
Constructing comprehensive summaries of large
event sequences

JERRY KIERNAN

IBM Silicon Valley Lab

and

EVIMARIA TERZI

IBM Almaden Research Center

Event sequences capture system and user activity over time. Prior research on sequence mining
has mostly focused on discovering local patterns appearing in a sequence. While interesting,
these patterns do not give a comprehensive summary of the entire event sequence. Moreover, the
number of patterns discovered can be large. In this paper, we take an alternative approach and
build short summaries that describe an entire sequence, and discover local dependencies between
event types.

We formally define the summarization problem as an optimization problem that balances short-
ness of the summary with accuracy of the data description. We show that this problem can be
solved optimally in polynomial time by using a combination of two dynamic-programming algo-
rithms. We also explore more efficient greedy alternatives and demonstrate that they work well
on large datasets. Experiments on both synthetic and real datasets illustrate that our algorithms
are efficient and produce high-quality results, and reveal interesting local structures in the data.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—
Data mining; I.5.3 [Pattern Recognition]: Clustering—Algorithms; E.4 [Coding and Infor-
mation Theory]: Data Compaction and compression

General Terms: Algorithms, Experimentation, Theory
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1. INTRODUCTION

Monitoring of systems’ and users’ activities produces large event sequences, i.e.,
logs where each event has an associated occurrence time as well as other attributes.
Network traffic and activity logs are examples of large event sequences. Off-the-
shelf data-mining methods for event sequences though successful in finding recurring
local structures, e.g., episodes, can prove inadequate in providing a global model
of the data. Moreover, data-mining algorithms usually output too many patterns
that may overwhelm the data analysts. In this paper, we reveal a new aspect of
event sequence analysis, namely how to concisely summarize such event sequences.

From the point of view of a data analyst, an event-sequence summarization sys-
tem should have the following properties.

Brevity and accuracy: The summarization system should construct short sum-
maries that accurately describe the input data.

Global data description: The summaries should give an indication of the global
structure of the event sequence and its evolution through
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time.

Local pattern identification: The summary should reveal information about local
patterns; normal or suspicious events or combinations
of events that occur at certain points in time should
be identified by just looking at the summary.

Parameter free: No extra tuning should be required by the analyst in
order for the summarization method to give informa-
tive and useful results.

Despite the bulk of work on the analysis of event-sequences, to the best of our
knowledge, there is no technique that satisfies all requirements discussed above. In
this paper, we present a summarization technique that exhibits all these character-
istics. More specifically,

—We use the Minimum Description Length (MDL) principle to find a balance
between summaries’ length and descriptions’ accuracy.

—We adopt a segmentation model that provides a high-level view of the sequence
by identifying global intervals on the timeline. The events appearing within each
interval exhibit local regularity.

—Each interval in the segmented timeline is described by a local model similar to
clustering. Our local model groups event types with similar rates of appearance
within the interval; in this way local associations among event types are captured.

—The usage of MDL penalizes both complex models that over-fit the data and
simple models that over-generalize. This makes our methodology parameter-free
and thus increases its practical utility.

Our methodology makes two assumptions: (a) the appearances of events of differ-
ent types are independent and (b) the appearances of events of the same time at
different timestamps are also independent.

Example 1. Figure 1 shows an example of an input event sequence and the
output of our method for this particular sequence. The input sequence is shown
in Figure 1(a). The sequence contains three event types {A,B,C} and it spans
timeline [1, 30] that consists of 30 discrete timestamps. A possible instantiation of
these event types one can think that events of type A correspond to logins of user
“Alice”, events of type B to logins of user “Bob”, and events of type C to logins of
user “Cynthia” in the system.

Figure 1(b) shows the actual segmental grouping that our method finds. Three
segments are identified: [1, 11], [12, 20] and [21, 30]. Within each segment the events
are grouped into two groups; event types with similar frequency of appearance within
a segment are grouped together. In the first segment, the two groups consist of event
types {A,B} and {C} - A and B are grouped together as they appear much more
frequently than C in the interval [1, 11]. Similarly, the groups in the second segment
are {A} and {B,C} and in the third segment {A,C} and {B}.

Finally, Figure 1(c) shows what the output of the summarization method con-
ceptually looks like. The coloring of the groups within a segment is indicative of
the probability of appearance of the events in the group; darker colors correspond to
higher occurrence probabilities.
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Fig. 1. Visual representation of an event sequence that contains events of three event types
{A, B, C} and spans timeline [1, 30]. Figure 1(a) shows the input sequence; Figure 1(b) shows the
segmental grouping and Figure 1(c) shows the high-level view of our summary. The same tone of
gray identifies group membership.

1.1 Problem Statement and Approach

We address the following problem: assume an event sequence S that records occur-
rences of events over a time interval [1, n]. Additionally, let E denote the distinct
event types that appear in the sequence. Our goal is to partition the observation
interval into segments of local activity that span [1, n]; within each segment identify
groups of event types that exhibit similar frequency of occurrence in the segment.
We use the term segmental grouping for this data-description model. For the pur-
poses of this paper we only consider discrete timelines. We additionally assume that
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events of different types are generated at every distinct timestamp independently
from some stationary probability that depends on the event type and the segment
itself.

We formally define the problem of finding the best segmental grouping as an
optimization problem. By penalizing both complex and simple models, we develop
a parameter-free methodology and provide polynomial-time algorithms that opti-
mally solve the above summarization problem. Dynamic-programming is at the
core of these optimal algorithms. The computational complexity of our algorithms
depends only on the number of timestamps at which events occur and not on the
total length of the timeline n.

Although the main motivation for our work is the forensic analysis of large audit
logs, the techniques presented herein can also be applied to other diverse domains;
appearances of words within a stream of documents could be considered as event
sequences and useful summaries can be constructed for these domains using our
methodology.

1.2 Roadmap

The rest of the paper is organized as follows. We review the related work in Sec-
tion 2. In Section 3 we give some basic notational conventions. In Section 4 we
formally describe our summarization scheme and the corresponding optimization
problem of finding the best summary. The algorithms for solving the problem are
presented in Section 5. In Section 6 we study some variants of the original problem.
Experiments are given in Section 7; Section 8 presents an application which exploits
the algorithms presented in the paper and illustrates intuitive visual metaphors for
rendering the algorithms’ results. We conclude in Section 9.

2. RELATED WORK

Although we are not aware of any work that proposes the same summarization
model for event sequences, our work clearly overlaps with work on sequence mining
and time-series analysis.

Closely related to ours is the work on mining episodes and sequential patterns
([Agrawal and Srikant 1995; Bettini et al. 1998; Chudova and Smyth 2002; Mannila
and Toivonen 1996; Mannila et al. 1997; Pei et al. 2007; Srikant and Agrawal
1996; Yang et al. 2002]). That work mostly focused on developing algorithms
that identify configurations of discrete events clustered in time. Although these
algorithms identify local event patterns they do not focus on providing a global
description of the data sequence. Moreover, these methods usually output all local
patterns that satisfy certain properties. In contrast, the focus of our work is to
provide an overall description of the event sequence and identify local associations
of events, keeping the whole description short and accurate.

Summarization of event sequences via a segmentation model is proposed in [Man-
nila and Salmenkivi 2001]. However, the technique presented there can only model
sequences of single event types; within each local interval, the appearances of events
are modelled by a constant intensity model. The model of [Mannila and Salmenkivi
2001] cannot be extended to handle more than one event types. In fact, one can
think of our model as a generalization of the model proposed in [Mannila and
Salmenkivi 2001] since in fact we split the event types into groups of constant
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.



