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Abstract
One of the most well-studied problems in data mining is com-
puting association rules from large transactional databases.
Often, the rule collections extracted from existing data-
mining methods can be far too large to be carefully examined
and understood by the data analysts.

In this paper, we address exactly this issue of over-

whelmingly large rule collections by introducing and study-

ing the following problem: Given a large collection R of

association rules we want to pick a subset of them S ⊆ R
that best represents the original collection R as well as the

dataset from which R was extracted. We first quantify the

notion of the goodness of a ruleset using two very simple

and intuitive definitions. Based on these definitions we then

formally define and study the corresponding optimization

problems of picking the best ruleset S ⊆ R. We propose al-

gorithms for solving these problems and present experiments

to show that our algorithms work well for real datasets and

lead to large reduction in the size of the original rule collec-

tion.

1 Introduction

The problem of discovering association rules from trans-
action data was introduced by Agrawal, Imielinski and
Swami [1]. The same basic idea of finding associations
(or causal relationships) between attributes has moti-
vated lots of research on how to find “interesting” asso-
ciation rules and how to compute them efficiently. In-
evitably, different measures of interestingness lead to
different algorithmic and other technical challenges. For
an indicative, though not complete set of references on
those topics see [2, 10, 7, 17] and references therein.
The main characteristic of this line of research is that
it focuses on the discovery of all association rules that
satisfy a minimum interestingness criterion. Although
the extracted rules may find hidden associations from
the data, it is often the case that the collection of as-
sociation rules output by such algorithms is too large.
Thus, it is impractical for someone to go through all
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these rules and draw conclusions from them.
In this paper we consider the problem of represent-

ing a set of association rules extracted using any rule-
mining algorithm, by a smaller, yet sufficient, subset of
them. We want the rules that we select in this subset to
be representative of the input collection. The premise
of our work is that small sets of representative rules can
give a better understanding of the global structure of
the dataset without significant sacrifice of information.

We measure the goodness of a set of rules by how
well they can predict certain right-hand sides. As
an example consider the database shown in Table 1
and rules r1 : {acetaminophen} → {liver damage},
r2 : {acetaminophen, alcohol} → {liver damage},
r3 : {alcohol, flu shot} → {liver damage} and r4 :
{alcohol} → {acetaminophen}. Assume that we are
interested in all conditions that lead to {liver damage}.
That is, we fix the consequent of interest to {liver dam-
age}. Among all the rules that have {liver damage} as
their consequent (rules r1, r2 and r3) we want to pick
the ones that are good predictors for this specific conse-
quent. More specifically, given an arbitrary transaction
from the database, and hiding the knowledge of whether
{liver damage} appears in the transaction, we want to
use the set of rules we select to predict whether the
transaction has that consequent. The goal is to make
as many correct predictions as possible.

Of course, it all depends on how the information
from a set of rules is aggregated in order to make
the prediction. For example, r1 above suggests that
{acetaminophen} is enough indication to predict {liver
damage}, while r2 says that {acetaminophen} by itself is
not enough if it is not accompanied by {alcohol}. There-
fore, we need an aggregation function that combines in-
formation from sets of rules and predicts {liver damage}
for a specific transaction. In the rest of the paper we
show how all these notions can be formally defined and
how they lead to some interesting combinatorial prob-
lems.

1.1 The problem At a high-level we address the
following problem: Given a set of transactions T and
a set of association rules R mined from T , pick S ⊆ R
so that S is a good representation of both R and T .

In our setting, we split this problem into subprob-



lems defined by specific rule consequents: if there are `
distinct consequents appearing in the rules in R, then
we partition R into ` groups R = {Ry1 , . . . ,Ry`

}; all
rules in Ryi

share consequent Yi. For each Ryi
we solve

the problem of finding a set Syi ⊆ Ryi of good represen-
tative rules. Then S =

⋃`
i=1 Syi . The selection of rules

in each Syi
is made based on how well rules in Syi

can
predict the existence (or not) of consequent Yi in the
original set of transactions, had this information been
hidden in the prediction process.

The way the original set of rules R is extracted
is indifferent to the methods presented in this paper.
In practice, it can be extracted using any of the data-
mining algorithms that appear in the literature or
simply domain knowledge.

1.2 Roadmap The rest of the paper is organized as
follows: in Section 2 we give the necessary notation, and
in Section 3 we provide the formal problem definitions
and give some complexity results. Algorithms are
described in Section 4 and experiments in Section 5.
We compare our work to previous work in Section 6
and conclude the paper in Section 7.

2 Preliminaries

Assume a transaction database T = {t1, . . . , tn} con-
sisting of n transactions, and a collection X =
{X1, . . . , XN} of different items that every transaction
may contain. For transaction t ∈ T and X ⊆ X we
use t [X] = 1 to denote that all items in X appear
in transaction t, otherwise we use t [X] = 0. We use
TX to denote the subset of transactions in T for which
t [X] = 1.

An association rule r : X → Y consists of a left-
hand side (LHS) X ⊆ X and a right-hand side (RHS)
Y ⊆ X , such that X ∩ Y = ∅. In practice, association
rules are also associated with a score, e.g., confidence
of a rule. In our discussion, and mostly for ease of
exposition, we ignore these scores.

We use R the set of all association rules extracted
from transactions T . We assume that there are `
distinct RHSs appearing in the rules in R and that
R is partitioned into sets {Ry1 , . . . ,Ry`

}; all rules in
Ryi share the same RHS Yi. We focus the rest of our
discussion on a particular RHS Y and show how to pick
Sy ⊆ Ry.

We say that rule r : X → Y applies to transaction
t ∈ T if t [X] = 1 and we denote it by α(r, t) = 1.
Otherwise, if t [X] = 0 we have that α(r, t) = 0.

The following definitions of true positive and false
positive transactions with respect to a single rule are
necessary.

