈ q(r) is seen in some ordering
τ̄i, find the score s(t | X̄j) with j 6= i by finding the position
of t in all τ̄j’s. The final score of tuple t for the query q is
computed as:

score(t, q) =
X

X̄i

sim(q, X̄i) · s(t | X̄i).

2. Not all tuples of each sorted list are accessed in step 1. Let
s(tj | X̄i) be the score of the last visited tuple of ordering τ̄i

by the end of the j-th round-robin cycle. Then, the threshold
value s is defined to be s =

P

X̄i
sim(q, X̄i) · s(tj |X̄i). The

algorithm halts when k tuples with score values greater or
equal to s have been seen.

3. Among all the tuples seen, output those k with the highest
value for score(t, q).

Note that by the end of step 2, for any tuple t′ that has not yet been
seen in the round-robin access of the data, it holds that score(t′, q) ≤
s. The complexity of the algorithm is linear in the number of input
orderings. Consider relation r with schema R(A1, . . . , Ad). Let
the cardinality of the active domain of each attribute Dom(Ai) be
|Dom(Ai)|. There can be 2|Dom(A1)|+...+|Dom(Ad)| different con-
texts. If a different order had been generated for each one of them,
the TA algorithm would need O(2|Dom(A1)|+...+|Dom(Ad)|) time.
The reduction of the number of orders to ` representative ones leads
to a reduction of the running time to O(`).

7. HANDLING INDIFFERENT TUPLES
In this section, we discuss the implications of the existence of in-
different tuples on the algorithms we proposed in the previous sec-
tions. It is natural to assume that an indifferent tuple is less im-
portant than any asserted tuple. This is because the preferences
expressed by users are supportive. Therefore, if users have not
bothered to compare a specific tuple with any other tuple in the
dataset, then this tuple is a rather unimportant one. Secondly, when
it comes to comparing two indifferent tuples with each other, we
cannot conclude, in the absence of any evidence, that one of them
is more or less important than the other.

Having the above in mind, one could deal with the ORDERING

problem by completely ignoring the indifferent tuples and just con-
sidering the asserted ones. In that case, all the proposed algorithms
in Section 4 provide orderings of the asserted tuples. Once such an
order is constructed, the indifferent tuples are assumed to follow the
asserted tuples in the order. We thus obtain a total ordering of the
asserted tuples, followed by a “bucket” of indifferent tuples, with
no explicit ordering between them. Let us call such an ordering a
mixed order.

We now need to modify the CLUSTERORDERS problem to deal
with mixed orders instead of total orders. For this, the definition



of distance functions between mixed orders is necessary. Thus,
we modify the definitions of Spearman footrule and Kendall tau
to operate on the mixed orders. Assume a mixed order ρ on n
tuples and let nρ be the number of totally ordered tuples and n−nρ

the number of indifferent tuples associated with it. For each such
mixed order ρ we denote by oρ the total order on its nρ asserted
tuples and by bρ the corresponding bucket of indifferent tuples.

The modifications are straightforward given the following fact: For
a mixed order ρ and tuple t we assume that:

ρ(t) =



oρ(t) if t is asserted,

nρ +
n−nρ

2
if t is indifferent.

In the above, oρ(t) denotes the position of the asserted tuple t in
order oρ. The positions of the indifferent tuples are all the same.
Though the modified Spearman footrule remains a metric (Fact 2
still holds), this is not the case for the modification of Kendall tau.
That is, the approximation guarantees we have provided for the
GREEDY algorithm do not immediately hold, when dealing with
mixed orders and Kendall distances. However, this obstacle might
be overcome by using the result from [16] that puts the modified dK

and dF functions in the same equivalence class. Thus a bounded-
factor approximation algorithm for the CLUSTERORDERS problem
using dF is also a bounded-factor approximation algorithm for dK .

Finally, the TA algorithm used in the online QUERYING problem
can also operate on mixed orders. For this, we assume a random
ordering of the tuples in all the buckets of indifferent tuples. Con-
sider again the mixed order ρ. In this case the score of a tuple t in
ρ is defined to be: s(t | ρ) = n − ρ(t) + 1, with ρ(t) as defined
above.

8. EXPERIMENTAL RESULTS
8.1 Experiments on synthetic datasets
Experiment I
In the first experiment we empirically evaluate the algorithms for
the ORDERING problem. To that aim, we generate two types of
preferences: (a) general acyclic and (c) strictly acyclic. The use
of acyclic preferences allows us to have a known ground truth for
comparing the performance of the algorithms.

