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ABSTRACT

Assume a network (V, E) where a subset of the nodes in V
are active. We consider the problem of selecting a set of k
active nodes that best explain the observed activation state,
under a given information-propagation model. We call these
nodes effectors. We formally define the k-Effectors prob-
lem and study its complexity for different types of graphs.
We show that for arbitrary graphs the problem is not only
NP-hard to solve optimally, but also NP-hard to approxi-
mate. We also show that, for some special cases, the problem
can be solved optimally in polynomial time using a dynamic-
programming algorithm. To the best of our knowledge, this
is the first work to consider the k-Effectors problem in
networks. We experimentally evaluate our algorithms using
the DBLP co-authorship graph, where we search for effec-
tors of topics that appear in research papers.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory— oryŮ-
Graph algorithms; H.2.8 [Database Management]: Database
applications—Data Mining

General Terms

Algorithms, Experimentation, Theory

Keywords

social networks, information propagation, graph algorithms

1. INTRODUCTION
Consider the directed network shown in Figure 1, where

the black nodes are active and the white nodes are inactive.
The activation state of the network is described by an activa-
tion vector, a. In the example of Figure 1, a(x) = a(yi) = 1
for 0 ≤ i ≤ 2 and a(xi) = 0 for 1 ≤ i ≤ ℓ. Assume a simple
probabilistic information-propagation model such that ev-
ery node v that becomes active activates a neighbor x via
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Figure 1: A network with active (black) and inactive (white)
nodes. Edge weights represent the probability of an active
node activating its neighbors; ǫ ∈ (0, 1).

a directed link (v → x); this activation succeeds with prob-
ability equal to the weight of the directed link (v → x).
Given a budget k, our goal is to find a set of k active nodes,
such that, had the propagation started from them, it would
have caused an activation state similar to the one described
by a. We call these nodes effectors1 and the corresponding
optimization problem the k-Effectors problem. Effectors
need not be the nodes that first became active during the
information-propagation process; therefore, complete knowl-
edge of the timestamps associated with the activation of
every node would not necessarily help in identifying the ef-
fectors. Further, effectors need not be centrally-located in
the network. They are simply the nodes that best explain
the observed activation vector.

In our example, assume that k = 2, 0 < ǫ < 1 and let
the set of effectors be X = {x, y1}. For this set X and
the given propagation model, the expected final state of the
propagation process assigns to every node v a probability of
being active α(X, v). In this example, α(X, x) = α(X, y1) =
1, α(X, xi) = (1 − ǫ) for 1 ≤ i ≤ ℓ, α(X, y0) = 0 and
α(X, y2) = 0. We define the cost of solution X to be C(X) =
P

v∈V |a(v) − α(X, v)| = (1 − ǫ)ℓ + 2. On the other hand,
solution X ′ = {y0, y1} would have cost C(X ′) = 1 + ǫ and
it would be the optimal solution for every ǫ ∈ (0, 1).

In social networks, the identification of effectors can im-
prove our understanding of the dynamics of information
propagation. Effectors can be interpreted as key nodes that
determine whether a novel concept dies out quickly or prop-

1In biochemistry, an effector is a substance that increases or
decreases the activity of an enzyme.



agates to cover a significant portion of the network. In
epidemiological studies, the effectors are the key individu-
als (or countries) that cause a particular diffusion pattern.
The discovery of effectors can be leveraged in the design of
vaccination strategies and quarantine policies. In computer
networks, the effectors are computers in the network that af-
fect the spread pattern of a computer virus. Again, effector
discovery can facilitate inoculation strategies: rather than
blindly investing on security software for protecting large
parts of the network, system administrators can only focus
on securing the effector nodes.

Our contribution: In this paper, we first introduce the k-
Effectors problem and explore its connections to other ex-
isting problems in the literature. We prove that, in a general
setting, the k-Effectors problem is not only NP-hard to
solve optimally, but also NP-hard to approximate. We also
show that, in trees, the k-Effectors problem can be solved
optimally in polynomial time by using an efficient dynamic-
programming algorithm. We also explore the performance
of other computationally-efficient heuristics. Although our
worst-case analysis shows that these heuristics are clearly
suboptimal, our experimental evaluation reveals that, in cer-
tain settings, they can perform reasonably well. Finally, we
experimentally validate our methods on the co-authorship
graph defined by the DBLP dataset. More specifically, we
use the DBLP co-authorship graph to find effectors of topics
that appear in computer-science papers. We present quali-
tative evidence to show that the effectors identified by our
methods convey meaningful information about the data.

We believe that the notion of effectors can improve our
understanding of diffusion processes in networks. Although
we focus our attention on the role of effectors in social net-
works, our framework can be applied to a variety of network
data – including computer and biological networks – and
give useful insights to the data analysts.

Our approach: Our approach for solving the k-Effectors
problem on tree networks consists of an optimal dynamic-
programming algorithm. For general graphs, we proceed in
two steps: first, for a given network and activation vector, we
construct the most probable tree T , that spans all the active
nodes in the network. Then, we use the optimal dynamic-
programming algorithm to identify the optimal effectors on
T . We believe that the extraction of the most probable tree
from the input graph is interesting in its own right, since
this tree models the backbone of information propagation in
the network.

Roadmap: The rest of the paper is organized as follows:
in Section 2 we survey the related work and in Section 3 we
give the necessary notation and describe the information-
propagation model. The problem definition and the com-
plexity results are presented in Section 4. In Section 5 we de-
scribe the optimal polynomial-time algorithm for trees and
in Section 6 we present our algorithm for extracting the most
probable tree from any given input graph. In Section 7 we
provide a thorough set of experiments on on a co-authorship
graph and we conclude the paper in Section 8.