Table 1: Example of a transaction database of patients’
histories .

t1: {acetaminophen, alcohol}
t2: {acetaminophen, alcohol, liver damage}
t3: {acetaminophen, alcohol, flu shot, liver damage}
t4: {acetaminophen}
t5: {alcohol}

Definition 2.1. A transaction t ∈ T is a true positive
(TP) with respect to rule r : X → Y if the rule predicts
that Y is going to be observed in t, α(r, t) = 1, and
t [Y ] = 1.

Definition 2.2. A transaction t ∈ T is a false positive
(FP) with respect to rule r : X → Y if the rule predicts
that Y is going to be observed in t, α(r, t) = 1, and
t [Y ] = 0.

For rule r : X → Y we use TP(r) to denote the set
of tuples in T to which rule r applies (α(t, r) = 1) and
in which Y is actually observed. That is,

TP (r) = {t|t ∈ T ∧ t [Y ] = 1 ∧ α(r, t) = 1} .

Similarly, the set of tuples in T that are false positives
for rule r, are defined by the set:

FP (r) = {t|t ∈ T ∧ t [Y ] = 0 ∧ α(r, t) = 1} .

Example 2.1. Consider the transaction database
shown in Table 1 that represent patients’ histories.

Rule r : {acetaminophen, alcohol} →
{liver damage} predicts that transactions (patients) t1,
t2, and t3 will all have {liver damage}. Note that in the
case of transaction t1 this is a wrong prediction (FP).
For transactions t2 and t4 this is the correct prediction
(TP).

2.1 Rule-aggregation functions: In the case of a
single rule r : X → Y and a transaction t ∈ T ,
predicting whether Y appears in t can be done according
to the following simple rule: “RHS Y is predicted for
transaction t if α(r, t) = 1”. The prediction task gets
more complicated when there is more than one rule
involved in the decision making.

Example 2.2. Consider again the database shown
in Table 1. Further assume two rules r1 :
{acetaminophen} → {liver damage} and r2 :
{acetaminophen,alcohol} → {liver damage}. In this
case, r1 by itself predicts {liver damage} for patients
that correspond to transactions t1, . . . , t4. Rule r2 when
considered alone says that {acetaminophen} needs to



be combined with {alcohol} in order to predict {liver
damage} for a transaction. Therefore, it suggests that
{liver damage} will be predicted only for transactions
t1, . . . , t3, where both {acetaminophen} and {alcohol}
are observed. The question is how should the informa-
tion from rules r1 and r2 be combined in order to col-
lectively decide which patients will be predicted to have
{liver damage}.

Denote by A the aggregation function that takes all
rules in Sy into account and decides whether to predict
Y for a specific tuple t ∈ T . Let the outcome of this
aggregation function be A (Sy, t) ∈ {0, 1}: A (Sy, t) = 1
when rules Sy when aggregated using A predict Y for
t. Otherwise, A (Sy, t) = 0.

We now describe two instantiations of A, that we
call A1 and Aavg. We focus on those because we believe
they are simple, natural and intuitive.

The 1-Rule aggregation function A1: Given a set
of rules Sy ⊆ Ry and transaction t ∈ T , A1(Sy, t) = 1
if there exists at least one rule r ∈ Sy such that
α(r, t) = 1. Otherwise, A1(Sy, t) = 0.

Example 2.3. Consider again the database in Table 1
and rule set S = {r1, r2} where r1 and r2 are defined
as before to be r1 : {acetaminophen} → {liver damage}
and r2 : {acetaminophen,alcohol} → {liver damage}. In
this case, for 1 ≤ i ≤ 4 A1 (S, ti) = 1. That is, all
patients ti with 1 ≤ i ≤ 4 are predicted to have {liver
damage}. Note, that only for transactions t2 and t3
this decision leads to a true positive. The rest of the
transactions are false positives.

The definitions of true positives and false positives
of a single rule (Definitions 2.1 and 2.2) can be easily
generalized to sets of rules with the same RHS. When
aggregation function A1 takes into account rules Sy,
then we use TP1 (Sy) for the set of tuples t ∈ T for
which t [Y ] = 1 and A1 (Sy, t) = 1. That is,

TP1 (Sy) = {t|t ∈ T ∧ t [Y ] = 1 ∧ A1 (Sy, t) = 1} .

An alternative representation of the set TP1 (Sy) is
the following

TP1 (Sy) =
⋃

r∈Sy

TP (r) .

False positives are handled in a symmetric way.
That is, for a set of rules Sy we use FP1 (Sy) to specify
the set of tuples t ∈ T for which t [Y ] = 0 and
A1 (Sy, t) = 1. That is,

FP1 (Sy) = {t|t ∈ T ∧ t [Y ] = 0 ∧ A1 (Sy, t) = 1} .

As before, the set FP1 (Sy) can be alternatively
represented by

FP1 (Sy) =
⋃

r∈Sy

FP (r) .

So far we have limited our discussion in rulesets
Sy in which all rules have the same RHS Y . For an
arbitrary ruleset S where ` distinct RHSs appear we
have that

TP1 (S) =
⊎̀

i=1

TP1 (Syi
) ,

and

FP1 (S) =
⊎̀

i=1

FP1 (Syi) .

Syi refers to all the rules in S that share the same i-th
RHS;

⊎`
i=1 TP1 (Syi) (or

⊎`
i=1 FP1 (Syi)) denotes the

union of transactions in TP1 (Syi) (or FP1 (Syi)), when
duplicates are not ignored.