For general acyclic preferences, the preference graph is generated
as follows. First we fix an order on the tuples and then we generate
preferences that respect this order. That is, we generate a directed
edge from i to j with 1

2
≤ w(i → j) ≤ 1 only if i precedes

j in the fixed order. This process results in the generation of the
corresponding backward edge with weight w(j → i) = 1−w(i→
j) < 1

2
. The parameter pc ∈ [0, 1] is used to specify the probability

that a preference has been generated for a pair of tuples. Note that
weight w(i → j) corresponds to the value of effective preference
EFF-P(i, j, X). Note that for this experiment we assume a single
context, say X .

The generation process for the strictly acyclic case is similar. The
only difference is that the weight associated with each forward edge
is set to 1 (and 0 for the corresponding backward edge).

In the datasets so generated, we know that the correct underlying
order of the tuples is the one that was used for generating the pref-
erences. Thus, we can compare the performance of the three algo-
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Figure 2: Algorithms’ performance for the ORDERING problem

rithms with the performance of an optimal algorithm OPT, that out-
puts the order used for the data generation. Figure 2, shows the ratio
of AGREE(A)

AGREE(OPT)
, for A = {PICK-PERM, MC-ORDER, GREEDY-ORDER},

as a function of the value of pc used for the generation process. The
value of the ratio has been averaged over sufficient number of runs
to obtain tight confidence intervals. The results are insensitive to
the number of tuples (n ≥ 1000).

In both the acyclic and the strictly acyclic case, the three algo-
rithms have performance identical to the performance of OPT for
small values of pc. This is due to the fact that many orders, from
the universe of all possible orders, are close to optimal when no
preference has been specified for most of the pairs of tuples. As
the value of pc increases, the differences in the algorithms’ perfor-
mance become more pronounced. The PICK-PERM deviates from
the optimal reaching a ratio close to its lower bound, while MC-
ORDER and GREEDY-ORDER maintain a ratio close to 1.0. Notice
that in the strictly-acyclic case MC-ORDER is slightly better than
GREEDY-ORDER. The reason for this is that in such preference
graphs the MC-ORDER algorithm cannot err as it transfers weights
in the right direction (from tuples that are in the tail of the order to
tuples that are in the earlier positions).

Experiment II
The second experiment aims at testing the quality of the algorithms
for the CLUSTERORDERS problem. For this experiment we assume
there are no indifferent tuples. We generate synthetic datasets with
the following procedure. Every dataset is characterized by 5 pa-
rameters: n, m, `, noise and type. Here n is the number of tuples in
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Figure 3: Algorithms’ performance for the CLUSTERORDERS problem, (noise type = swaps)
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Figure 4: Jaccard coefficient of the top-k results.

each of the orders, m the number of input orders, and ` the number
of true underlying clusters. Initially, we generate ` random orders
by sampling uniformly at random the space of all possible permu-
tations of n elements. These initial orders form the centers around
which we build each one of the clusters. The task of the algorithms
is to rediscover the clustering model used for the data generation.
Given a cluster center, each order from the same cluster is gener-
ated by adding to the center a specified amount of noise of a specific
type. We consider two types of noise: swaps and shifts. For realiz-
ing a swap two random tuples from the initial order are picked and
their positionings in the ordering are exchanged. For the shifts we
pick a random tuple and we move it to a new position, either earlier
(or later) in the order. All tuples that are between the new and the
old positions of the tuple are shifted one position down (or up). The
amount of noise is the number of swaps or shifts we make.

We experiment with datasets generated for the following parame-
ters: n = 500, m = 1000, ` = {2, 4, 8, 16}, noise = {2, 4,
8 . . . , 128} and for both swaps and shifts. Figure 3 shows the per-
formance of the algorithms as a function of the amount of noise.
We only show the results for swaps since the results for shifts ex-
hibited similar trends. The y axis is the ratio: F(A)

F(INP)
, for A =

{GREEDY, FURTHEST}. The F (A) is the total cost of the solution
provided by algorithm A when footrule distance is used as a dis-
tance measure between orders. The quantity F (INP) corresponds
to the cost of the clustering structure (Equation 4) used in the data-
generation process. Note that F (INP) need not be minimal, par-
ticularly in datasets with high values of noise. As large amount of
noise may destroy the preordained clustering structure. Therefore,
the above ratio can only be viewed as an indication of how well the
methods work.

We have plotted the performance of the algorithms without and
with refinements to their outputs. In the case of the latter the al-
gorithms’ names are suffixed with “RI” (e.g. GREEDY-RI). For
these plots we are considering refinement 1, (results for refinement

2 were similar and thus omitted).