Constructing comprehensive summaries of large event sequences · 115

intensities.
Also related is the segmentation framework developed by [Koivisto et al. 2003]

in order to identify block structures in genetic sequences. A minimum description
length approach is also used there for identifying the number and positions of seg-
ment boundaries. However, the models built within each block serve the particular
modelling requirements of the genetic sequences under study. For example, in the
case of [Koivisto et al. 2003] finding the local model in each segment is an NP-hard
task, while in our case this task is polynomial. At a high-level, our work is related
to the general problem of finding homogeneous DNA sequences. This problem has
been extensively studied in bioinformatics leading to a variety of segmentation algo-
rithms [Gionis and Mannila 2003; Li 2001a; 2001b; Ruzzo and Tompa 1999]. There
is only high-level connection between these pieces of work and ours: although we
both deal with segmentation problems and in many cases we use dynamic program-
ming as our main algorithmic tool, each paper studies a different model and tries
to optimize a different optimization function.

Periodicity detection in event sequences has been the focus of many sequential
data-analysis techniques (e.g., [Elfeky et al. 2004; Han et al. 1998; Han et al. 1999;
Ma and Hellerstein 2001]). Although periodicity detection in event sequences is an
interesting topic by itself, it is not the focus of our paper. We focus on finding local
associations across different event types rather than finding combinations of event
types that exhibit some periodic behavior.

Identifying time intervals at which an event or a combination of events makes
bursty appearances has been the focus of many papers associated with mining
and analysis of document streams, e.g., [Allan et al. 2001; Brants and Chen 2003;
Kleinberg 2003; Swan and Allan 2000; Yang et al. 2000]. In that setting events
correspond to specific words appearing on a stream of documents. Our methodology
can also be applied to the analysis of document streams. Since the class of models
we are considering are different from those proposed before, one can think of our
methodology as complementary to the existing methods for document analysis.

At a high level there is an obvious connection between our model and the standard
segmentation model used for time-series segmentation (see [Guha et al. 2001; Kar-
ras et al. 2007; Keogh et al. 2001; Papadimitriou and Yu 2006; Terzi and Tsaparas
2006] for an indicative, though not complete, set of references). Those models par-
tition the time series into contiguous non-overlapping segment, so that within each
segment the data exhibits some kind of homogeneity. Different definitions of homo-
geneity lead to different optimization problems and different models for describing
the data within each segment. Usually linear models or piecewise-constant approx-
imations are used for that. Despite the high-level similarity between this work and
ours we point out that our focus is on event sequences rather than on time series.
Moreover, the local model we consider to represent the data within a segment is a
special type of clustering model. To the best of our knowledge we are not aware of
any prior work that considers such local models.

There is an equally interesting line of work that deals with the discovery of local
patterns in time-series data, e.g., [Papadimitriou and Yu 2006; Sakurai et al. 2005;
Zhu and Shasha 2002]. However, the connection to our work remains at a high level
since we focus on event sequences and not on time series, and the local per segment
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models we consider are quite distinct from the models considered before. Same
high-level connection exists between our model and HMMs [Rabiner and Juang
1986]. However, the assumptions behind HMMs are different. For example, we
assume that every segment (state) in our model is independent of any other state.
To the contrary the HMMs assume that the Markov property holds between the
states.

3. PRELIMINARIES

Event sequences consist of events that occur at specific points in time. That is,
every event in the sequence has an associated time of occurrence. We assume a set
E of m different event types. An event is a pair (E, t), where E ∈ E is an event
type and t is the (occurrence) time of the event on a timeline. We consider discrete
timelines in which occurrence times of events are positive integers in the interval
[1, n]. That is, the timeline consists of n different evenly spaced timestamps at
which events of different types might occur.

We represent an event sequence by an m × n array S such that S (i, t) = 1 if
an event of type Ei has occurred at time point t. At a certain time t, events of
different types can occur simultaneously. That is, each column of S can have more
than one 1-entries. However, at any time t, only one event of each type can occur
(If multiple events of the same type do occur at a point t, they can be ignored as
duplicates).

Figure 1(a) shows an event sequence S on which events of m = 3 different types
appear; E = {A,B, C}. The events occur on the timeline [1, 30]. That is, there are
30 timestamps at which any of the three event types can occur.

Given interval I ⊆ [1, n], we use S [I] to denote the m × |I| projection of S on
the interval I. Finally, for event type E ∈ E and interval I ⊆ [1, n] we denote the
number of occurrences of events of type E within the interval I with n(E, I).

The core idea is to find a segmentation of the input timeline [1, n] into contigu-
ous, non-overlapping intervals that cover [1, n]. We call these intervals segments.
More formally, we want to find a segmentation of S into segments denoted by
S = (S1, . . . ,Sk). Such a segmentation is defined by k + 1 boundaries {b1, b2,
. . . , bk, bk+1} where b1 = 1, bk+1 = n + 1 and each bj , with 2 ≤ j ≤ k takes
integer values in [2, n]. Therefore, the j-th segment corresponds to the subsequence
S [bj , bj+1 − 1]. A segmentation of the input event sequence of Figure 1(a) is shown
in Figure 1(b). The input sequence is split into 3 segments defined by the bound-
aries {1, 12, 21, 31}.

We now focus our attention on the data of a specific segment Si defined over
the time interval I. That is, Si = S [I]. We describe the portion of the data that
corresponds to Si by the local model Mi. We consider model Mi to be a partitioning
of event types E into groups {Xi1, . . . , Xi`} such that Xij ⊆ E and Xij∩Xij′ = ∅ for
every j 6= j′ with 1 ≤ j, j′ ≤ `. Each group Xij is described by a single parameter
p (Xij) that corresponds to the probability of seeing an event of any type in Xij at
any timestamp within data segment Si.

Consider for example the first segment of the output segmentation in Figure 1(b)
(or Figure 1(c)) that defines segment I1 = [1, 11], with length |I1| = 11. In this
case the local model M1 that describes the data in S1 = S [I1] partitions E into
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.



Constructing comprehensive summaries of large event sequences · 117

groups X11 = {A,B} and X12 = {C} with

p (X11) =
1
2

n (A, I1) + n (B, I1)
|I1| =

19
22

,

and

p (X12) =
n (C, I1)
|I1| =

1
11

.

The Summarization Problem. Our overall goal is to identify the set of bound-
aries on the timeline that partition S into segments (S1, . . . ,Sk) and within each
segment Si identify a local model Mi that best describes the data in Si.

The partitioning of S into segments (S1, . . . ,Sk) and the corresponding local
models M1, . . . , Mk constitute the segmental grouping or summary of S. For the
rest of the discussion we use the terms summary and segmental grouping inter-
changeably.

In order to be able to devise algorithms for the Summarization problem we
first need to define the optimization function that best describes the objective of
this informal problem definition. Our optimization function is motivated by the
Minimum Description Length (MDL) principle.

4. SEGMENTATION MODEL FOR EVENT SEQUENCES

Before formally developing our model, we first review the Minimum Description
Length (MDL) principle. Then, we show how to apply this principle to formalize
the Summarization problem.

4.1 Minimum Description Length Principle

The MDL principle [Rissanen 1978; 1989] allows us to transform the requirement
of balance between over-generalizing and over-fitting into a computational require-
ment.

