Constructing Comprehensive Summaries of Large Event
Sequences

Jerry Kiernan
IBM Almaden
. SanJose,CA
jkiernan@us.ibm.com

ABSTRACT

Event sequences capture system and user activity over time.
Prior research on sequence mining has mostly focused on
discovering local patterns. Though interesting, these pat-
terns reveal local associations and fail to give a comprehen-
sive summary of the entire event sequence. Moreover, the
number of patterns discovered can be large. In this paper,
we take an alternative approach and build short summaries
that describe the entire sequence, while revealing local asso-
ciations among events.

We formally define the summarization problem as an op-
timization problem that balances between shortness of the
summary and accuracy of the data description. We show
that this problem can be solved optimally in polynomial
time by using a combination of two dynamic-programming
algorithms. We also explore more efficient greedy alterna-
tives and demonstrate that they work well on large datasets.
Experiments on both synthetic and real datasets illustrate
that our algorithms are efficient and produce high-quality
results, and reveal interesting local structures in the data.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining; 1.5.3 [Pattern Recognition]: Clustering—
Algorithms; E.4 [Coding and Information Theory]: [Data
Compaction and compression]

General Terms
Algorithms, Experimentation, Theory

Keywords

event sequences, summarization, log mining

1. INTRODUCTION

Monitoring of systems’ and users’ activities produces large
event sequences, i.e., logs where each event has an associated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’08, August 24-27, 2008, Las Vegas, Nevada, USA.

Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

Evimaria Terzi
IBM Almaden
San Jose, CA
eterzi@us.ibm.com

time of occurrence. Network traffic data, alarms in telecom-
munication networks, logging systems are examples of ap-
plications that produce large event sequences. Off-the-shelf
data-mining methods for event sequences though successful
in finding recurring local structures, e.g., episodes, can prove
inadequate to provide a global model of the data. Moreover,
data-mining algorithms usually output too many patterns
that may be overwhelming for the data analysts. In this
paper, we bring up a new aspect of event sequence analysis,
namely how to concisely summarize such event sequences.
From the point of view of a data analyst, an event-sequence
summarization system should have the following properties.

e Brevity and accuracy: The summarization system
should construct short summaries that accurately de-
scribe the input data.

e Global data description: The summaries should
give an indication of the global structure of the event
sequence and its evolution through time.

e Local pattern identification: The summary should
reveal information about local patterns; normal or sus-
picious events or combination of events that occur at
certain points in time should be identified by just look-
ing at the summary.

e Parameter free: No extra tuning should be required
by the analyst in order for the summarization method
to give informative and useful results.

Despite the bulk of work on the analysis of event-sequences,
to the best of our knowledge, there is no technique that sat-
isfies all requirements discussed above. In this paper, we
present a summarization technique that exhibits all these
characteristics. More specifically,

e we use the Minimum Description Length (MDL) prin-
ciple to find a balance between summaries’ length and
descriptions’ accuracy.

e We adopt a segmentation model that provides a high-
level view of the sequence by identifying global inter-
vals on the timeline. The events appearing within each
interval exhibit local regularity.

e Each interval in the segmented timeline is described
by a local model similar to clustering. Our local model
groups event types with similar rates of appearance
within the interval; in this way local associations among
event types are captured.

e The usage of MDL penalizes both complex models
that over-fit the data and simple models that over-
generalize. This makes our methodology parameter-
free and thus increases its practical utility.

time

1 30
AAA AAAAAA A A AAA AAAAAA
BB B BBBBBBBBBBBBBBBB B

C cccccecececcecceccecececceccecccce

(a) Input event sequence

(c) Output summary
Figure 1: Visual representation of an event sequence
that contains events of three event types {4, B,C} and
spans timeline [1,30]. Figure 1(a) shows the input se-
quence; Figure 1(b) shows the segmental grouping and
Figure 1(c) shows the high-level view of our summary.
Same tone of gray correspond to same group.

EXAMPLE 1. Figure 1 shows an example of an input event
sequence and the output of our method for this particular
sequence. The input sequence is shown in Figure 1(a); it
contains three event types {A, B,C} and it spans timeline
[1,30] that consists of 30 discrete timestamps.

Figure 1(b) shows the actual segmental grouping that our
method finds. Three segments are identified: [1,11], [12,20]
and [21,30]. Within each segment the events are grouped
into two groups; event types with similar frequency of ap-
pearance within a segment are grouped together. In the first
segment, the two groups consist of event types {A, B} and
{C} - A and B are grouped together as they appear much
more frequently than C in the interval [1,11]. Similarly, the
groups in the second segment are { A} and {B,C} and in the
third segment {A,C} and {B}.

Finally, Figure 1(c) shows what the output of the summa-
rization method conceptually looks like. The coloring of the
groups within a segment is indicative of the probability of ap-
pearance of the events in the group; darker colors correspond
to higher occurrence probabilities.

1.1 Problem Statement and Approach

We address the following problem: assume an event se-
quence S that records occurrences of events over a time in-
terval [1,n]. Additionally, let £ denote the distinct event
types that appear in the sequence. Our goal is to partition
the observation interval into segments of local activity that
span [1,n]; within each segment identify groups of event
types that exhibit similar frequency of occurrence in the
segment. We use the term segmental grouping to describe
such data-description model. For the purposes of this paper
we only consider discrete timelines. We additionally assume

that events of different types are generated at every distinct
timestamp independently from some stationary probability
that depends on the event type and the segment itself.