We see that: the GREEDY algorithm (that also has the approxima-
tion bound) performs steadily better than FURTHEST when no re-
finements are applied. As expected the performance of the GREEDY

algorithm degrades as the amount of noise increases. On the other
hand, FURTHEST exhibits the opposite trend. This surprising be-
havior can be explained considering the way the latter algorithm
proceeds. In the cases of low noise (small number of swaps) FUR-
THEST picks as cluster centers orders that are far apart. These or-
ders may indeed belong to different clusters, but they are not neces-
sarily the “true” cluster centers. The algorithm is prone to making
such wrong judgments for the following reason: due to the low
noise, the distance between any two orders belonging to different
clusters is more or less identical and large. Thus, the algorithm can-
not distinguish between the real cluster center and any order that
comes from the same cluster. Therefore, it makes correct grouping
of the input orders, but it is prone to picking the “wrong” represen-
tatives.

Finally,we note that the refinement step is very effective in improv-
ing the performance of both GREEDY and FURTHEST. In fact, their
performance becomes nearly identical to the input preordained clus-
tering. This observation suggests that even without refinements
both GREEDY and FURTHEST are able to do the correct groupings,
though they do not succeed in rediscovering the correct cluster cen-
ters as well.

Experiment III
The third experiment (Figure 4) tests the accuracy of the top-k re-
sults obtained using only the representative orders when compared
with the top-k results obtained using all available orderings. That
is, we want to test the loss in accuracy due to compression. We
quantify this accuracy as follows: let R(OPT, k) be the top-k tu-
ples returned by the algorithm using all the available orderings,
and R(A, k) the corresponding top-k tuples returned when only
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Figure 5: Accuracy/efficiency tradeoffs for IMDB dataset.

the representative orders, as output by algorithm A, are taken into
account. We compare the two top-k answers as sets using the Jac-
card Coefficient defined as follows:

J(R(OPT, k), R(A, k)) =
|R(OPT, k) ∩R(A, k)|

|R(OPT, k) ∪R(A, k)|
.

The Jaccard Coefficient takes real values between 0 and 1 and the
higher its value the more similar the two sets of tuples are. Figure 4
shows the value of the coefficient for different values of k, when
A = {GREEDY, GREEDY − RI, FURTHEST, FURTHEST − RI}.
For this experiment the datasets were generated the same way as
for experiment II. We show plots for ` = {2, 4, 8, 16}, while in
this case we fix the level of noise to 64 swaps. The values of n
and m are fixed to 500 and 1000 respectively. The results were
insensitive to the latter parameters.

We see that the refined results of both the algorithms are nearly
identical and the accuracy is very high, even for small values of
k. Even without refinement the values of the Jaccard Coefficients
are large. Thus even when only small number of tuples is returned
to the user, the information lost by looking at the clustered orders
instead of all orders is minimal.

8.2 Real Dataset
Finally, we test our methodology on a real dataset. For this pur-
pose we use the IMDB movie dataset (www.imdb.com). From the
dataset we extract for each movie information related to its genre,
language, production year, directors and actors. We include movies
with language being English, French, German, Spanish, Japanese,
Finnish or Swedish. We further select movies with ratings (infor-
mation available in the dataset) greater than 7.0. This subset con-

sists of nearly 32, 000 movies. From this data, we construct the
following relational table: r = (TID, title, genre, year, language,
actor, director).

For the purpose of the experiment we automatically generate pref-
erences via association-rules mining [1]. The rationale behind this
automatic generation of preferences is the following. We say that
{A1 = a � A2 = b | X} if conf(X → a) > conf(X → b),
where conf(X → a) is the confidence of the association rule X →

a in the database, i.e., conf(X → a) = fr(X∧a)
fr(X)

. The underlying
assumption is that when an attribute value a occurs together with
context X more often than the attribute value b, then this implies
that a is also preferred to b over X . Using a confidence level of 0.2
we obtained 883 different classes of preferences, which we used
in our experiments. Note that in the real datasets indifferent tuples
appear and therefore for this experiment we take into consideration
their implications in the different algorithmic steps.

Figure 5 shows the query response time and accuracy tradeoff for
different number of representative clusters. The query response
times have been normalized using the time needed for number of
clusters equal to 883 as the base. The accuracy has been measured
in terms of the Jaccard Coefficient. The MC-ORDER was used for
constructing orders from preferences and GREEDY was used for
clustering the constructed orders and finding the cluster represen-
tatives.

The results are very encouraging; as the figure shows the time re-
quirements increase linearly as a function of the number of clusters.
The absolute response time on our unoptimized implementation
running on a 2.3 GHz NT workstation was less than 3 seconds for
50 clusters. More interestingly, although the association-rule min-
ing phase has created 883 classes of preferences, clustering them
in 50 clusters provided satisfactory levels of accuracy for most of
the queries we tested.