The AverageChoice aggregation function Aavg:
Given a set of rules Sy ⊆ Ry and transaction t ∈ T , let

(Sy, t)+ = {r|r ∈ Sy ∧ α(r, t) = 1}
be the set of rules in Sy that apply to transaction t, and

(Sy, t)− = {r|r ∈ Sy ∧ α(r, t) = 0}
the set of rules in Sy that do not apply to transaction
t. Obviously, (Sy, t)+ ∪ (Sy, t)− = Sy and (Sy, t)+ ∩
(Sy, t)− = ∅. For a given set of rules Sy transaction
t ∈ T has Aavg (Sy, t) = 1 with probability

pavg (Sy, t) =

∣∣ (Sy, t)+
∣∣

|Sy| ,

and not to have Y with probability 1− pavg (Sy, t).

Example 2.4. Consider again the database in Table 1
and rule set S = {r1, r2} where r1 and r2 are de-
fined as in Example 2.3. The probability of predicting
{liver damage} for transactions ti with 1 ≤ i ≤ 3 is:
pavg (S, ti) = 1. For transaction t4, pavg (S, t4) = 1/2,
and for transaction t5, pavg (S, t5) = 0.



A transaction t ∈ T for which t [Y ] = 1 has
Aavg (Sy, t) = 1 with probability

pTP
avg (Sy, t) =

∑
r∈Sy

(
Iα(r,t)=1 · It[Y ]=1

)

|Sy| ,(2.1)

where Icondition is an indicator variable that takes value
1 if “condition” is true and value ”0” otherwise. Simi-
larly, a transaction t ∈ T for which t [Y ] = 0 is predicted
as 0 by Aavg with probability

pFP
avg (Sy, t) =

∑
r∈Sy

(
Iα(r,t)=1 · It[Y ]=0

)

|Sy| .(2.2)

Although for A1 the sets TP1 (Sy) and FP1 (Sy)
were easily defined, the definitions of the corresponding
tuple sets for Aavg are a bit more tricky. This is because
Aavg makes probabilistic, rather than deterministic,
decisions. As a result, we cannot define sets TPavg and
FPavg deterministically. However, we can compute the
expected cardinality of these sets as follows.

∣∣TPavg (Sy)
∣∣ =

∑

t∈T

pTP
avg (Sy, t) ,(2.3)

and

∣∣FPavg (Sy)
∣∣ =

∑

t∈T

pFP
avg (Sy, t) ,(2.4)

where the probabilities pTP
avg (Sy, t) and pFP

avg (Sy, t) are
computed as in Equations (2.1) and (2.2) respectively.

As before, the generalization of Equations (2.3)
and (2.4) for arbitrary collections of rules S that have `
distinct RHSs is simply

∣∣TPavg (S)
∣∣ =

∑̀

i=1

∣∣TPavg (Syi)
∣∣,

and

∣∣FPavg (S)
∣∣ =

∑̀

i=1

∣∣FPavg (Syi)
∣∣.

3 Problem definitions

We measure the goodness of a set of rules as a function
of the correct predictions they make; the more correct
prediction the better the set of rules. In this section
we translate this abstract objective into a concrete
optimization function.

Given a dataset T and a collection of rules Ry, with
RHS Y , and aggregation function A, our goal is to pick
set Sy ⊆ Ry such that the number of true positives pre-
dictions on tuples in T is maximized and the number of
false positive predictions is minimized. Maximization
of true positives and minimization of false positives are
two different objective functions. Therefore, we could
formalize this requirement in a bi-objective optimiza-
tion problem. In that case though, the optimal solu-
tion would be hard to define; there could be solutions
that are good for one objective but not so good for the
other, or vice versa. In order to deal with this, we would
have to settle with finding all pareto-optimal solutions,
rather than a single solution. For a discussion on bi-
objective optimization problems and pareto-optimal so-
lutions see [8]. Reporting all pareto-optimal solutions
has its advantages and disadvantages; the main disad-
vantage being that there can be exponential number of
them.

Two alternatives to bi-objective optimization exist:
(a) To incorporate both the objectives into a single
objective function e.g., by taking their (weighted) sum.
(b) To bound the one objective and optimize the other.
In this paper we pick alternative (b) because we believe
that gives a more structured output.

We define two Rule Selection problems one for
aggregation function A1 and the other for aggregation
function Aavg.

Problem 3.1. [A1-(Rule Selection)] Consider
transactions T , a collection of rules Ry sharing the
same right-hand side Y , and an integer B. Find the
set of rules Sy ⊆ Ry such that |TP1 (Sy)| is maximized
and |FP1 (Sy)| ≤ B.

We have the following result.

Proposition 3.1. The A1-Rule Selection problem
is NP-hard.

Proof. We reduce the Red-Blue Set Cover problem
the A1-Rule Selection problem. In the Red-Blue
Set Cover problem we are given disjoint sets R and B
of red and blue elements respectively, and a collection
S = {S1, . . . , Sn} ⊆ 2R

⋃
B . The goal is to find a

collection C ⊆ S that covers all blue elements, i.e.,
B ⊆ ∪C, while minimizing the number of covered red
elements.

Given an instance of the Red-Blue Set Cover,
we create an instance of the A1-Rule Selection
as follows: For each element in B and each element
in R we create a transaction. Let the transactions
corresponding to elements in B be

{
t1, . . . , t|B|

}
and

the transactions corresponding to elements in R be



{
t|B|+1, . . . , t|B|+|R|

}
. Then for every transaction ti1

with 1 ≤ i1 ≤ |B| we have that ti[Y ] = 1 and for every
transaction ti2 with |B| + 1 ≤ i2 ≤ |B| + |R| we have
that t [Y ] = 0. For every set Sj ∈ S we create a rule
rj ∈ Ry. For a rule rj ∈ Ry and transaction ti1 with
1 ≤ i1 ≤ |B| we set α (ti1 , rj) = 1 if Sj contains the
blue element that corresponds to transaction ti1 . In this
case ti1 is a true positive for rule rj . For a rule rj ∈ Ry

and transaction ti2 with |B| + 1 ≤ i2 ≤ |B| + |R| we
set α (ti2 , rj) = 1 if Sj contains the red element that
corresponds to transaction ti. That is, transaction ti2
is a false positive for rule rj . Otherwise, α (ti2 , rj) = 0
and transaction ti2 is correctly decided not to have Y .