2. RELATED WORK
To the best of our knowledge, we are the first to formally

define and study the k-Effectors problem. Although the
exact combinatorial definition of effectors does not exist in
the literature, there has been a lot of work on problems

related to the identification of influential nodes or trends in
social or other networks. As expected, different definitions of
influential nodes lead to different computational challenges.
We summarize some of this work here.

In the blogosphere, there is significant research in the iden-
tification of influential blogs [12] and bloggers [1, 18]. Sim-
ilarly, for marketing surveys, the problem of identifying the
set of early buyers has been addressed [19]. However, the
algorithmic settings are very different from ours. For exam-
ple, Gruhl et. al. [12] study information diffusion of various
topics in the blogoshere. The focus is on studying how the
topics propagate or how “sticky” the topics are. In our set-
ting, we do not touch upon the issue of durability of the
trends; once a node becomes active, it remains active. In
other studies, the focus is on the identification of influential
bloggers [1, 18]. In these cases, the authors define a metric
that determines the influence potential of a blogger. The
focus is on developing efficient algorithms for computing the
top-k influential nodes. In contrast, we evaluate groups of
effectors and how they collectively affect the network.

Further, the aforementioned papers do not explicitly take
into account the information-propagation model. Information-
propagation models have been considered in the context of
influence maximization [3, 7, 13]. The focus of those works
is on identifying the set of nodes in the network that need
to be targeted (e.g., for targeted advertisement), so that
the propagation of a product or an idea spreads as much
as possible. In influence maximization, the goal is to iden-
tify the nodes that will cause the most propagation effect in
the network. In our case, the goal is to identify the nodes
that better explain a particular - observed- activation pat-
tern in the network. In fact, our problem definition contains
influence maximization as a special case.

Bharathi et al. [3] consider the influence-maximization
problem on bidirectional trees and develop an FPTAS. In
addition to the fact that their objective function is different
from ours, they also focus on undirected trees. Our own fo-
cus is on directed graphs and directed trees. For undirected
trees, their problem is NP-complete. On the other hand,
ours is solvable in polynomial time for the case of directed
trees.

The problem of identifying early adopters from transac-
tion data has been addressed by Rusmevichientong et. al. [19].
In that work, the set of early buyers is identified by taking as
input the detailed purchase information of each consumer.
Then, a weighted directed graph is constructed: the nodes
correspond to consumers and the edges to purchases these
consumers have in common. Identifying early buyers corre-
sponds to the problem of finding a subset of nodes in the
graph with maximum difference between the weights of the
outgoing and incoming edges. Contrary to our setting, the
framework proposed by Rusmevichientong et. al. does not
consider any information-propagation dynamics or any un-
derlying social network.

The problem of finding links and initiators was also stud-
ied by Mannila and Terzi [17]. Their problem-setting is the
following: given a set of individuals and the set of items
each of them has purchased, the goal is twofold: a) For each
item, identify the individuals that acted as its initiators. b)
Infer the social relationships between individuals. The main
difference between that work and our current work, is that
here we assume that the social graph is given as part of the
input. Further, we identify the set of effectors while ignor-



ing the temporal information associated with the purchased
items. Finally, the method of Mannila and Terzi is based
on an MCMC sampling of the space of all possible graphs
and initiators. Here, we solve the optimization problem of
finding the best set of effectors rather than assigning proba-
bilities to nodes being effectors.

Other definitions of “important” nodes in a network focus
on the development of network inoculation strategies [2] and
early epidemic detection [4, 16]. Since our goal is to find a set
of effectors that best explain the network’s final state, both
our problem definition as well as our algorithmic approaches
are significantly different.

3. PRELIMINARIES
We assume a social network represented by graph a G =

(V, E, p). The nodes in V correspond to individuals. There
is an edge between two individuals u, v ∈ V if u and v are
associated with each other. The edges in the network are
directed ; edge (u → v) ∈ E is associated with an influence
weight p(u → v) ∈ [0, 1]. This weight quantifies the effect
that node u has on the decisions of node v. We give a
probability interpretation to this weight. Note that we use
the terms “graph”, “social network” and “influence graph”
interchangeably.

We assume that the influence weights are part of the input.
For example, one can ask the users themselves to assign their
own estimates of how much they are influenced by their own
friends. Alternatively, one can employ a machine-learning
algorithm to infer such probabilities [14]. For our experi-
ments, we use a simple and intuitive method for computing
the influence probabilities. The details of this computation
are given in Section 7. The exploration of alternative meth-
ods for such computation, though interesting, is beyond the
scope of this paper.

Further, we assume that the influence of one node to an-
other is the same for all items that propagate in the network.
Exploring the performance of more specialized techniques
that cluster the items and compute different influence prob-
abilities per cluster is beyond the scope of this paper.

Apart from the network and the influence probabilities,
we also assume a particular (information) item I. For every
node v ∈ V , an item I either appears or does not appear in
v. We represent this information using a 0–1 n × 1 vector
a; a(i) = 1 if item I is observed at node i. Otherwise,
a(i) = 0. If a(i) = 1 (resp. a(i) = 0) we say that node i
is active (resp. inactive). We call this vector the activation
vector of I. Note that we assume that the entries of the
activation vector are either 0 or 1. However, all our results
carry over to the case where the observed activation vector
takes real values in the interval [0, 1].