In brief the MDL principle states the following: assume two parties P and P ′

that want to communicate with each other. More specifically, assume that P wants
to send event sequence S to P ′ using as less bits as possible. In order for P to
achieve this minimization of communication cost, she has to select model M from
a class of models M, and use M to describe her data. Then, she can send to P ′

model M plus the additional information required to describe the data given the
transmitted model.

Thus, party P has to encode the model M and then encode the data given this
model. The quality of the selected model is evaluated based on the number of bits
required for this overall encoding of the model and the data given the model.

MDL discourages complex models with minimal data cost and simple models
with large data costs. It tries to find a balance between these two extremes. It
is obvious that the MDL principle is a generic principle and it can have multiple
instantiations that are determined by a set of modeling assumptions. It has been
previously successfully applied in a variety of settings that range from decision-
tree classifiers [Mehta et al. 1995], genetic-sequence modeling [Koivisto et al. 2003],
patterns in sets of strings [Kilpeläinen et al. 1995] and many more. We devote the
rest of the section to describe our instantiation of the MDL principle.
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4.2 The Encoding Scheme

Recall that we model event sequences using a segmentation model that parti-
tions the input observation interval [1, n] into contiguous, non-overlapping intervals
I1, . . . , Ik. Therefore, S is split into (S1, . . . ,Sk), where Si = S [Ii]. The data in
each Si are described by local model Mi; the local model is in fact a grouping of
the event types based on their frequency of appearance in Si.
Local encoding scheme: We start by describing the procedure that estimates
the number of bits required to encode the data within a single segment Si.

Let model Mi partition the rows of Si (which correspond to events of all types,
present or not in Si) into ` groups X1, . . . , X`. Each group Xj is described by
a single parameter p (Xj), the probability of appearance of any event type in Xj

within subsequence Si. Given the Xj ’s, and corresponding p (Xj)’s for 1 ≤ j ≤ `,
and assuming independence of occurrences of events and event types, the probability
of data Si given model Mi is given by

Pr (Si|Mi) =

∏̀

j=1

∏

E∈Xj

p(Xj)n(E,I) (1− p(Xj))
|I|−n(E,I)

.

Recall that quantity n(E, I) refers to the number of events of type E that appear
in interval I. The number of bits required to describe data Si given model Mi is
− log (Pr (Si | Mi)). This is because the number of bits required to encode an event
that appears with probability q is − log(q). The more general model Mi is the less
specific to the data Si. In this case the probability Pr (Si | Mi) is small and many
bits are required to further refine the description of Si given Mi.

Therefore, local data cost of Si given Mi is

Ld (Si|Mi) = − log Pr (Si|Mi) (1)

= −
∑̀

j=1

∑

E∈Xj

(
n(E, I) log p(Xj) +

+ (|I| − n(E, I)) log (1− p(Xj))
)
.

Equation (1) gives the number of bits required to describe data in Si given model
Mi. For the encoding of Si we also need to calculate the number of bits required to
encode the model Mi itself. We call this cost (in bits) the local model cost Lm(Mi).
In order to encode Mi we need to describe the event types associated with every
group Xj (1 ≤ j ≤ `), and for each group Xj we need to specify parameter p (Xj).
Since p (Xj) is a fraction with numerator an integer in {1, n} and denominator
the length of the segment. Therefore, we can describe each one of the p (Xj)’s
using log n bits. This is because the denominator has been communicated in the
description of the global model and the numerator is simply an integer that takes
value at most n. Since there are ` groups we need a total of ` log n bits to encode
the ` different p (Xj)’s. The encoding of the partitioning is slightly more tricky;
first we observe that if we fix an ordering of the event types that is consistent with
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the partitioning X1, . . . , X`,1 then we need m log m bits to specify the ordering and
` log m bits to identify the ` partition points on that fixed order. This is because
for this fixed order the partition points are integers in the range [1,m] and thus
log m bits are necessary for the description of each partition point. Summing up
these costs we get the local model cost for Mi that is

Lm (Mi) = ` log n + ` log m + m log m. (2)

Therefore, the total local cost in bits for describing segment Si is the number of
bits required to describe Si given model Mi and the cost of describing model Mi

itself. By summing Equations (1) and (2) we get the valuation of the local cost Ll,
which is

Ll (Si, Mi) = Ld (Si|Mi) + Lm (Mi) . (3)

Generative model: The above encoding schemes assume the following data-
generation process; within segment Si events of different types are generated in-
dependently. For each event type E ∈ Xj , with 1 ≤ j ≤ `, an event of type E is
generated at every time point t ∈ I independently with probability p (Xj).
Global Encoding Scheme: The global model is the segmental model M that
splits S into segments S1, . . . ,Sk; each segment is specified by its boundaries and
the corresponding local model Mi. If for every segment i, the data in Si is described
using the encoding scheme described above, the only additional information that
needs to be encoded for describing the global model is the positions of the segment
boundaries that define the starting points of the segments on timeline [1, n]. Since
there are n possible boundary positions the encoding of k segment boundaries would
require k log n bits. Therefore, the total length of the description in bits would be

Tl (S,M) = k log n +
k∑

i=1

Ll (Si,Mi) ,

where Ll (Si,Mi) is evaluated as in Equation (3).

4.3 Problem Definition Revisited

We are now ready to give the formal definition of the Summarization problem.

Problem 1. (Summarization) Given event sequence S over observation period
[1, n] in which event types from set E occur, find integer k and a segmental grouping
M of S into (S1, . . . ,Sk) and identify the best local model Mi for each Si such that
the total description length

Tl (S,M) = k log n +
k∑

i=1

Ll (Si,Mi) , (4)

is minimized.

Problem 1 gives the optimization function that consists of the number of bits
required to encode the data given the model, and the model itself. Note that the

1A trivial such ordering is the one that places first all the event types in X1, followed by the event
types in X2 and so on.
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total model cost can be decomposed in the cost for encoding the global segmentation
model k log n plus the cost for encoding the different local models evaluated as
in Equation (2). The cost of encoding the data given the model is simply the
summation of the local data costs for every segment.

We use Ll∗ (Si) to denote the minimum value of Ll (Si, Mi), over all possible lo-
cal models Mi. Similarly, we use Tl∗ (S) to denote the minimum value of Tl (S,M)
over all possible summaries M .

Since the definition of the optimization function is formed based on the MDL
principle, the function is such that: (a) complex summaries are penalized because
they over-fit the data and (b) simple summaries are also penalized since they over-
generalize and fail to describe the data with the desired accuracy. Moreover, using
the MDL principle allows for a problem formulation that is parameter-free; no pa-
rameter setting is required from the analyst who is attempting to extract knowledge
from the input event sequence S.

5. ALGORITHMS

Despite the apparent interplay between the local models picked and the positions
of the segment boundaries on the timeline, we can show that, in fact, Problem 1
can be solved optimally in polynomial time.

Given data segment Si we call the problem of identifying the local model that
minimizes Ll (Si,Mi) the LocalGrouping problem, and we formally define it as
follows.

Problem 2. (LocalGrouping) Given sequence S and interval I ⊆ [1, n] find
the optimal local model Mi that minimizes the local description length of Si = S [I]
given Mi. That is, find Mi such that

Mi = arg min
M ′

i

Ll (Si, M
′
i)

= arg min
M ′

i

(
Ld (Si|M ′

i) + Lm (M ′
i)

)
.