It is easy to see that every solution Sy ⊆ Ry to the
A1-Rule Selection problem with benefit |TP1 (Sy)|
and cost |FP1 (Sy)| ≤ B translates a solution C to the
Red-Blue Set Cover problem such that if ri ∈ Sy

then Si ∈ C that covers |TP1 (Sy)| blue elements and
|FP1 (Sy)| red elements.

The Red-Blue Set Cover problem was first pre-
sented in [6] where it was also proven that (a) unless
NP ⊆ DTIME(npoly log(n)), there exist no polynomial-
time approximation algorithms to approximate the
Red-Blue Set Cover to within a factor of 2(4 log n)1−ε

for any ε > 0, and (b) there are no polynomial-time
approximation algorithms to approximate Red-Blue

Set Cover to within 2log1−(log log β)−c
β for any constant

c < 1/2 unless P = NP. The best upper bound for the
Red-Blue Set Cover is due to [14], who has recently
presented a randomized 2

√
n log β-approximation algo-

rithm for it. In both cases above β corresponds to the
cardinality of the set of blue elements β = |B|.

TheA1-Rule Selection problem is not parameter
free; parameter B needs to be given as part of the
input. An intuitive way of setting this parameter is
by observing that the quantity

∣∣FP1 (Sy)
∣∣ is in fact the

number of false positives per rule. When Sy = Ry we
get the number of false positives per rule achieved by
the input set of rules Ry. We can thus set B to be a
factor λ ∈ R+ of this quantity. That is,

B = λ
∣∣FP1 (Ry)

∣∣.(3.5)

For example, λ = 1 requires that the average false
positives per rule in the output is the same as in the
original ruleset.

Problem 3.2. [Aavg-(Rule Selection)] Given a col-
lection of rules Ry sharing the same right-hand side Y
and rational number B, find a set of rules Sy ⊆ Ry such
that

∣∣TPavg (Sy)
∣∣ is maximized and

∣∣FPavg (Sy)
∣∣ ≤ B.

As before, the above problem definition is not
parameter free, and depends on the setting of B. This

will be handled in the same way as for the A1-Rule
Selection problem.

In order to be symmetric to the A1-(Rule Selec-
tion) we note here that the Aavg-(Rule Selection)
can be solved optimally in polynomial time. Although
we describe the algorithm for solving it in the next sec-
tion we summarize this fact in the following proposition.

Proposition 3.2. The Aavg-(Rule Selection) prob-
lem can be solved optimally in polynomial time.

Problems 3.1 and 3.2 have the same underlying goal.
Their only difference is in the rule aggregation function
used to predict the existence of a specific RHS in trans-
actions in T . We refer to the generic Rule Selection
problem, where either of the two aggregation functions
are used, as the A-Rule Selection problem.

4 Algorithms for Rule Selection problems

In this section we present heuristic and optimal algo-
rithms for the A1 and Aavg-Rule Selection problems.
Note that these algorithms work for sets of rules that
share a specific RHS. That is, given a rule collection
Ry, where all rules in Ry share the same RHS Y , they
pick SY ⊆ Ry to optimize the objective functions of
Problems 3.1 or 3.2 respectively.

Algorithm 1 The global rule-selection routine GRSR.
Input: A collection of rulesR with ` distinct RHSs.
Output: A subset of rules S ⊆ R

S = ∅
1: Partition R = {Ry1 ,Ry2 , . . . ,Ry`

}
2: All rules in Ryi share RHS Yi.
3: for i = 1 to ` do
4: Si =solve A-Rule Selection
5: S = S ∪ Si

6: return S

In practice though, the input rule collections R
may contain rules with many different RHSs. Our
approach for dealing with such rule collections is shown
in Algorithm 1; the set of rules in R is partitioned
into groups {Ry1 ,Ry2 , . . . ,Ry`

}. All rules in Ryi share
the same RHS Yi. Then the algorithms for the A-
Rule Selection problem operate on each ruleset Ryi

separately. The union of their outputs is the output of
the global rule-selection routine.

4.1 Algorithms A1-(Rule Selection) problem
In Section 3, Proposition 3.1, we showed that the A1-
Rule Selection problem is NP-hard, with little hope
for good polynomial-time algorithms with bounded ap-
proximation factors. Here, we give a simple, intu-



itive and efficient greedy-based heuristic algorithm that
works well in practice.

Algorithm 2 The Greedy 1 algorithm.
Input: A set of rules Ry with right-hand side Y
and transaction database T and integer B.
Output: A subset of rules Sy ⊆ Ry

1: C = Ry, Sy = ∅
2: while |FP1 (Sy)| ≤ B do
3: pick r ∈ C such that
4: r = arg maxr′∈C Marginal Gain (Sy, r′)
5: if TP1 (Sy ∪ {r}) > TP1 (Sy) then
6: C = C \ {r}
7: Sy = Sy ∪ {r}
8: else
9: return Sy

10: return Sy

The pseudocode for the Greedy 1 algorithm is given
in Algorithm 2. It first starts with all rules in the
Ry as candidates for being selected, i.e., C = Ry.
Also, the output set of selected rules is originally set
to the empty set, Sy = ∅. As long as the total cost
of the selected rules does not exceed the pre-specified
threshold, |FP1 (Sy)|B, the rule r with the maximal
marginal gain is picked to be added to set Sy. If no
such rule exists, the algorithm terminates and returns
the rules that have been picked in set Sy.