3.1 The information-propagation model
We consider the following information-propagation model

in a social network: when node u becomes active for the
first time at step t, it gets a single chance to activate node
v through the edge (u → v); u succeeds in this activation
attempt with probability p(u → v) – as defined in the in-
fluence graph. If u succeeds, then v will become active at
step (t + 1). Otherwise, u cannot make any more attempts
to activate v in any subsequent rounds. This model is called
the Independent Cascade (IC) model [10, 11, 13]. IC is a
probabilistic propagation model, since the activation process
is influenced by probabilistic choices. Given a seed of nodes

that are originally active, each node in the network is active
with some probability. upon the termination of the process.

In the special case where all the the influence weights are
equal to one, the IC model becomes equivalent to the deter-
ministic propagation (DM) model. In the DM model every
node that becomes active at step t activates all its neighbors
with probability 1. Therefore, the activation of a single node
in a strongly-connected component 2 is sufficient to activate
all the nodes in the component.

Although we focus our attention on the IC model, our
framework can be combined with any information-propagation
model, including the Linear Threshold (LT) model [13] or
the Susceptible - Infected - Susceptible (SIS) model [4].

Given a set X ⊆ V of originally active nodes, the prop-
agation of information with IC will terminate in at most
n discrete timestamps. Since the information-propagation
model is non-deterministic, one needs to compute the prob-
ability that a node v ∈ V is active at the end of the process.
Computing this probability, denoted by α(v, X), requires
exponential time in arbitrary graphs. On the other hand,
one can estimate it by using the following simple heuristic:
For graph G = (V, E, p) keep every edge (u → v) with prob-
ability p(u → v). The edges of the resulting graph G′ have
influence probabilities equal to 1. That is, one can run the
DM model on G′. After repeating this process N times, one
can estimate α(v, X) by simply counting the fraction of the
times v was active in the sampled graphs.

Further, if G = (V, E, p) is a directed tree, then for X ⊆ V ,
we can find a closed-form expression of α(v, X). That is, for
every node v we have that:

α(v, X) = 1−

Y

x∈X

0

@1 −
Y

(y→z)∈path(x,v)

p(y → z)

1

A . (1)

The term inside the parenthesis corresponds to the proba-
bility that node v does not get influenced by node x. There-
fore, the outer product computes the probability that node
v does not get active. The probability that v gets active is,
naturally, one minus this product.

4. THE PROBLEM
Assuming a particular information-propagation model, our

goal is to solve the following problem.

Problem 1 (k-Effectors problem). Given a social
network graph G = (V, E, p) and an activation vector a, find
a set X of active nodes (effectors), of cardinality at most k
such that

C(X) =
X

v∈V

|a(v) − α(v, X)| (2)

is minimized.

The k-Effectors problem asks for the set of individuals
that, once activated, cause an activation pattern which is
as similar as possible to the activation observed in vector a.
We also use C(v, X) to refer to the contribution of node v
in the cost function. In other words, we define C(v, X) =
|a(v) − α(v, X)| and thus C(X) =

P

v∈V C(v, X).

2In a strongly-connected component of a directed graph
there is a directed path from every node to every other node
of the component.



The definition of the k-Effectors problem is indepen-
dent of the information-propagation model. Although some
of our results generalize to many information-propagation
models, we focus here on the IC model. Also, we restrict
the effectors to be selected from the set of active nodes.
Although allowing any node (active or inactive) to be an ef-
fector would not change our theoretical results, we put this
constraint mostly because picking inactive nodes as effectors
contradicts our intuition.

Next, we study the complexity of the k-Effectors prob-
lem under the IC propagation model. For the complex-
ity results we use the decision version of the k-Effectors
problem, which we parameterized by cost c. That is, k-
Effectors(c) is formulated as the following decision prob-
lem: Given a social network G = (V, E, p) and an activa-
tion vector a does there exist a set X ⊆ V , |X| ≤ k with
C(X) ≤ c? We begin by proving the following lemma.

Lemma 1. Assuming the IC propagation model, the k-
Effectors(0) problem is NP-complete.

Proof. Consider an instance of the NP-complete Set
Cover problem, defined by a collection of subsets S =
{S1, S2, . . . , Sm} of a ground set U = {u1, u2, . . . , un}. The
question is whether there exist k subsets from S whose union
is equal to U . Given an arbitrary instance of the Set Cover
problem, we define the corresponding graph G to be a di-
rected graph with n + m + 1 nodes. There is a node i cor-
responding to each set Si, a node j corresponding to each
element uj , and a directed edge (i → j) with influence prob-
ability p(i → j) = 1 whenever uj ∈ Si. The (n + m + 1)-th
node of G is node ℓ. Every node j (corresponding to ele-
ment uj) is connected to node ℓ via a directed edge with
weight p(j → ℓ) = 1/n. Finally, node ℓ is connected every
node i (that correspond to set Si) via a directed edge with
probability p(ℓ → i) = 1. Finally, we set the activation vec-

tor so that all nodes in the graph G are active, i.e., a = ~1.
There exists a solution consisting of k sets to the Set Cover
problem if and only if there exists a set X of k effectors in
this graph with cost C(X) = 0. The problem is trivially in
NP.

Lemma 1 allows us to prove the following inapproximabil-
ity result.

Lemma 2. Assuming the IC propagation model, there does
not exist a β-approximation algorithm for the k-Effectors
problem, with β > 1, unless P = NP.

Proof. The proof is by contradiction. Assume that there
is a polynomial time β-approximation algorithm for the k-
Effectors problem; call this algorithm Approx. For any
instance G = (V, E, p) and activation vector a, Approx will
produce a solution X ⊆ V such that C(X) ≤ βC(X∗),
where X∗ is the optimal solution. Assume now an instance
of the k-Effectors(0) problem (see Lemma 1). If we give
this instance as input to the Approx algorithm then, Approx
should be able to decide whether there is a 0-cost solution
to the instance or not. However, from Lemma 1, we know
that k-Effectors(0) is NP-complete and thus we reach a
contradiction.