In the rest of this section we give optimal polynomial-time algorithms for the
Summarization problem. We also provide alternative sub-optimal, but practical
and efficient, algorithms for the Summarization problem.

5.1 Finding the Optimal Global Model

We first present an optimal dynamic-programming algorithm for the Summariza-
tion problem. We also show that not all possible segmentations of interval [1, n]
are candidate solutions to the Summarization problem.

Theorem 1. For any interval I ⊆ [1, n], let Ll∗ (S [I]) = minMi Ll (S [I] ,Mi).
Then, Problem 1 can be solved optimally by evaluating the following dynamic-
programming recursion. For every 1 ≤ i ≤ n,

Tl∗ (S[1, i]) = (5)
= min

1≤j≤i
{Tl∗ (S[1, j]) + Ll∗ (S [j + 1, i])} .
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Proof. Recursion (5) is a standard dynamic-programming recursion that for
every i (1 ≤ i ≤ n) goes through all j’s (1 ≤ j ≤ i) and evaluates the quantity
Tl∗ (S[1, j]) + Ll∗ (S [j + 1, i]). Note that Tl∗ (S[1, j]) is simply a lookup of an
already computed value. Therefore, the only additional computation that needs to
be done is the evaluation of the second part of the summation, i.e., Ll∗ (S [j + 1, i]).
If that last part can be computed optimally, then the evaluation of Recursion (5) is
also optimal. The time required for computing Tl∗ (S [1, n]) depends on the time
required to evaluate function Ll∗ on every interval.

We call the dynamic-programming algorithm that implements Recursion (5) the
Segment-DP algorithm. If TL is the time required to evaluate Ll∗ (S [I]), then the
running time of the Segment-DP algorithm is O(n2TL).

Not all points on the interval [1, n] are qualified to be segment boundaries in the
optimal segmentation. In fact, only the timestamps on which an event (of any type)
occurs are candidate segment boundaries. The following proposition summarizes
this fact.

Proposition 1. Consider event sequence S that spans interval [1, n] and let
T ⊆ {1, 2, . . . , n} be the set of timestamps at which events have actually occurred.
Then, the segment boundaries of the optimal segmentation model are subset of T .

Proof. Let (S1, . . . ,Si,Si+1 . . . ,Sk) be the optimal segmentation of event se-
quence S into k segments. Let segments Si and Si+1 be such that they are defined
by the following consecutive intervals [P, x] and [x,N ] in [1, n]. Now let P, N ∈ T
and x /∈ T . Our proof will be by contradiction to the optimality assumption of the
segmentation. That is, we will show that moving boundary x to a new position x′

will reduce the cost of the output segmentation. Let P (x) and N(x) be the first
point to the left and right of x that is in T . That is, x ∈ [P (x), N(x)].

The total number of bits required for encoding the data using segmentation
(S1, . . . ,Si,Si+1 . . . ,Sk) is

k log n +
k∑

i=1

Ll (Si,Mi) .

If we use CS to represent the Ll of intervals that do not have x as their end point,
the above function can be written as a function of x as follows:
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F (x) = CS + Ll (Si,Mi) + Ll (Si+1,Mi+1)

= CS −
`i∑

j=1

∑

E∈Xij

n (E, [P (x), x]) log p (Xij)

−
`i∑

j=1

∑

E∈Xij

(x− P (x)− n (E, [P (x), x])) log (1− p (Xij))

−
`i+1∑

j=1

∑

E∈X(i+1)j

n (E, [x,N(x)]) log p
(
X(i+1)j

)

−
`i+1∑

j=1

∑

E∈X(i+1)j

(N(x)− x− n (E, [x,N(x)])) log
(
1− p

(
X(i+1)j

))
.

In the above equation Xij and X(i+1)j refer to the j-th group of the i-th and (i+1)-
th segment respectively. For every event type E ∈ E , the above function is concave
with respect to x, and therefore, function F (x) is also concave with respect to x (as
a summation of concave functions). Therefore, the value of x for which F (x) takes
its minimum value is either P (x) or N(x). That is, the original segmentation was
not optimal, and its cost can be improved if boundary x is moved to coincide with
a point in T .

Note that the statement about the concavity of F (x) takes also into account the
fact that p (Xij) and p

(
X(i+1)j

)
are also functions of x. However, for the sake of

clarity of presentation we avoid presenting the full expression of F (x). The proof
of concavity of F (x) is also trivial by a simple derivation.

Proposition 1 offers a speedup of the Segment-DP algorithm from O
(
n2TL

)
to

O
(|T |2TL

)
, where |T | ≤ n. That is, the evaluation of Recursion (5) does not have

to go through all the points {1, . . . , n}, but rather all the points in T , on which
events actually occur. Although in terms of asymptotic running time Proposition 1
does not give any speedup, in practice, there are many real data for which |T | << n
and therefore Proposition 1 becomes extremely useful. In our experiments with real
datasets we illustrate this fact.

5.2 The Greedy Algorithm

The Greedy algorithm is an alternative to Segment-DP and computes a summary
M of S in a bottom-up fashion. The algorithm starts with summary M1, where all
data points are in their own segment. At the t-th step of the algorithm, we identify
boundary b in M t whose removal causes the maximum decrease in Tl (S,M t). By
removing boundary b we obtain summary M t+1. If no boundary that causes cost
reduction exists, the algorithm outputs summary M t.

Since there are at most n − 1 boundaries candidate for removal the algorithm
can have at most n− 1 iterations. In each iteration the boundary with the largest
reduction in the total cost needs to be found. Using a heap data structure this can
be done in O(1) time.
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The entries of the heap at iteration t are the boundaries of summary M t. Let
these boundaries be {b1, . . . , bl}. Each entry bj is associated with the impact, G(bj),
of its removal from M t. The impact of bj is the change in Tl (S,M t) that is
caused by the removal of bj from M t. The impact may be positive if Tl (S,M t) is
increased or negative if the total description length is decreased. For every point
bj at iteration t the value of G(bj) is

G(bj) = Ll∗ (S [bj−1, bj+1 − 1]) + log n

−Ll∗ (S [bj−1, bj − 1])− log n

−Ll∗ (S [bj , bj+1 − 1])− log n.

The positive terms in the first row of the above equation correspond to the cost of
describing data S [bj−1, bj+1 − 1] after removing bj and merging segments [bj−1, bj ]
and [bj , bj+1 − 1] into a single segment. The negative costs correspond to the cost
of describing the same portion of the data using the two segments [bj−1, bj ] and
[bj , bj+1 − 1].

Upon the removal of boundary bj at iteration t, the impacts of boundaries bj−1

and bj+1 need to be updated. With the right bookkeeping this requires the evalua-
tion of Ll∗ for two different intervals per update, and thus O(2TL) time. In addition
to that, one heap update per iteration is required and takes O(log n) time. There-
fore, the total running time of the Greedy algorithm is O(TLn log n). Proposition 1
can again speedup the running time of the Greedy algorithm to O(Tl|T | log |T |).
5.3 Finding Optimal Local Models

In this section we show that the LocalGrouping can also be solved optimally in
polynomial time using yet another dynamic-programming algorithm. We call this
algorithm the Local-DP algorithm.

The next proposition states that finding the optimal parameters p (Xj) that
minimize Ld for local model Mi that partitions E into X1, . . . , X` is simple; the
value of p (Xj) is the mean of the occurrence probabilities of each event type E ∈ Xj

within segment I.