The selection of the rule r to be added to set Sy

is done in the Marginal Gain function that is simply
defined to be

Marginal Gain (Sy, r) =(4.6)

=

∣∣TP1 (Sy ∪ {r}) \ TP1 (Sy)
∣∣

∣∣FP1 (Sy ∪ {r}) \ FP1 (Sy)
∣∣ .

Running time: For a database with n transactions
and ruleset Ry with m rules, the running time of the
Greedy 1 algorithm is O (Imn): I refers to the number
of iterations of the while loop. In the worst case, the
while loop repeats as many times as the number of rules
in Ry. However, in practice much less iterations are
needed. In each iteration the marginal gain of every
remaining rule in set C needs to be updated. In the
worst case, every iteration requires time O (mn).

4.2 Algorithms Aavg-(Rule Selection) problem
In Section 3 in Proposition 3.2 we stated, without a
proof, that the Aavg-Rule Selection problem can
be solved optimally in polynomial time. We start
this section by describing the optimal polynomial-time
algorithm for for solving it.

The key observation for our solution is that if
the quantities

∣∣TPavg (Sy)
∣∣ and

∣∣FPavg (Sy)
∣∣ given in

Equations (2.3) and (2.4) respectively, were lacking their
denominators, |Sy|, then, Problem 3.2 would have been
identical to the Knapsack problem [19].

Our polynomial-time algorithm for Aavg-(Rule Se-
lection) is based on exactly this observation. The
pseudocode of the algorithm that we call DP Avg is given
in Algorithm 3. The core idea of the DP Avg algorithm is
that it fixes the cardinality of the ruleset to be selected
from the whole collection of rulesRy and it finds the op-
timal solution for each such cardinality by calling the DP
routine. The DP algorithm is a dynamic-programming
recursion that we shall describe shortly. Among all solu-
tions with different cardinalities, the one that maximizes
the objective function is picked.

Algorithm 3 The DP Avg algorithm.
Input: A set of rulesRy with right-hand side Y and
transaction database T and rational number B.
Output: A subset of rules Sy ⊆ Ry Sy = ∅

1: for k = 1, . . . , |Ry| do
2: S′y = DP(Ry, bk ×Bc, k)
3: if

∣∣TPavg

(
S′y

) ∣∣ >
∣∣TPavg (Sy)

∣∣ and∣∣FPavg

(
S′y

) ∣∣ < B then
4: Sy = S′y
5: return Sy

The most important line of the DP Avg algorithm is
the call of the DP routine. The goal of this routine is to
find Sy ⊆ Ry of cardinality k such that quantity

TP# (Sy) = |Sy| ·
∣∣TPavg (Sy)

∣∣
=

∑

r∈Sy

∑

t∈T

(
Iα(r,t)=1 · It[Y ]=1

)
,

is maximized and quantity

FP# (Sy) = |Sy| ·
∣∣FPavg (Sy)

∣∣
=

∑

r∈Sy

∑

t∈T

(
Iα(r,t)=1 · It[Y ]=0

)
,

is below fixed bound Bk = bk × Bc. Maximizing
TP# (Sy) under the constraint that FP# (Sy) ≤ Bk

bears similarity with the classical Knapsack problem.
There are only two differences; first, the classical Knap-
sack problem does not impose any constraint on the
cardinality of the solution, while in our case we need to
output set Sy ⊆ R of fixed cardinality k. Second, in
our instance the bound Bk on the cost of the solution
FP# (Sy) is bounded by the size of the input, that is,



Bk = O (mn). The latter observation, makes the run-
ning time of the DP algorithm polynomial to the size of
the input.

We now give the dynamic-programming recursion
that is the core of the DP routine. For expressing it, we
consider an arbitrary ordering of the rules in ruleset Ry,
that is, Ry = {r1, . . . , rm}. Denote now by TP# [i, c, k]
the maximum value of TP# that can be achieved using
a subset of size k out of the first i rules (r1, . . . , ri)
of the original ruleset Ry, when the cost FP# is at
most b ≤ Bk. Then the following recursion allows us
to compute all the values TP# [i, b, k]

TP# [i, b, k] =(4.7)
max

{
TP# [i− 1, b, k] ,

TP# [i− 1, b− |FP (ri)| , k − 1] + |TP (ri)|
}
.

Running time: For a database with n transactions
and ruleset Ry with m rules, the running time of the
DP routine is O (Bk |Ry| k); recall that Bk = O (nm),
|Ry| = O (m) and k = O (m) we have that the worst-
case running time of the DP routine is O (

m3n
)
. The

DP Avg algorithm makes m calls to the DP routine, and
therefore a naive implementation would require time
O (

m4n
)
. However, observe that the entries of the TP#

table that have been computed for k = k1 need not be
recomputed for k = k2, with k2 > k1. Although this
observation considerably improves the running time of
the DP Avg algorithm in practice, it leaves its worst-case
complexity intact.

Using standard arguments, like, for example, the
ones used in [19] Chapter 8. It is easy to show that
the DP Avg algorithm gives the optimal solution to the
Aavg-(Rule Selection) problem.

Though provably optimal, the DP Avg algorithm
is computationally too expensive for reasonably large
datasets. For that reason we give an alternative greedy
version of the DP Avg algorithm, which we call the
Greedy Avg algorithm. This algorithm is conceptually
identical to the DP Avg algorithm shown in Algorithm 3
except that instead of invoking the DP routine for every k
we invoke a greedy-selection algorithm. The pseudocode
in in Algorithm 4 describes the Greedy Avg algorithm.
The algorithm initially computes the gain Gain(r),
for every rule r in the input rule collection Ry. The
Gain(r) or a rule r is simply defined as the ratio of the
expected number of TP to the expected number of FP
introduced by rule r alone. Note that for a single rule
the expected number of true positives (false positives)
coincides with the cardinality of sets TP(r) (FP(r)).
That is,

Algorithm 4 The Greedy Avg algorithm.
Input: A set of rules Ry with right-hand side Y
and transaction database T and rational B.