In fact, the k-Effectors problem is a generalization of
the Influence Maximization problem [13]. In our con-
text, the Influence Maximization problem asks for the

set Y ⊆ V with |Y | ≤ k, such that
P

v∈V α(v, Y ) is maxi-
mized. Maximizing

P

v∈V α(v, Y ) is equivalent to minimiz-
ing

P

v∈V (1−α(v, Y )). Thus, when the activation vector a

contains all 1’s, i.e., a = 1, the two problems are equivalent.
This observation allows us to infer that the k-Effectors

problem is NP-complete for all the information propagation
models used by Kempe et al. [13]. In fact, by the results of
Kempe et. al. [13] (due the construction used in the proof
of Theorem 2.4), we also know that Influence Maximiza-
tion, for the IC propagation model, is NP-complete even
for Directed Acyclic Graphs (DAGs). As a result the k-
Effectors problem is also NP-complete for DAGs.

Corollary 1. Assuming the IC propagation model, the
k-Effectors problem is NP-complete even when the input
graph G = (V, E, p) is a DAG.

However, for the DM propagation model, the k-Effectors
problem can be solved optimally in polynomial time. The
polynomial-time algorithm first finds all the strongly con-
nected components of the input graph G. Let there be ℓ
such components that partition the nodes in V into parts
V1, . . . , Vℓ. Let Nl = |{v | v ∈ Vl and a(v) = 1}|. Then, the
optimal solution can be constructed by picking one (arbi-
trarily chosen) node from each of the connected components
with the k highest Nl scores. Within these k components, all
the nodes have an equal probability of being picked as effec-
tors. This observation makes the DM model inappropriate
for realistic settings.

5. FINDING EFFECTORS ON TREES
Here we show that the k-Effectors problem can be solved

optimally in polynomial time when the graph G = (V, E, p)
is a tree. For clarity, we denote such a graph by T =
(V, E, p).

5.1 The optimal DP algorithm
Our polynomial-time algorithm uses dynamic program-

ming. The main idea is the following: given a subtree whose
root has δ children, the optimal way of specifying at most k
effectors from this subtree must follow one of two patterns:
in the first pattern, we include the root of the subtree to
the set of effectors, and then recurse on the children with
budget (k − 1). In the second, we do not include the root
of the subtree, and instead recurse on the children with a
budget k.

A naive way of implementing the recursion would result
in partitioning the δ children into k (or k − 1) parts and
taking the minimum-cost partition. However, when δ >> 2,
computing the cost of all possible partitions is expensive.
To circumvent this, we make a simple transformation that
converts any tree to a binary tree.

We construct the new tree Tb from the original tree T
as follows: we start from the root of T , root(T ). Suppose
that v is an internal node of T with children v1, . . . , vδ, with
δ > 2. We replace v with a binary tree of depth at most
log δ and leaves v1 . . . , vδ. Picking each one of the leaves
v1, . . . , vδ introduces a cost calculated the way we described
above. Recall that we have a budget of k effectors. Every
node vi that corresponds to an actual node in the original
tree T uses one unit of the budget, if picked as an effector.
Further, the newly-created internal nodes in Tb that do not
correspond to any actual nodes in T can never be picked



as initiators. Directed edges are added between node v and
these new internal nodes, as well as between the internal
nodes themselves. The direction is always from the root to
the leaves and the weight of these edges is set to 1. In this
way, the directed edges that are associated with the newly
added internal nodes in Tb do not influence the propaga-
tion from v to its children. This transformation is repeated
recursively for each child v1, . . . , vδ. We denote the set of
newly added (dump) nodes by D.

The following two observations are a direct consequence
of the above process. Moreover, they guarantee that the
newly-created binary tree causes bounded increase in the
number of nodes and the depth of the original tree.

Observation 1. The number of nodes in the binary tree
Tb is at most twice the number of nodes of tree T .

Observation 2. If ∆ is the maximum out-degree of a
node in tree T , then the depth of the binary tree Tb is at
most a factor of log ∆ larger than the depth of T .

Following the proofs appearing in similar constructions for
different problems [9, 15, 20] we can also prove the following
observation.

Observation 3. the optimal solution to the k-Effectors
problem on Tb is the same as the optimal solution of the k-
Effectors problem on tree T .

Intuitively, this is because the newly-added nodes in Tb can
neither be picked as effectors nor influence the information-
propagation process. This is because all their outgoing edges
have weight 1.

Given the above transformation, we can always assume
that our influence tree is binary and we use T to refer to such
binary tree. For a node v of the tree, we use Opt(v, X, k)
to denote the cost of the best solution in the subtree rooted
at node v, using at most k effectors; X simply keeps the
effectors in the current solution. Finally, for a node v we
use r(v) (ℓ(v)) to refer to the right (the left) child of node
v. Then, we evaluate the following dynamic-programming
recursion on the nodes of the tree T :

Opt(v, S, k) = min (3)
n k

min
k′=0

˘

Opt(r(v), S, k′) + Opt(ℓ(v), S, k − k′) + C(v, S)
¯

,

C(v, S ∪ {v}) +
k−1

min
k′=0

˘

Opt(r(v), S ∪ {v}, k′) +

+Opt(ℓ(v), S ∪ {v}, k − k′ − 1
¯

o

.

The first term of the dynamic-programming recursion cor-
responds to not choosing v to be in S and the bottom term
corresponds to choosing v to be in S. In order to guarantee
that no newly-added node in the set D is picked as an effec-
tor, we set C(v, S) = ∞ for every v ∈ D and any S ⊆ V . In
addition, since the effectors are always selected from active
nodes we also add a similar check to guarantee that no in-
active nodes are picked. We call this dynamic-programming
algorithm the DP algorithm.