Proposition 2. Consider interval I ⊆ [1, n], and local model Mi for data in
Si = S [I]. Let Mi partition E into groups X1, . . . , X`. Then, for every Xj, with
1 ≤ j ≤ `, the value of p (Xj) that minimizes Ld (Si|Mi) is

p (Xj) =
1
|Xj |

∑

E∈Xj

n (E, I)
|I| .

Proof. The contribution of every group Xj to function Ld (Si|Mi) is

−
∑

E∈Xj

[
n (E, I) log p (Xj) + (|I| − n (E, I)) log (1− p (Xj))

]
.

By substituting p (Xj) with Pj , the above is basically a function of Pj . That is,

F (Pj) = −
∑

E∈Xj

[
n (E, I) log Pj + (|I| − n (E, I)) log (1− Pj)

]
.
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The first derivative of F (Pj) with respect to Pj is

F ′ (Pj) = −
∑

E∈Xj

(
n (E, I)

1
Pj

− (|I| − n (E, I))
1

1− Pj

)
.

In order to find the value of Pj = p (Xj) that minimizes Ld (Si|Mi) we need to find
the value of Pj for which F ′ (Pj) becomes equal to 0. By solving F ′ (Pj) = 0 we
get that this value is

Pj =
1
|Xj |

∑

E∈Xj

n (E, I)
|I| .

The above proposition states that the optimal representative of the frequency
of every group is the average of the frequencies of the event types in the group.
A corollary of this proposition is the fact that the optimal grouping assumes an
ordering of the event types within a segment in decreasing (or increasing) order of
their frequencies. A formal statement of this observation is given below.

Observation 1. Consider interval I and let Si = S[I]. Without loss of gener-
ality assume that the events in E are ordered so that n(E1, I) ≥ n(E2, I) ≥ . . . ≥
n(Em, I). Additionally assume that the optimal local model Mi constructs ` groups
X1, . . . , X`. Then, we have the following: if Ej1 ∈ Xl and Ej2 ∈ Xl, with j2 > j1,
then for all Ej′ ’s such that j′ ∈ {j1 + 1, . . . , j2 − 1} we have that Ej′ ∈ Xl.

For the rest of this section we will assume that event types in E are ordered
according to the ordering described in Observation 1. Given this ordering, we use
E(j) to denote the event type at the j-th position of the order and E(j, l) to denote
the set of event types at positions j, j + 1, . . . , l − 1, l on that order. Moreover,
given data segment Si we use Si [j, l] to denote the subset of the events in Si that
correspond to event types in E(j, l).

Given the ordering of the event types in E (Observation 1) the following dynamic-
programming recursion computes the minimum number of bits required to encode
Si.

Ll∗ (Si [1, j]) = m log m+ (6)
min1≤l≤j {Ll∗ (Si [1, l]) + U (Si [l + 1, j]) + 2 log m} ,

where

U (Si [l + 1, j]) =

= −
∑

E∈E(l+1,j)

n (E, Ii) log p∗

−
∑

E∈E(l+1,j)

(|I| − n (E, I)) log(1− p∗),

and by Proposition 2 p∗ is given by
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p∗ =
∑

E∈E(l+1,j)

n (E, I)
|I| .

The m log m term in Recursion (6) corresponds to the cost of encoding the or-
dering of the event types in Si, while the term 2 log m encodes the number of
bits required to encode the occurrence probability of any event type in the group
E (l + 1, j) and the group itself. Note that the order of the event types needs to be
sent only once per segment, while the probability of event appearance per group
and the group information needs to be sent once per group.

Theorem 2. The Local-DP algorithm that evaluates Recursion (6) finds the
optimal local model for the data segment Si in polynomial time.

Proof. The proof of this theorem is a direct consequence of the fact that 1-
dimensional clustering can be done in polynomial time using dynamic program-
ming [Bellman 1961].

The running time of the Local-DP algorithm is O
(
m2

)
. For every index j the

algorithm recurses over all values of l in the interval 1 ≤ l ≤ j. Since the largest
value of j is m, the running time of the algorithm is O(m2). This quadratic running
time is under the assumption that in a preprocessing step we can compute the values
of the U() function for all the combination of indices j and l. In fact, the asymptotic
term O(m2) also contains the hidden cost of sorting the event types in E based on
their frequency of occurrence in Si, which is O(m log m).

Note that a proposition similar to Proposition 1 of Section 5.1 can also be applied
here. Informally, this means that event types that do not occur in Si can be ignored
when evaluating Recursion (6).

5.4 The LocalGreedy Algorithm

Similar to the Greedy algorithm for finding the optimal segment boundaries in
[1, n] (see Section 5.2), we give here a greedy alternative to the Local-DP algorithm
that we call the LocalGreedy algorithm. By using the same data structures as the
ones described in Section 5.2 the running time of the LocalGreedy algorithm is
O(m log m).

As the Greedy algorithm, LocalGreedy computes the global partitioning X of
Si in a bottom-up fashion. It starts with grouping X1, where each event type is
allocated its own group. At the t-th step of the algorithm grouping Xt is considered,
and the algorithm merges the two groups that introduce the maximum decrease in
Ll (Si,Mi). This merge leads to partition Xt+1. If no merging that causes cost
reduction exists, the algorithm stops and outputs partition Xt.

5.5 Putting the Algorithms Together

Both Segment-DP and Greedy algorithms require a function that evaluates Ll∗ for
different data intervals. The value of Ll∗ can be evaluated using either Local-DP or
LocalGreedy algorithms. This setting creates four different alternative algorithms
for solving the Summarization problem; the DP-DP that combines Segment-DP
with Local-DP, the DP-Greedy that combines Segment-DP with LocalGreedy, the
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Greedy-DP that combines Greedy with Local-DP and Greedy-Greedy that com-
bines Greedy with LocalGreedy. DP-DP gives the optimal solution to the Sum-
marization problem. However, all other combinations also provide high-quality
results, while at the same time they give considerable computational speedups.

In terms of asymptotic running times the DP-DP algorithm requires O(n2m2) time,
the DP-Greedy O(n2m log m), the Greedy-DP O(m2n log n) and the Greedy-Greedy
algorithm time O(nm log n log m).

6. EXTENSIONS TO OVERLAPPING SEGMENTS AND SEGMENTS SEPARATED
BY GAPS

In many cases, can be of interest to allow the segments of the segmental groupings
to overlap or be separated by gaps – pieces of the sequence that do not belong to
any segment. We call the segmental groupings that allow for overlapping segments
O-segmental groupings. Similarly, we refer to the segmental groupings with gaps
as G-segmental groupings. The focus of this section is on discussing the impact of
these extensions to the algorithms we discussed before.

6.1 Finding O-segmental groupings

For O-segmental groupings, we allow for a total of B overlap between the segments
in the output segmental grouping. In other words, there can be overlapping seg-
ments as long as the total number of timestamps in which overlap occurs is no
more than B. We call the problem of finding the optimal O-segmental grouping
with at most B gaps as the O-Summarization problem. The formal definition of
this problem is the following.

Problem 3. (O-Summarization) Consider integer B and event sequence S
over observation period [1, n] in which event types from set E occur. Given these as
input, find integer k and an O-segmental grouping M of S into (S1, . . . ,Sk). The
segments (S1, . . . ,Sk) are allowed to overlap in at most B timestamps. Additionally,
the best local model Mi for each segment Si needs to be found so that the total
description length

Tl (S,M, B) = k log n +
k∑

i=1

Ll (Si,Mi) , (7)

is minimized.