1: for r ∈ Ry do
2: Compute Gain(r)
3: Sort elements in Ry in decreasing order of their

Gain’s Gain(r1) ≥ . . . ≥ Gain(rm)
4: maxBenefit = 0, maxIndex = −1, benefit = 0,

weight = 0
5: for i = 1 . . . m do
6: benefit = benefit + TP# (ri)
7: weight = weight + FP# (ri)
8: if benefit

i > maxBenefit and weight
i ≤ B then

9: maxBenefit = benefit
i

10: maxIndex = i
11: Sy =

⋃
i=1,...,maxIndex ri

12: return Sy

Gain (r) =

∣∣TPavg (r)
∣∣

∣∣FPavg (r)
∣∣ =

|TP (r)|
|FP (r)| .

The rules are then sorted in decreasing order of
their gain values. The Greedy Avg algorithm then goes
through the sorted rules and each rule ri, that is ranked
i, is added to the solution ruleset Sy as long as its
addition improves the objective function (benefit) and
keeps the average weight below the input threshold B.
Running time: The running time of the Greedy Avg
algorithm is dominated by the sorting of the rules
in Ry with respect to their Gain values. There-
fore, if computing the Gain of every rule takes time
O (TG), then the running time of the Greedy Avg al-
gorithm is O (|Ry| log |R|)O (m log m + mTG). In our
case, TG = O (n), and thus Greedy Avg needs time
O (m log m + mn).

5 Experiments

The goal of the experimental evaluation is to illus-
trate that our algorithms pick a small number of
representative association rules S from a large input
rule collection R. At the same time, we show that∣∣TPx (S)

∣∣ ≥
∣∣TPx (R)

∣∣ and
∣∣FPx (S)

∣∣ ≤
∣∣FPx (R)

∣∣,
where x ∈ {1, avg}.

Datasets: We experiment with seven different datasets
described in Table 2. All these datasets are available
from the UCI Machine Learning Repository ([3])

For the majority of our experiments we generate
the input rule collection R using the standard Apriori
algorithm. Recall that Apriori has two parameters,
the minimum support (min sup) and the minimum



Dataset # of items # of transactions
LENSES 12 24
HAYESROTH 18 132
BALANCE 23 625
CAR 25 1728
LYMPH 63 148
CONGRESS 50 435
MUSHROOM 119 8124

Table 2: Number of items and tuples of the seven
datasets used in our experimental evaluation.

confidence (min conf). For a rule r : X → Y the
support of the rule sup(r) is the number of transactions
t ∈ T for which t [X ∪ Y ] = 1. The confidence of the
rule conf(r) is the ratio of the transactions for which
t [X ∪ Y ] = 1 divided by the transactions for which
t [X] = 1.

Table 3 shows the number of rules extracted
from the different datasets using Apriori algorithm.
For the smaller datasets (LENSES, HAYESROTH,
BALANCE and CAR) we set both the support and
confidence thresholds to zero. For the larger datasets
(LYMPH, CONGRESS and MUSHROOM) we set the
minimum support threshold to the smallest integer
that is greater or equal to 0.2 × |T |, where |T | is
the number of transactions in the dataset. For these
datasets the confidence threshold is set to 0.2. The
selection threshold is somewhat arbitrary; the trends of
our results do not change for different threshold values.
A value of 0.2 is reasonable since it does not cause the
Apriori algorithm to explore the whole itemset lattice.

Dataset min sup min conf # of rules in R
LENSES 1 0 2682
HAYESROTH 1 0 8858
BALANCE 1 0 46708
CAR 1 0 862906
LYMPH 30 .2 191460
CONGRESS 87 .2 1110512
MUSHROOM 1625 .2 19191656

Table 3: Minimum support and confidence thresholds
used for Apriori algorithm; number of rules in the
mined collection R

Performance measures: We measure the qualitative
performance of the different algorithms using three
evaluation measures: the R-ratio (rR), the TP-ratio
(rTP), and the FP-ratio (rFP).

Given rule-selection algorithm Sa and a collection
of mined rules R used as input to Sa, we define the

R-ratio to be

rR (Sa,R) =

∣∣Sa (R)
∣∣

|R| .

Sa can be any rule-selection algorithm, like for example
Greedy 1, DP Avg, or Greedy Avg. We use Sa (R) to
denote the set of rules picked by algorithm Sa on input
R. The R-ratio takes values in [0, 1]. The smaller the
value of R-ratio, the smaller the set of representatives
picked by the Sa algorithm and thus the better the
algorithm in reducing the size of the original ruleset.

For A1 or Aavg aggregation functions, the TP-ratio
for algorithm Sa and input rule-collection R is defined
to be

rTP1 (Sa,R) =

∣∣∣TP1

(
Sa (R)

)∣∣∣
∣∣∣TP1

(R)∣∣∣
,

and

rTPavg (Sa,R) =

∣∣∣TPavg

(
Sa (R)

)∣∣∣
∣∣∣TPavg

(R)∣∣∣
respectively. The TP-ratio takes values in [0,∞).
The larger the value of the TP-ratio, the better the
performance of the algorithm. The definitions of rFP1

and rFPavg are analogous to those of rTP1 and rTPavg;
the only difference is that FP is used instead of TP.
We omit the actual definitions due to space constraints.
Note however, that the FP-ratios take values in [0,∞).
The smaller the value of the FP-ratio, the better the
performance of an Sa algorithm.
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Figure 1: Reduction of the number of rules achieved by
Greedy 1 for the HAYESROTH and LENSES datasets;
y-axis: Rules ratio rR; x-axis: varying values of λ.