The first term of the dynamic-programming recursion con-
sists of 2k lookups on precomputed values in the table Opt
and it thus takes O(k) time. The bottom term, however,
needs to go through all the nodes in the subtrees rooted at
ℓ(v) and r(v) and compute the additional cost incurred by

the addition of node v as an effector. In the worst case,
there are O(n) such terms and there are O(k) evaluations
that need to be done. Therefore, the computation of a single
entry in table Opt requires O(nk) time. This is an overesti-
mate of the actual time since, on average, the expected size
(number of nodes) of a subtree in a binary tree is O(log n).
Therefore, the expected time required for the evaluation of a
single entry is O(k log n). Given that there are kn different
entries, the worst-case time complexity of the DP algorithm
is O(n2k2), while the expected running time is O(k2n log n).
In the above analysis we have assumed that given C(v, S) we
can compute C(v, S ∪ x) in constant time. In fact, this can
be done by keeping at every node v the value of the prod-

uct
Q

s∈S

“

1 −
Q

(y→z)∈path(x,v) p(y → z)
”

. The addition of

a new node x in S would then simply require the update
of this product and the use of Equation (1) for computing
α(v, S ∪ {x})

Such bookkeeping comes with increasing space require-
ments: apart from storing the n×k values of table Opt, we
also need to store k values of the product per node. There-
fore, the total space required by DP is O(2nk).

Although DP is optimal, its running time and space re-
quirements may make it inappropriate for very large datasets.
Therefore, we propose two alternative algorithms: Sort and
OutDegree. Both algorithms have sub-quadratic running
times and require much less memory than DP. Experiments
on real data show that the two algorithms perform almost as
well as the optimal. However, one can construct examples
in which the quality of the results degrades.

5.2 The Sort algorithm
For a given tree T = (V, E, p), the Sort algorithm eval-

uates, for every node v ∈ V , the cost incurred when v is
the only effector in T . That is, for every node v the cost
C({v}) =

P

x∈V |α(x, {v}) − a(x)| is computed. The set of
k effectors is then formed by picking the k active nodes with
the smallest cost.

Computing the cost C({v}) for every node v ∈ V has
worst-case running time O(n2). However, the expected run-
ning time on binary trees is O(n log n). Finally, the nodes
are sorted based on their C({v}) scores in O(n log n) time.

Although Sort performs well on real datasets, one can
construct cases where the algorithm’s performance is far
from optimal. Consider for example the directed influence
tree in Figure 2. The tree consists of 2n active (denoted
by black) nodes. Nodes w1, . . . , wn are activated by the
root u with probability ǫ. Root has influence probability
1 to v1 and every node vi activates node vi+1 also with
probability 1 (1 ≤ i ≤ (n − 1)). The cost of the root
u is C({u}) = (1 − ǫ)n. The cost of node any node vi

(for 1 ≤ i ≤ n − 1) is C({vi}) = i + n. Similarly, the
cost of activating one of the wj nodes (for 1 ≤ j ≤ n) is
C({wj}) = 2n− 1 > C({vi}) for 1 ≤ i ≤ n− 2; for i = n− 1
we have a tie in which case the algorithm resolves it by
setting C({vn−1}) < C({wj}). Solving the k-Effectors
problem for k = n, the Sort algorithm would report as ef-
fectors S = {u, v1, . . . , vn−1}, with cost C(S) = n. However,
the optimal set of effectors is S∗ = {u, w1, . . . , wn−1}, with
cost C(S∗) = (1 − ǫ). Therefore, the performance ratio of
Sort is n

(1−ǫ)
. This is a ratio of order O(n). Thus, Sort can

produce solutions that are at least O(n) times worse than
the optimal.
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Figure 2: Influence tree with 2n active nodes. Edge weights
are in [0, 1] with ǫ ∈ (0, 1). The Sort algorithm for k = n
reports a solution that is O(n)-times worse than the optimal.
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Figure 3: Influence tree with 2ℓ active and n − ℓ inactive
nodes. All edge weights are equal to 1. The OutDegree

algorithm for k = ℓ reports a solution that is O(n) times
worse than the optimal.

5.3 The OutDegree algorithm
For tree T = (V, E, p), the OutDegree algorithm picks the

k active nodes with the highest weighted out-degree in the
influence tree T . The complexity is defined by the computa-
tion of these degrees and the time required for sorting them.
Therefore, the total running time is O(n + n log n).

Our experiments with real data show that OutDegree of-
ten performs well in practice. However, there are also cases
where the solutions reported by OutDegree are far from op-
timal. For example, consider the influence tree in Figure 3.
The tree has n nodes, 2ℓ of which are active (black nodes)
and (n− 2ℓ) are inactive (white nodes). That is, apart from
nodes u1, . . . , uℓ and w1, . . . , wℓ all other nodes are inac-
tive. We assume that all edges go from nodes closer to
the root to nodes closer to the leaves of the tree and all
weights are equal to 1. If we use OutDegree to solve the
k-Effectors problem with k = ℓ, the algorithm will re-
port solution S = {u1, . . . , uℓ}, with cost C(S) = (n − 2ℓ).
However, the optimal solution is S∗ = {w1 . . . , wℓ}, with
cost C(S∗) = ℓ. This is because none of the (n − 2ℓ) in-
active nodes will get activated. Therefore, OutDegree can
report solutions that are n−2k

k
= O(n) times worse than the

optimal.

5.4 Finding effectors in forests
So far, we have assumed that the influence tree is con-

nected. Here, we show how to allocate the budget of k
effectors among the trees of an influence forest. We show
that this can be achieved by another dynamic-programming
recursion.