Note that in the above problem definition we have extended the list of arguments of
function Tl to additionally include the integer B, i.e., the upper bound on the total
number of overlaps are allowed in the output O-segmental grouping. Apart from
that, Problem 3 is very similar to the general Summarization problem defined in
Problem 1.

Next, we give a variant of the dynamic-programming recursion given by Equa-
tion 5 that can provide the optimal solution to the O-Summarization problem.
Recall, that for interval I ⊆ [1, n] we use Ll∗ (S [I]) to denote the minimum value
of Ll (S [I] , Mi), over all possible local models Mi. Similarly, we use Tl∗ (S, B)
to denote the minimum value of Tl (S,M) over all possible summaries M that
allow for at most B overlaps between the segments. Then, Problem 3 can be solved
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optimally by evaluating the following dynamic-programming recursion. For every
1 ≤ i ≤ n and 0 ≤ b1, b2 ≤ B,

Tl∗ (S[1, i]) = (8)

= min
1≤j≤i

min
b1+b2≤B

{
Tl∗ (S[1, j], b1) + Ll∗ (S [j + 1− b2, i])

)}
.

Namely, from the total B overlaps that are allowed b1 of them can be used for
modelling the prefix sequence S[1, j] and b2 of them can be used for the last segment
that, when having no overlap, would start at timestamp j+1 and end at timestamp
i. Note that not all B overlaps need to be used; the only constraint that at most
B overlaps can appear.

If the Local-DP algorithm is used for the evaluation of Ll∗, then Tl∗ (S, B)
can be evaluated in time O

(
n2B2m2

)
, where B = O(n). On the other hand,

if we use the suboptimal LocalGreedy algorithm for the evaluation of Ll∗, then
Recursion (8) can be evaluated in O

(
n2B2m log m

)
time.

6.2 Finding G-segmental groupings

In the case of G-segmental groupings, we allow for a total of G gaps to exist between
the segments of the segmental grouping. In other words, there can be at most G
timestamps from the whole sequence that will not belong to any segment. We call
the problem of finding the optimal G-segmental grouping with at most G gaps as
the G-Summarization problem. This problem is formally defined as follows.

Problem 4. (G-Summarization) Consider integer G and event sequence S
over observation period [1, n] in which event types from set E occur. Given these as
input, find integer k and an G-segmental grouping M of S into (S1, . . . ,Sk). The
segments (S1, . . . ,Sk) are allowed to have at most G gaps between them. Addition-
ally, the best local model Mi for each segment Si needs to be found so that the total
description length

Tl (S, M, G) = k log n +
k∑

i=1

Ll (Si,Mi) , (9)

is minimized.

As before, we have extended the list of arguments of function Tl to additionally
include the integer G, i.e., the upper bound on the total number of gaps that are
allowed the output G-segmental grouping to have. Other than this addition, Prob-
lem 4 is very similar to the general Summarization problem defined in Problem 1.

Next, we give yet another variant of the dynamic-programming recursion given
by Equation (5) that can provide the optimal solution to the G-Summarization
problem. As before, for every interval I ⊆ [1, n] we use Ll∗ (S [I]) to denote the
minimum value of Ll (S [I] ,Mi), over all possible local models Mi. Similarly, we use
Tl∗ (S, G) to denote the minimum value of Tl (S,M) over all possible summaries
M that allow for at most G gaps between the segments. Then, Problem 4 can be
solved optimally by evaluating the following dynamic-programming recursion. For
every 1 ≤ i ≤ n,
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Tl∗ (S[1, i]) = (10)

= min
{
Tl∗ (S[1, i− 1], G− 1) , min

1≤j≤i

(
Tl∗ (S[1, j], G) + Ll∗ (S [j + 1, i])

)}
.

Namely, if a gap is used for modelling the i-th timestamp of S, then the G-
segmental grouping of the prefix sequence S[1, i− 1] is allowed to contain at most
G − 1 gaps. Otherwise, a new segment spanning the subsequence S[j + 1, i] is
introduced and the maximum number of gaps allowed in modelling subsequence
S[1, j] is still G.

Using the Local-DP algorithm for evaluating Ll∗ for every segment, the evalua-
tion of Recursion (10) gives the optimal G-segmental grouping in time O

(
Gn2m2

)
.

Although in practice the values of G are expected to be much smaller than n (G <<
n), in the worst case we have that G = O (n). Therefore, the asymptotic running
time of the dynamic-programming algorithm described by the above recursion is
O

(
n3m2

)
. If we use LocalGreedy for the evaluation of Ll∗ for every segment, then

the evaluation of Recursion (10) needs O
(
Gn2m log m

)
= O

(
n3m log m

)
time.

7. EXPERIMENTAL EVALUATION

In this section we report our experiments on a set of synthetic and real datasets.
The main goal of the experimental evaluation is to show that all four algorithms we
developed for the Summarization problem (see Section 5) give high-quality results.
That is, we show that even our non-optimal greedy-based algorithms (DP-Greedy,
Greedy-DP and Greedy-Greedy) use close to the optimal number of bits to encode
the input event sequences, while producing meaningful summaries. Moreover, the
greedy-based methods provide enormous computational speedups compared to the
optimal DP-DP algorithm.

The implementations of our algorithms are in Java Version 1.4.2. The experi-
ments were conducted on a Windows XP SP 2 workstation with a 3GHz Pentium
4 processor and 1 GB of RAM.

We evaluate the quality of the solutions produced by an algorithm A, by reporting
the compression ratio CR(A), where A is any of the algorithms: DP-DP, DP-Greedy,
Greedy-DP and Greedy-Greedy. If MA is the summary picked by algorithm A
as a solution to the Summarization problem with input S, then, we define the
compression ratio of algorithm A to be

CR(A) =
Tl (S,MA)

Tl (S,Munit)
. (11)

Summary Munit is the model that describes every event on S separately; such
a model has n segment boundaries (one segment per timestamp) and m groups
per segment and it corresponds to the model where no summarization is done. By
definition, compression ratio takes values in [0, 1]; the smaller the value of CR(A)
the better the compression achieved by algorithm A.

7.1 Experiments on Synthetic Data

In this section we give experiments on synthetic datasets. The goal of these experi-
ments is threefold. First to demonstrate that our algorithms find the correct model
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Fig. 2. Synthetic datasets: n = 1000, m = 20, k = 10; x-axis: noise level V ∈ {0.01, 0.02, 0.04,
0.08, 0.1, 0.2, 0.3, 0.4, 0.5}, y-axis: compression ratio for algorithms DP-DP, DP-Greedy, Greedy-DP
and Greedy-Greedy.

used for the data generation; second to show that they significantly compress the
input datasets; third to show that the greedy alternatives, though not provably
optimal perform as well as the optimal DP-DP algorithm in practice.
The datasets: We generate synthetic datasets as follows: we first fix n, the length
of the observation period, m, the number of different event types that appear in
the sequence and k, the number of segments that we artificially “plant” in the
generated event sequence. In addition to {0} and {n + 1} we select k − 1 other
unique segment boundaries at random from points {2, . . . , n}. These boundaries
define the k segments. Within each segment Ii = [bi, bi+1) we randomly pick the
number of groups to be formed. Each such group Xij , is characterized by parameter
p (Xij), that corresponds to the probability of occurrence of each event type in Xij

in segment Ii. The values of p (Xij) are normally distributed in [0, 1].
Parameter V is used to control the noise level of the generated event sequence.