Experiment I: Impact of threshold λ on the per-
formance of Greedy 1 algorithm: Figure 1 shows the



rules ratio for the Greedy 1 algorithm as a function of
the value of λ (evaluated by Equation (3.5)). At λ=.2,
the false positive constraint is extremely limiting, al-
lowing few rules to be selected. However, for λ ≥ .4
Greedy 1 is able to select more rules. It is interesting
to note that the rules ratios for λ ∈ [0.4, 2] are approxi-
mately the same for both datasets.
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Figure 2: Reduction of the number of rules achieved
by Aavg-Rule Selection algorithms DP Avg and
Greedy Avg for the HAYESROTH and LENSES
datasets; y-axis: Rules ratio rR; x-axis: varying values
of λ.
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Figure 3: Values of rR (Sa,R) for Sa∈ {Greedy 1,
Greedy Avg, RuleCover} and ruleset R produced by
Apriori.

Experiment II: Comparison of DP Avg and
Greedy Avg: The goal of this experiment is to explore
the difference in the results of DP Avg and Greedy Avg
algorithms. Recall that both algorithms solve the Aavg-
Rule Selection problem; DP Avg solves it optimally,
while Greedy Avg is a suboptimal, but much more effi-
cient, algorithm for the same problem.

Figure 2 shows the rules ratio for the DP Avg and
the Greedy Avg algorithms as a function of the value
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Figure 4: Values of rTP1 (Sa,R) for Sa∈ {Greedy 1,
Greedy Avg, RuleCover} and ruleset R produced by
Apriori.
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Figure 5: Values of rFP1 (Sa,R) for Sa∈ {Greedy 1,
Greedy Avg, RuleCover} and ruleset R produced by
Apriori.

of λ (evaluated by Equation 3.5). As λ increases from
0.2 to 1, the number of rules for both algorithms and
in both datasets increases. As in Experiment I, The
false positive constraint is initially limiting to the rules
that can be selected. Relaxing that constraint allows
the algorithms to maximize |TPavg| by selecting sets of
rules that have a higher ratio of false positives per rule.

For λ > 1 the rule-selection is allowing more false
positives per rule than the original set of rules. In this
case, the two algorithms become more risky by selecting
rules with considerable number of true positives but
very large number of false positives. Such selections lead
to a slight decrease in the number of representative rules
picked by DP Avg and Greedy Avg as shown in Figure 2.

It should be noted that, overall, the reduction of
rules for Greedy Avg is not nearly as great as for DP.
However, we will restrict ourselves to the usage of
Greedy Avg algorithm for the rest of the experiments
since the memory requirements of the DP Avg algorithm



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LENSES HAYESROTH LYMPH CONGRESS BALANCE CAR MUSHROOM

Datasets

T
P

av
g

-r
at

io

Greedy1

GreedyAvg

RuleCover

Figure 6: Values of rTPavg (Sa,R) for Sa∈ {Greedy 1,
Greedy Avg, RuleCover} and ruleset R produced by
Apriori.

make it impractical for large datasets.

Experiment III: Evaluation of rule-selection al-
gorithms across different datasets: In experiment
III we perform a more thorough comparison of different
rule-selection algorithms for all datasets. Performance
is evaluated using the R, TP and FP ratios. In our
comparisons we include three rule-selection algorithms:
Greedy 1, Greedy Avg and RuleCover. The first two
algorithms have been described in Algorithms 2 and 4.
The RuleCover algorithm is the one presented in [18].
We include it in our evaluation because it is very close in
spirit to our algorithms. For each distinct RHS Y , the
RuleCover algorithm greedily forms the set Sy. In each
greedy step, the current set Sy is extended by rule r that
maximizes the difference

∣∣TP (Sy ∪ {r})
∣∣ −

∣∣TP (Sy)
∣∣.

Note that RuleCover is very similar to the Greedy 1
algorithm. Their only difference is that the number
of transactions in FP1 is not taken into account by
RuleCover.

For Greedy 1 and Greedy Avg, we use set λ = 1.
That is we require that the algorithms produce no
more false positive predictions per rule than the original
ruleset. This seems to be a reasonable and intuitive
requirement for a benchmark bound.

Figure 3 shows the rR (Sa,R) for Sa ∈ {Greedy 1,
Greedy Avg, RuleCover}, and for different datasets.
The original rulesets R have been mined using the
Apriori algorithm and the configurations we gave in
Table 3. In all datasets and for all Sa algorithms, the
size of the set of representative rules is much smaller
than the size of the input rule collection. In the worst
case, the R-ratio is at most 0.63, while in most cases it
is much lower, reducing to as low as 0.004 in the MUSH-
ROOM dataset for Greedy 1. On average, Greedy Avg
does not achieve as small R-ratios as the other two al-
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Figure 7: Values of rFPavg (Sa,R) for Sa∈ {Greedy 1,
Greedy Avg, RuleCover} and ruleset R produced by
Apriori.

gorithms. It is not clear whether this observation is an
artifact of the suboptimality of Greedy Avg algorithm or
its objective function. However, based on the results of
Experiment II, one would guess that the former reason
is responsible for the results. On the positive side, one
should point out that the R-ratio of Greedy Avg, though
worse than the other algorithms, still achieves great re-
duction of the original set of rules. The RuleCover al-
gorithm usually achieves lower R-ratios than Greedy 1
and Greedy Avg, although sometimes only marginally.

Of course, small R-ratios are good, but in order for
the output rule collection to be useful they should be
accompanied by large TP-ratios and small FP-ratios.
Figure 4 shows the values of rTP1 (Sa,R) for the same
set of Sa algorithms as before. As expected, the rTP1

takes value 1 for the for RuleCover algorithm; this is by
definition in the case of RuleCover algorithm. The rTP1

values of Greedy 1 and Greedy Avg are also high (more
than 0.8) even though the algorithm is not explicitly
optimizing TP1 objective.

The corresponding rFP1 (Sa,R) values for the same
algorithms are shown in Figure 5. The trend here is that
RuleCover exhibits the highest values for rFP1; this is
expected given that the rule-selection process in this
algorithm does not take into account the false positives.