If we use F to denote this forest consisting of L trees,
T1, . . . , TL, then we need to find the optimal way of dis-
tributing the k effectors to these L trees. Recall that, if
for a tree Ti we assign budget ki ≤ k effectors, then we can
compute the optimal set of ki effectors on this tree using the
dynamic-programming recursion given by Equation (3). Let
Opt(Ti, ki) be the solution obtained using the DP algorithm
on tree Ti. Then, the optimal solution on forest F is cal-
culated again using dynamic programming: let T1, . . . , TL a
random but fixed ordering of the trees in the forest F and
Gl(ℓ, c) be the cost of the optimal assignment of c ≤ k effec-
tors on the first ℓ trees T1, . . . , Tℓ. Then, Gl(L, k) will give
the optimal solution to our problem. The values of the Gl
table are given using the following dynamic-programming
recursion:

Gl(ℓ, c) = min
0≤c′≤c

Gl(ℓ − 1, c − c′) + Opt(Tℓ, c
′).

This dynamic programming recursion is a generic method of
allocating the budget of k effectors to the connected compo-
nents of the input graph. We presented it here for the case of
forests because for trees we can compute Opt(Ti, c). How-
ever, this computation cannot be done (or approximated)
in polynomial time within each component of an arbitrary
graph (see Lemma 1 and Lemma 2).

6. EXTRACTING THE INFLUENCE TREE
While the input influence graphs may not be trees, we

show here how one can extract an influence tree from an
arbitrary graph. Given G = (V, E, p), our goal is to extract
the influence tree T that captures most of the information in
G. We quantify the optimization problem using a maximum-
likelihood approach.

For a tree T = (VT , ET , p) with ET ⊆ E, we compute the
likelihood of T as follows:

L(T ) =
Y

(u→v)∈ET

p(u → v).

Therefore, our goal is to extract the influence tree T that
maximizes L(T ). In fact, instead of maximizing the likeli-
hood we minimize the negative log-likelihood. That is,

mLL(T ) = −
X

(u→v)∈ET

log p(u → v). (4)

Our approach for constructing the influence tree is query-
dependent. That is, given the set of active nodes in G, we
extract the influence tree T that spans all the active nodes
in G and minimizes Equation 4. We call this subproblem
the Active Tree problem and the extracted influence tree
the active tree of G.

Unfortunately, solving the Active Tree problem is NP-
hard. In fact, the problem is identical to the Directed
Steiner Tree problem. In the Directed Steiner Tree
problem the input consists of a directed weighted graph G′ =
(V ′, E′) a specified root r ∈ V ′ and a set of terminals X ′ ⊆
V ′. The objective is to find the minimum-cost tree rooted
at r and spanning all the vertices in X ′ (i.e., r should have



a path to every vertex in X ′). Our setting is identical; the
required nodes are the set of active nodes in G.

Here, we use the following efficient heuristic for construct-
ing the active tree for a given influence graph: first, we con-
struct the set of nodes R that consist of all the nodes in V
that have no incoming edges. For each such root node r ∈ R
and for each node s ∈ S we compute the shortest path from
r to s in T . Let T (r) be the tree consisting of the union
of the edges in such shortest paths for the root node r. We
then report as a solution the tree T = arg minr∈R w′ (T (r)).
We call this simple algorithm the dSteiner algorithm.

So far we have assumed that the influence graph G is
connected. If this is not the case we can follow one of the
following two alternatives: (a) Find the strongly-connected
components of the graph and then apply dSteiner indepen-
dently in every component. This would output a forest of
influence trees and, therefore, we can use the method de-
scribed in Section 5.4. (b) Introduce an artificial node to
the input graph is connect it via very low probability edges
to all the nodes. This guarantees connectivity and allows
us to use the dSteiner algorithm directly on this enhanced
graph.
dSteiner can be replaced by any other approximation al-

gorithm proposed for the directed Steiner tree problem [21,
5]. However, since the focus of the paper is not on the study
of methods for the directed Steiner tree problem, we only
use the dSteiner algorithm for our experimental evaluation.
dSteiner requires a simple all-pairs shortest path computa-
tion and it is much less computationally demanding than
the majority of other existing methods for the same task.

Discussion: Our approach for extracting the influence tree
from the influence graph finds the most probable tree that
spans all active nodes. Therefore, different activation vec-
tors lead to different trees. We believe that for large graphs,
where only some of the nodes are active, it makes sense to
extract influence trees that are item-dependent. Alterna-
tively, one could construct the influence tree to be item-
independent. That is, one could try to extract from G the
tree that spans all the nodes in G and minimizes Equa-
tion (4). This problem is equivalent to solving the directed
minimum-cost spanning tree (D-MST) problem on a directed
graph G. Such a tree can be extracted in polynomial time [6,
8]. It can then be used for all activation vectors. The per-
formance of this approach depends on the portion of active
nodes in the input activation vector. For a small number of
active nodes, it would create influence forests with a small
number of active nodes per component. In fact, further ex-
perimental analysis verified this intuition. Due to space con-
straints we do not report these results here.

7. EXPERIMENTS
In this section we evaluate the proposed algorithms for

the k-Effectors problem using the co-authorship graph
extracted from the DBLP data. Our evaluation focuses on
(a) showing indicative results from our methods and (b) eval-
uating the quality of the results with respect to the objective
function.