When V = 0, for every segment Ii and every Xij in Ii, events of any type E ∈ Xij

are generated independently at every timestamp t ∈ Ii with probability p (Xij).
For noise levels V > 0, any event of type E ∈ Xij is generated at each point t ∈ Ii

with probability sampled from the normal distribution N (p (Xi,j) , V ).
Accuracy of the algorithms: Figure 2 shows the compression ratio of the four
different algorithms (DP-DP, DP-Greedy, Greedy-DP and Greedy-Greedy) as a func-
tion of the increasing noise level V that takes values in [0.01, 0.5]. For this experi-
ment we fix n = 1000, k = 10 and m = |E| = 20. In addition to our four algorithms,
we also show the compression ratio of the ground-truth model (GT). This is the model
that has been used in the data-generation process. From Figure 2 we observe that
all four algorithms provide summaries with small CR values, close to 7%.2 Fur-
thermore, this compression ratio is very close the compression ratio achieved by

2Recall that the smaller the value of CR the better the summary produced by an algorithm.
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Fig. 3. Synthetic datasets: n = 1000, V = 0.04, k = 10; x-axis: number of event types m ∈ {2,
4, 8, 16, 32, 64, 128}, y-axis: compression ratio for algorithms DP-DP, DP-Greedy, Greedy-DP and
Greedy-Greedy.

the ground-truth model. In fact for high noise levels (V = 0.3, 0.4, 0.5) the CR
achieved by our algorithms is better than the CR of the ground-truth model. This
is because for high noise levels, the data-generation model is less likely to be the op-
timal model to describe the data. Overall, even the greedy-based algorithms exhibit
performance almost identical to the performance of the optimal DP-DP algorithm
in terms of the number of bits required to encode the data.

Figure 3, shows the compression ratio of our algorithms as a function of the
number of event types m that appear in the sequence. For this experiment, we
vary m to take values {2, 4, 8, 16, 32, 128} and fix the rest of the parameters of
the data-generation process to n = 1000, k = 10 and V = 0.04. As in the previous
experiment, we can observe that the compression ratio achieved by our algorithms
is almost identical to the compression ratio achieved by the corresponding ground-
truth model. Furthermore, we can observe that all our algorithms exhibit the
same compression ratio and thus can be used interchangeably. Notice that as
the number of event types increases, the compression ratio achieved by both the
ground-truth model as well as the models discovered by our algorithms decreases,
i.e., better summaries are found when compared to the raw data. This is because
the more event types appear in the data, the more local patterns there are, which
are discovered by our summarization methods. Munit on the other hand, is oblivious
to the existence of local groupings. As a result, for large number of event types the
denominator in Equation 11 grows much faster than the numerator.

Increasing the number of event types also increases the total number of events
appearing in the sequence, and thus leads to higher running times. Figure 4(a)
shows the total number of events in the generated sequence as a function of the
number of different event types, and Figure 4(b) shows the actual running times
(in milliseconds) of our algorithms as a function of the different event types (and
consequently as a function of the actual number of events occurring in the gener-
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Fig. 4. Performance measurements - synthetic datasets: n = 1000, k = 10, V = 0.04
and m = |E| ∈ {2, 4, 8, 16, 32, 128}.

ated sequence). The figures illustrate the significant performance advantage of the
greedy-based methods over the dynamic-programming based methods.

7.2 Experiments with Real Datasets

In this section we further illustrate the utility of our algorithms in a real-life sce-
nario. By using event logs managed by Windows XP we show again that all four
algorithms considerably compress the data and that they produce equivalent and
intuitive models for the input sequences.

The real datasets consist of the application log, the security log and the
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system log displayed by the Windows XP Event Viewer on our machines3. The
application log contains events logged by application programs. The security log
records events such as valid and invalid logon attempts, as well as events related to
usage of resources. Finally, the system log contains events logged by Windows XP
system components. Each one of the three log files we use stores log records with
the following fields: (Event Type, Date, Time, Source, Category, Event, User,
Computer). We exported each one of the three log files into a separate file and
processed them individually.

Our application log spans a period from June 2007 to November 2007, the
security log the period from May 2007 to November 2007 and the system log
the period from November 2005 to November 2007. For all these files we consider
all the logged events found on our computer, without any modification.

application security system

Observation Period 06/07-11/07 05/07 - 11/07 11/05-11/07
Observation Period (millisecs) 12,313,576,000 14,559,274,000 61,979,383,000
Number of events (N) 2673 7548 6579
Number of event types (m) 45 11 64

Running times (secs)

DP-DP 3252 2185 34691
CP-Greedy 976 2373 8310
Greedy-DP 18 1 91
Greedy-Greedy 7 1 24

Compression Ratio CR(A)

DP-DP 0.04 0.32 0.03
DP-Greedy 0.04 0.32 0.03
Greedy-DP 0.04 0.34 0.03
Greedy-Greedy 0.04 0.33 0.03

Table I. Experiments with real datasets

Considering as event types the unique combinations of Event Type, Source and
Event and as timestamps of events the combination of Date and Time, we get
the datasets with characteristics described in Table I (upper part). Note that the
system records the events at a millisecond granularity level. Therefore, the actual
length of the timelines (n) for the application, security and system logs are
n = 12, 313, 576, 000, n = 14, 559, 274, 000 and n = 61, 979, 383, 000 respectively.
However, this fact does not affect the performance of our algorithms which by
Proposition 1 only depends on the number of unique timestamps N on which events
actually occur; the values of N for the three datasets are are N = 2673, N = 7548
and N = 6579 respectively.

Elapse times for the computations are reported in seconds in Table I. For exam-
ple, the elapse time for the DP-DP method with the system dataset is roughly 10
hours; which makes this method impractical for large datasets containing a large

3We use the default Windows configuration for logging, so similar datasets exist on all Windows
machines.
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number of event types. We see that the Greedy-Greedy algorithm ran in 24 seconds
for the same dataset.

Finally, the compression ratio (CR) achieved for the three datasets by the four
different algorithms are also reported in Table I. The results indicate that the
greedy-based methods produce as good summaries as the optimal DP-DP algorithm.
Therefore, the results of Table I further illustrate that despite the optimality of the
solutions produced by DP-DP, the latter algorithm can prove impractical for very
large datasets. Greedy-based algorithms on the other hand, give almost as accurate
and condensed summaries and are much more efficient in practice.

Structural similarity of the results. We have observed that all our algorithms
achieve almost identical compression ratios for the same data. A natural question to
ask is whether the actual models they output are also structurally similar. In other
words, do the reported segmental groupings have the same segment boundaries and
are the groups within the reported segments similar?

The goal of Figures 5 and 6 is to answer this question in an affirmative way.
These two figures visualize the output segmental groupings reported by algorithms
DP-DP, DP-Greedy, Greedy-DP and Greedy-Greedy (Figures 5(a) and 6(a), 5(b)
and 6(b), 5(c) and 6(c), 5(d) and 6(d) respectively) for the application log and
the system log datasets.