Figures 6 and 7 show the rTPavg and rFPavg for
Sa algorithms Greedy 1, Greedy Avg and RuleCover.
RuleCover again exhibits noticeably good rTPavg ratios
for some datasets, like for example LENSES or CAR.
For the majority of the datasets though, all three al-
gorithms have similar rTPavg ratios and output rulesets
with TPavg and expected TPavg cardinality around that
of the input rule collection. When it comes to rFPavg,
Greedy 1 and Greedy Avg perform the best. In this
case RuleCover, as expected, introduces lots of false-
positive predictions. For example, in the MUSHROOM
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input ruleset R was produced by NDI.

dataset it is introduces 2.63 times more false positives
than Greedy 1 and 3.73 times more than Greedy Avg.

Experiment IV: NDI rules: The goal of this experi-
ment is to study the behavior of the rule-selection al-
gorithms when the input rule collection R is not mined
using Apriori algorithm. For that purpose we use the
NDI mining algorithm. NDI uses the frequent-itemset
mining algorithm of [5] to generate all frequent non-
derivable itemsets. It then reports the rules that can be
constructed from these itemsets and which are above
the min conf threshold. Although the rule collection R
mined by the NDI algorithm is much more condensed
than the collections output by the Apriori algorithm
our results indicate that the Greedy 1 and Greedy Avg
algorithms manage to find even smaller representative
sets of rules. Figure 8 shows the R-ratio of Greedy 1 and
Greedy Avg algorithms when the NDI mining algorithm
is used for producing the original rule collection R. The
smallest R-ratio (0.026) is achieved by Greedy 1 on the
MUSHROOM dataset. The TP-ratio and FP-ratio of
Greedy 1 and Greedy Avg exhibit the same behavior as
in the case of rules mined by Apriori and thus the cor-
responding plots are omitted.

Summary of the experiments: The takeaway mes-
sage is that our algorithms produce collections of repre-
sentative association rules that are significantly smaller
than the mined rule collections. There are cases where
the size of the set of representatives is .4% of the size of
input rule set. At the same time, we illustrate that these
small sets of representative rules have high true-positive
and low false positive rates when compared both with
the input rule collection as well as the outputs of other
algorithms proposed in the literature (e.g., RuleCover).
A practical example of the utility of this reduction can
be seen in an application of our methods to the MUH-

SROOM dataset. The original set of rules consists of
8615 rules which correspond to the singular consequent
of a mushroom being poisonous. The Greedy 1 algo-
rithm reduces this to 8 rules (< .1%). These 8 rules
cover over 98% of the true positives covered by the orig-
inal set of rules, and only 7% of the false positives.

6 Related work

Association rules have been a central and recurring
theme in data-mining research. Therefore, any attempt
to summarize this work would be far from complete. A
large body of the published work has focused on devising
efficient algorithms that, given an input dataset, extract
all association rules that have support and confidence
above specified thresholds. Although interesting, this
work is not directly related to ours. The rules output
by these methods are an input to our problem, and
our approaches are indifferent to how this input was
generated.

More related to ours is the work on reduced rule
mining. In this case, the goal is to reduce the set of
the mined association rules by considering an additional
criterion that allows certain sets of rules not to be
included in the output. See for example [10, 15,
16, 20], for some indicative work along these lines.
The main difference between this work and ours is
that in the former approaches the decision whether to
disregard a rule is done during the mining process.
Rules are disregarded on-the-fly based on some statistics
extracted from the data and the rules that have already
been mined. Contrary to this, our approach considers
the whole set of mined rules and decides which ones to
pick as representatives. Therefore, the output of the
former approaches can also be seen as candidate inputs
to our algorithms.

Identifying a core set of essential rules from a
collection of mined rules has also been studied before.
For example in [18] the authors approach the problem
as a set cover problem: each mined rule represents the
set of tuples that contain all the items in both the
antecedent and the consequent of the rule. Then, the
problem is to pick the minimum set of rules such that
all tuples are covered at least once. The combinatorial
nature of this formulation has some similarities with
ours. However, the key difference between the two
approaches is that, for each distinct RHS, not only do
we want to correctly predict its appearance in tuples
that have this RHS (as [18] does), but we also want to
make correct (negative) predictions for the tuples that
do not have the RHS. As a result the combinatorial
problems that arise from our formulations are very
different from the ones described in [18]. Similar to [18]
is the formulation proposed in [4]. The latter work



also considers all rules independently of their RHSs and
the false predictions are not taken into account in their
formulation either.

At a high-level, related to ours is also the work
on building classifiers using association rules. For
example, [9, 11, 12] and references therein, represent
this line of research. The key difference between
these approaches and ours is that they consider rules
competing towards classifying transactions to different
classes. Classifiers’ objective is to assign the right RHS
(class) for every transaction. In our case, rules with
different RHSs do not compete with each other, and the
same transaction can be predicted to have two different
RHSs. The prediction mechanism in our case is just a
means for evaluating the goodness of a collection of rules
rather than the goal itself. Finally, the combinatorial
problems that arise in our setting are totally different
from those in the previous work on classification using
association rules.

7 Conclusions

We presented a framework for selecting a subset of
representative rules from large collections of association
rules produced by data-mining algorithms. We believe
that such small subsets of representatives are easier to
be handled by data-analysts. We defined two versions
of the Rule Selection problem and presented simple
combinatorial algorithms for solving them. Via a broad
set of experiments with a wide selection of datasets, we
showed that our algorithms work well in practice and
pick small number of representatives which adequately
describe both the original data and the input rule
collection.

In our framework we defined the goodness of a set
of representative rules by using how well they predict
certain RHSs. In the future we would like to explore
different notions of goodness and study the problems
that arise from such definitions.
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