7.1 The DBLP dataset
Using a snapshot of the DBLP data taken on April 12,

2006 we create a benchmark dataset for our experiments.
We only keep entries of the snapshot that correspond to pa-
pers published in the areas of Database (DB), Data mining

Figure 4: Influence Tree Tq for q =“crawling”. The tree is
extracted from the original Gdblp influence graph.
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(DM), Artificial intelligence (AI) and Theory (T) confer-
ences. Given this snapshot we create the network Gdblp =
(V, E, p) as follows: nodes in V correspond to authors; an
author is included in V if she has at least three papers in
the data. Each author i is associated with a set of terms Si;
these are the terms that appear in at least two titles of pa-
pers that i has co-authored. This process creates |V | = 5508
individuals and a set of 1792 distinct terms. Each term
t ∈ Si is also associated with a timestamp Ti(t), i.e., the
year first used by author i. Two authors i, i′ are connected
by an edge in Gdblp if they co-authored at least two papers.
The weight of the directed edge (i → i′) is computed using
the following simple rule:

p(i → i′) =
|{t | t ∈ Si ∧ t ∈ Si′ ∧ Ti(t) < Ti′(t)}|

|Si′ |

That is, we compute the probability that an item appearing
in i′ is a result of the influence of node i on i′.

We focus our experiments on activation vectors for 15
terms that correspond to research themes in computer sci-
ence. The list of these 15 terms is shown in the first column
of Table 1. For each term q, we extract the corresponding
activation aq so that aq(i) = 1 if q ∈ Si. Given graph Gdblp

and activation vector aq, we compute the active tree asso-
ciated with q, denoted by Tq, using the dSteiner algorithm
(see Section 6). We always use those trees to identify the set
of effectors using one of the three effector-finding algorithms
for trees: DP, OutDegree and Sort.

7.2 An illustrative example
We start by showing an indicative output of our approach

on the tree Tq for q =“crawling”.3 The active tree Tq is
shown in Figure 4. The black nodes are active with respect

3The choice of the term was guided by the size of its active
tree, which proved small enough to visualize.



Table 1: Cost of the solutions reported by DP, OutDegree,
Sort and Random algorithms on the active trees for 15 dis-
tinct terms.

Term DP OutDegree Sort Random

collaborative filtering 31.40 34.19 34.19 40.13

graphs 558.75 560.41 558.75 582.92

wavelets 16.39 16.73 17.40 19.95

pagerank 2.33 4.20 4.20 4.20

privacy 47.09 47.56 50.22 59.59

clustering 514.94 520.74 519.10 560.99

classification 343.54 344.44 343.54 361.86

xml 382.59 385.29 382.59 418.01

svm 20.29 21.15 21.15 27.92

crawling 0.49 3.07 4.03 4.07

semisupervised 25.25 25.45 25.31 30.66

boosting 86.02 89.08 86.02 98.82

microarrays 24.35 28.93 29.07 42.46

streams 275.72 279.16 279.68 300.84

active learning 11.62 12.49 12.49 18.55

to the term, while the white nodes are inactive. Next to
every active node, we show the name of the author it rep-
resents. For every edge we also display its weight in Tq.
We extract the effectors on this tree using DP and k = 5.
The black square nodes are the 5 effectors chosen by the
algorithm. The choices made by the algorithm are intuitive.
C. Lee Giles covers K. Tsioutsioukliklis whom he influences
with high probability. Similarly, H. Garcia-Molina covers S.
Raghavan and G. Samaras covers O. Papapetrou. R. Baeza-
Yates is also picked as an effector, due to the high influence
probabilities to his co-authors. S. Pandey is the only leaf
node chosen as an effector; this is simply because there are
no high-probability paths to him from other active nodes.
On the other hand, there are some active nodes (e.g. C.
Olston) that are not chosen as effectors. This is because
there was not enough budget and the algorithm determined
that selecting the other nodes benefited the objective func-
tion. In fact, when we increased the budget to k = 6, C.
Olston was the only new addition to the set of effectors. For
k = 7, K. Furuse was also included, even though choosing
K. Yamaguchi would clearly result in the same overall cost.

7.3 Comparison of effector-finding algorithms
This section evaluates the different algorithms for the k-

Effectors problem with respect to the cost function C().
We use the activation vectors for the 15 terms shown Ta-
ble 1 and construct the 15 different active trees (one tree per
term). Then, we run the DP, Sort and OutDegree algorithms
on each of the 15 trees. In addition to these three algorithms,
we also evaluate Random; an algorithm that randomly picks
the effectors on a given input tree. The performance of all
the algorithms with respect to the objective function and
k = 10, is shown in Table 1. Recall that, since our problem
is one of cost minimization, the lower the value, the better
the performance of the algorithm. Also, since DP is optimal,
its cost serves as the baseline for the other algorithms.

As we can see from the table, the Random algorithm is
clearly worse than the others for all 15 terms. In contrast,
the Sort and OutDegree algorithms report solutions with
costs consistently close to the optimal (achieved by the DP

algorithm), for most of the terms in the table.
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Figure 5: Average performance ratio of Sort and OutDegree

for 15 trees Tq with modified influence probabilities p set
uniformly across all the edges; p ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

The near-optimal performance of the two algorithms is
way beyond the expectations set by the worst-case analysis
of Sections 5.2 and 5.3. This can be explained by the struc-
ture of the Gdblp graph: many prolific and highly influential
authors are also good effectors, particularly for terms with
a large number of active nodes. This clearly helps Sort and
OutDegree, since they favor such nodes.

In order to evaluate the algorithms under different scenar-
ios we proceed as follows: first, we generate the active tree
Tq for each of the terms in Table 1, as in the previous exper-
iment. Then, we replace the actual influence probabilities
with some constant probability p ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
Therefore, for every term q, we construct 5 different in-
stances of the Tq tree and apply the DP, Sort and OutDegree

algorithms on each of them. Our motivation is to moderate
the effects of highly influential nodes, thus making it more
challenging to identify the set of effectors. In Figure 5, we
plot the average performance ratio of the algorithms (ratio
of the cost of the solution reported by an algorithm divided
by the cost of the optimal solution reported by DP), for the
different values of p. The closest the ratio is to 1, the better.
The average is taken over all the 15 trees.