9. CONCLUSIONS
We proposed a framework and algorithmic solution to the problem
of abundance deluging the database-centric web applications. Our
framework is based on taking advantage of the user preferences to
precompute a few representative tuple orderings and use them to
expeditiously provide ranked answers to database queries factoring
in the information contained in the query. Our approach is similar
in spirit to the successful strategy employed by web search engines
to deal with the problem of abundance of web pages: precompute
page rank and use it to order the response to search queries.

Our preference language is natural and intuitive and does not re-
quire users to specify numeric importance scores to tuples. Rather,
users provide context-dependent choices (or they are mined), which
are incorporated in the formulation of final ranking in a combinato-
rial manner. The language is set-oriented and allows a single pref-
erence to specify choices between a large number of pairs of tuples.
Two tuples can be ordered differently depending on the context. To
enable mass collaboration, we admit choices that can be contradic-
tory and contain cycles, and reconcile them democratically.

We performed extensive experiments, using both synthetic and real
data, to empirically study the performance characteristics of the
proposed algorithms. These experiments show that our proposed
solution achieves high accuracy even when only a small number
of representative orderings are kept, saving storage and making re-
sponses to top-k ranked answers fast.



In the future, we would like to study incremental algorithms for
maintaining orderings as the preferences and database evolve. We
would also like to investigate how to make our solution spam-
resistant in the presence of malicious users.

Acknowledgements
We would like to thank Heikki Mannila for his comments on an
earlier version of this paper.

10. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large databases. In
SIGMOD, pages 207–216, 1993.

[2] R. Agrawal and E. L. Wimmers. A framework for expressing
and combining preferences. In SIGMOD, pages 297–306,
2000.

[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated
ranking of database query results. In CIDR, 2003.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[5] B. Berger and P. W. Shor. Approximation algorithms for the
maximum acyclic subgraph problem. In SODA, pages
236–243, 1990.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. In ICDE, pages 431–440, 2002.

[7] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[9] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic ranking of database query results. In VLDB,
pages 888–899, 2004.

[10] J. Chomicki. Preference formulas in relational queries. ACM
Trans. Database Syst., 28(4):427–466, 2003.

[11] M. Chrobak, C. Kenyon, and N. E. Young. The reverse
greedy algorithm for the metric k-median problem. In
COCOON, 2005.

[12] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to
order things. In NIPS, 1997.

[13] P. Diaconis and R. Graham. Spearman’s footrule as a
measure of disarray. J. of the Royal Statistical Society,
39(2):262–268, 1977.

[14] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In WWW, pages 613–622,
2001.

[15] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing and aggregating rankings with ties. In PODS,
pages 47–58, 2004.

[16] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. In SODA, pages 28–36, 2003.

[17] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. In SIGMOD,
pages 301–312, 2003.

[18] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[19] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. In VLDB, pages 552–563, 2004.

[20] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over XML documents. In
SIGMOD, pages 16–27, 2003.

[21] T. H. Haveliwala. Topic-sensitive pagerank. In WWW, pages
517–526, 2002.

[22] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic
for the k-center problem. Mathematics of Operations
Research, pages 180–184, 1985.

[23] A. Huang, Q. Xue, and J. Yang. Tuplerank and implicit
relationship discovery in relational databases. In WAIM,
2003.

[24] T. Kamishima and J. Fujiki. Clustering orders. In Discovery
Science, pages 194–207, 2003.

[25] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322, 2002.

[26] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Segmentation problems. In STOC, pages 473–482, 1998.

[27] G. Koutrika and Y. Ioannidis. Constrained optimalities in
query personalization. In SIGMOD, pages 73–84, 2005.

[28] G. Koutrika and Y. E. Ioannidis. Personalization of queries in
database systems. In ICDE, pages 597–608, 2004.

[29] G. Koutrika and Y. E. Ioannidis. Personalized queries under a
generalized preference model. In ICDE, pages 841–852,
2005.

[30] K. Kummamuru, R. Krishnapuram, and R. Agrawal. On
learning assymetric dissimilarity measures. In ICDM, 2005.

[31] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[32] M. Richardson and P. Domingos. The intelligent surfer:
Probabilistic combination of link and content information in
pagerank. In NIPS, pages 1441–1448, 2001.

[33] M. Schultz and T. Joachims. Learning a distance metric from
relative comparisons. In NIPS, 2003.

[34] M. Yannakakis. Edge-deletion problems. SIAM J. Comput.,
10(2):297–309, 1981.