Each subfigure corresponds to the output of a different algorithm and should be
interpreted as follows: the x-axis corresponds to the timeline that is segmented,
with the vertical lines defining the segment boundaries on the timeline. Within
each segment, different groups of event types are represented by different colors
(darker colors represent groups that have higher probability of occurrence within a
segment). The vertical length of each group is proportional to its size. The main
conclusion that can be drawn from Figures 5 and 6 is that the output segmental
groupings of DP-DP and DP-Greedy algorithms are almost identical, and the out-
put of all four algorithms are very close to each other. The apparent similarity
is that all segmentations have a large segment in the beginning of the observation
period and an even larger segment towards its end. In these segments the same
number of groups are observed. In the interval that is in-between these two large
segments, the outputs of DP-DP, DP-Greedy and Greedy-DP exhibit very similar
structure, by identifying almost identical segment boundaries. Seemingly different
are the boundaries found by Greedy-Greedy algorithm. However, a closer look
shows that these latter boundaries are not far from the boundaries identified by the
other three algorithms; Greedy-Greedy in fact identified boundary positions very
close to the boundary positions identified by the other three algorithms. Since the
Greedy-Greedy algorithm is constrained to first choose boundaries between imme-
diate neighbors before choosing larger boundaries, it overlooks intervals of points on
a timeline which together exhibit better segmentation than intervals formed from
exploring immediate neighbors.

In fact, we have further looked at the segmental groupings output by the algo-
rithms and judged their practical utility. For example, in the segmental grouping
depicted in Figure 5(a) we noticed that the most frequent event types occurring in
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2007/06/23 2007/06/26 2007/11/09

(a) DP-DP algorithm

2007/06/23 2007/06/26 2007/11/09

(b) DP-Greedy algorithm

2007/06/23 2007/06/26 2007/11/09

(c) Greedy-DP algorithm

2007/06/25 2007/06/26 2007/11/09

(d) Greedy-Greedy algorithm

Fig. 5. Output segmental groupings of different algorithms for the application log data.

the first segment correspond to DB2-errors4. On the other hand, the most frequent
group of event types occurring in the last segment correspond to DB-2 and other
types of warnings. Moreover, the segments that appear to be free of occurrences of
the majority of event types, correspond to segments where only few events occur;
the type of these events suggest that security updates were happening in the system

4DB-2 is the DataBase Management System (DBMS) used at IBM.
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DP−DP

(a) DP-DP algorithm

DP−Greedy

(b) DP-Greedy algorithm

Greedy−DP

(c) Greedy-DP algorithm

Greedy−Greedy

(d) Greedy-Greedy algorithm

Fig. 6. Output segmental groupings of different algorithms for the system log data.

during these time intervals. The goal of this anecdote is mostly to highlight the fact
that segmental groupings allow the system administrator to explore the available
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data without getting overwhelmed by it.

8. THE EVENTSUMMARIZER SYSTEM

In this section, we present a tool called EventSummarizer [Kiernan and Terzi
2009] that exploits the algorithms given in this paper and which uses intuitive
visual metaphors to render the segmentation found by the algorithms along with
their local associations.

8.1 System architecture

The system is written in Java and runs on top of any RDBMS through JDBC. Using
the Graphical User Interface (GUI), the user can: load the data and summarize it.
The data is retrieved into memory using SQL queries. The summarization task is
performed on the retrieved data. The user specifies the summary attribute, and the
summarization algorithm used to produce the segmental grouping. The summary
attribute should define a timeline and is of type timestamp.

Once the segmental grouping of the input sequence is computed, the results are
presented to the user. They include both the segmentation of the input timeline
into intervals and the description of the groups within every segment. Details on
the display of segmental groupings is given in the next section.

8.2 EventSummarizer Functionality

In this section, we present EventSummarizer’s functionality and illustrate it’s
usage. The dataset we use for this purpose is the system log file that was described
earlier in Section 7.2.

In the example we will present in the rest of this section, we project the system
table on attributes Event and TS. Since TS is of type timestamp, we use it as a
summary attribute. As mentioned earlier, the timestamps appearing in TS span
the period from November 2005 to November 2007.

Figure 7 shows EventSummarizer’s graphical interface. The same figure also
shows the part of the interface that allows the user to select the data for summa-
rization using SQL queries. The result tuples of the query (in this case select
event, ts from system ) are rendered in the lower part of the screen.

Once the selected data is fetched, the user can then summarize it. The summa-
rization algorithm is selected on the menu bar of EventSummarizer. The actual
summarization task can be performed after the data and the algorithm have been
selected. Figure 8(a) shows the segmentation of the input timeline that is produced
as a result of summarization using the (summary) attribute TS. The specification
of the summary attribute is done by a simple mouseclick on the attribute’s name
as it appears on the rendered data. The bar shows the partition of the input data’s
timeline. The actual segments correspond the black-colored segments. Here, there
are five relatively large intervals and thirteen smaller ones. The original input data
is still shown in the lowest part of the screen. However, the tuples are ordered on
TS and then colored according to the segment they belong to.

Figure 8(b) shows the actual grouping of the tuples within a single (in this case the
last) segment. The segment is selected by performing a simple mouseclick on it. The
grouping of the event types within this interval is rendered below the segmentation
bar and displayed as a table. The first attribute of this new table is the Key
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classical SQL-queries interface

Fig. 7. Data selection in EventSummarizer using standard SQL queries

attribute and it corresponds to the event type. The second attribute is the Count
attribute and it shows for every event type the number of its occurrences within
the examined time interval. The last attribute, Group, takes integer values that
denote the group-id to which the different event types belong. Local associations
are identified by event types sharing the same group-Id. In the illustrated example,
group # 1 contains just a single event type, group # 2 contains four event types
and so on. Notice that event types that belong in the same group have similar
occurrence counts within the interval.

9. CONCLUSIONS

We proposed a framework and an algorithmic solution to the problem of summariz-
ing large event sequences that represent activities of systems and individuals over
time. Our framework is based on building segmental groupings of the data. A seg-
mental grouping splits the timeline into segments; within each segment events of
different types are grouped based on their frequency of occurrence in the segment.
Our approach is based on the MDL principle that allows us to build summaries
that are short and accurately describe the data without over-fitting.

We have presented EventSummarizer, a tool for summarizing large event se-
quences that exploits the algorithms given in this paper. We have created vi-
sual metaphors to render the segmentations found by the algorithms and designed
mouse-click interactions to explore individual segments with their local associa-
tions. Through illustrations, we showed that EventSummarizer is easy to use and
gives easy-to-interpret results.

Our contribution is in the definition of the segmental groupings as a model for
summarizing event sequences. This model when combined with the MDL principle
allowed us to naturally transform the event-sequence summarization problem to
a concrete optimization problem. We showed that this problem can be solved
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result of 
mouseclick
on TS

observation period

tuples from 
segment 1

tuples from 
segment 2

(a) EventSummarizer’s visualization of the timeline’s
segmentation

result of 
mouseclick
on the last 
segment

group # 1

group # 2

group # 3

group # 4

(b) Grouping of event types within a segment

Fig. 8. EventSummarizer functionality: Figure 8(a) shows the visualization
of the segmentation output by EventSummarizer and Figure 8(b) shows the
grouping of event types within a selected segment.

optimally in polynomial time using a combination of two dynamic-programming
algorithms. Furthermore, we designed and experimented with greedy algorithms for
the same problem. These algorithms, though not provably optimal, are extremely
efficient and in practice give high-quality results. All our algorithms are parameter
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free and when used in practice produce meaningful summaries.
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