The results show that the performance of OutDegree and
Sort deteriorates as the value of p approaches 1. In partic-
ular, for higher values of p, the performance ratio of OutDe-
gree is significantly higher than 1. This can be explained
by the fact that, as the edge weights approach 1, an in-
creasing number of nodes gain high-probability paths to
many other nodes. As a result, the weighted criterion used
by OutDegree to pick effectors loses its advantage and the
performance of the algorithm deteriorates. A similar ar-
gument can be made for Sort: the algorithm favors nodes
with high-probability paths to the active parts of the net-
work. When such paths exist for most of the nodes, it be-
comes harder for the algorithm to identify the optimal set.
The variance values of the ratios reported in Figure 5 for
p = {0.2, 0.4, 0.6, 0.8, 1} are {0.02, 0.04, 0.18, 0.23, 0.51} for
Sort and {0.03, 0.14, 0.28, 0.89, 2.55} for OutDegree, respec-
tively. Note that OutDegree is more susceptible than Sort

in making incorrect choices as the value of of p increases. As
a result, we observe larger values of variance in the ratios
observed by OutDegree.



Table 2: The k = 10 effectors reported by the DP algorithm
for terms {graphs, XML, Collaborative Filtering}.

Graphs XML Collaborative Filtering

A. Brandstadt A.Zhou A. Nakamura
A. Z. Broder D. Srivastava B. Mobasher
C. Faloutsos E. A. Rundensteiner D. Heckerman
D. Peleg F. Bry D. Poole
F. Hurtado H. V. Jagadish F. Yang
F. T. Leighton J. Srinivasan H.-P. Kriegel
N. Linial M. Krishnaprasad J. M. Kleinberg
N. Alon O. Diaz M. Li
S. Leonardi S. Pal R. S. Zemel
W. Wang T. Milo W. Du

7.4 Qualitative evidence
Next, we present qualitative evidence of the results ob-

tained by optimally solving the k-Effectors problem on
Gdblp. Our motivation is to show that, in a realistic set-
ting, the results we obtain are reasonable and intuitive. Ta-
ble 2 shows the results obtained using the optimal DP algo-
rithm to solve the k-Effectors problem on three different
Tq trees for k = 10. We report the results for three terms
q = {graphs, XML, and Collaborative Filtering}. We pur-
posefully select terms from three popular -albeit different-
areas of computer science, in order to capture results coming
from diverse parts of the Gdblp graph.

A quick observation indicates that the reported sets of ef-
fectors include some very prolific authors. This can be veri-
fied by checking the overall number of papers per author, as
recorded in the DBLP dataset. In fact some of the authors
have over 150 papers (e.g,. D. Peleg (213), N. Alon (250), H.
V. Jagadish (156), E. A. Rundensteiner (191), H.-P. Kriegel
(214)). The number of papers serves as an indicator of the
author’s influence in the graph. Authors with more papers
typically have more distinct coauthors and are active with
respect to more terms. Also, recall that we operate on the
active tree Tq, extracted so that it mostly consists of active
nodes associated with a term. As a result, prolific authors
are likely to be chosen as effectors, since they have high-
probability paths to many of these active nodes. However,
authors with relatively small number of papers are also in-
cluded as effectors. An intuitive explanation for this is the
following: even though well-connected nodes can be reason-
able effectors that explain a large part of the observed acti-
vation vector, they are also more likely to be connected to
inactive nodes. As a result, selecting only highly-connected
nodes as effectors increases the overall cost of the solution.
Overall, the set of effectors can include nodes of variable
connectivity and influence, as long as they can best describe
the given activation state of the network.

Although the reported effectors per term are all from the
general area of computer science indicated by the term it-
self, each one of them covers a different sub-community.
For example, for the term “Collaborative Filtering”, we can
see D. Heckerman and D. Poole – both effectors for the
machine-learning community – J. Kleinberg – an effector
for the theory community – and H-P. Kriegel – an effector
for the database community. Further, many of the effectors
come from different geographical regions, and, thus, act as
effectors for different sets of authors. In fact, further analy-
sis showed that the reported effectors have small overlap in
their sets of co-authors.

Similar observations can be made for the other two terms.
For example, for the term “graphs”, C. Faloutsos is an ef-
fector for the data-mining community, while the majority of
the other authors are effectors that cover different parts of
the theory community. Again, the number of common co-
authors between every pair of the reported effectors is very
small.

8. CONCLUSIONS
Given a network where a subset of the nodes are active,

and a probabilistic propagation model, we defined the prob-
lem of finding the subset of active nodes that best explain the
observed activation state. We called these nodes effectors.
We studied the complexity of the k-Effectors problem in
directed graphs and trees. For general directed graphs, we
showed that the k-Effectors problem is NP-hard to solve
or even to approximate. However, we showed that for di-
rected trees the problem can be solved optimally in polyno-
mial time via dynamic programming. We also presented a
general framework, where, given a directed influence graph
and an activation vector, we first extract the most probable
active tree that spans all the active nodes in the network.
We then use the dynamic-programming algorithm to identify
the optimal set of effectors in this tree. In our experimental
evaluation, we demonstrated that our algorithms perform
well with respect to our objective function. The reported
sets of effectors provide useful insight about the network
and the interactions between the nodes. In the future, we
plan to further explore the utility of effectors in other types
of networks, including computer and biological graphs.
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