We formally define the problem of finding the best seg-
mental grouping as an optimization problem. By penalizing
both complex and simple models, we develop a parameter-
free methodology and provide polynomial-time algorithms

that optimally solve the above summarization problem. Dynamic-

programming is at the core of these optimal algorithms. The
computational complexity of our algorithms depends only on
the number of timestamps at which events occur and not on
the total length of the timeline n.

Although the main motivation for our work is the forensic
analysis of large audit logs, we conjecture that the tech-
niques presented herein can also be applied to other diverse
domains. For example, useful summaries can be constructed
for biological data, data streams, and large documents using
our methodology.

1.2 Roadmap

The rest of the paper is organized as follows; in Section 2
we give some basic notational conventions. In Section 3 we
formally describe our summarization scheme and the corre-
sponding optimization problem of finding the best summary.
The algorithms for solving the problem are presented in Sec-
tion 4 and experiments are given in Section 5. We review
the related work in Section 6 and conclude in Section 7.

2. PRELIMINARIES

Event sequences consist of events that occur at specific
points in time. That is, every event in the sequence has
an associated time of occurrence. We assume a set £ of
m different event types. An event is a pair (F,t), where
E € £ is an event type and ¢ is the (occurrence) time of
the event on a timeline. We consider discrete timelines in
which occurrence times of events are positive integers in the
interval [1,n]. That is, the timeline consists of n different
evenly spaced timestamps at which events of different types
might occur.

We represent an event sequence by an m X n array S such
that S (i,¢) = 1 if an event of type E; has occurred at time
point t. At a certain time ¢, events of different types can
occur simultaneously. That is, each column of S can have
more than one l-entries. However, at any time ¢, only one
event of each type can occur (If multiple events of the same
type do occur at a point ¢, they can be ignored as duplicates).

Figure 1(a) shows an event sequence S on which events of
m = 3 different types appear; £ = {A, B, C}. The events oc-
cur on the timeline [1,30]. That is, there are 30 timestamps
at which any of the three event types can occur.

Given interval I C [1,n], we use S [I] to denote the m X |I|
projection of S on the interval I. Finally, for event type
E € & and interval I C [1,n] we denote the number of
occurrences of events of type E within the interval I with
n(E,I).

The core idea is to find a segmentation of the input time-
line [1,n] into contiguous, non-overlapping intervals that
cover [1,n]. We call these intervals segments. More for-
mally, we want to find a segmentation of S into segments
denoted by S = (Si1,...,Sk). Such a segmentation is de-
fined by k+1 boundaries {b1, bz, ..., bk, b1} where by =1,
bi+1 = n+1 and each b;, with 2 < j < k takes integer values
in [2,n]. Therefore, the j-th segment corresponds to the sub-

sequence S [bj,bj+1 — 1]. A segmentation of the input event
sequence of Figure 1(a) is shown in Figure 1(b). The input
sequence is split into 3 segments defined by the boundaries
{1,12,21,31}.

We now focus our attention on the data of a specific seg-
ment S; defined over the time interval I. That is, S; = S [I].
We describe the portion of the data that corresponds to S;
by the local model M;. We consider model M; to be a par-
titioning of event types &£ into groups {Xji,..., X} such
that X;; C € and X,; N X, = 0 for every j # j' with
1 < 4,7/ < {. Each group X;; is described by a single pa-
rameter p (X;;) that corresponds to the probability of seeing
an event of any type in X;; within data segment S;.

Consider for example the first segment of the output seg-
mentation in Figure 1(b) (or Figure 1(c)) that defines seg-
ment Iy = [1,11], with length |/;| = 11. In this case the local
model M; that describes the data in S = S[I1] partitions
€ into groups X11 = {A, B} and X12 = {C} with

1n(A,Il)+7’L(B,Il) 19

p(Xll):§ |Il‘ 257
and
n(C,Il) 1
X = —— = —
p(X12)] 11

The SUMMARIZATION Problem. Our overall goal is to iden-
tify the set of boundaries on the timeline that partition S
into segments (S1, ..., Sk) and within each segment S; iden-
tify a local model M; that best describes the data in S;.

The partitioning of S into segments (S1,...,Sx) and the
corresponding local models M, ..., M} constitute the seg-
mental grouping or summary of S. For the rest of the dis-
cussion we use the terms summary and segmental grouping
interchangeably.

In order to be able to devise algorithms for the SUMMA-
RIZATION problem we first need to define the optimization
function that best describes the objective of this informal
problem definition. Our optimization function is motivated
by the Minimum Description Length (MDL) principle.

3. SEGMENTATION MODEL FOR EVENT
SEQUENCES

Before formally developing our model, we first review the
Minimum Description Length (MDL) principle. Then, we
show how to apply this principle to formalize the SUMMA-
RIZATION problem.

3.1 Minimum Description Length Principle

The MDL principle [15, 16] allows us to transform the
requirement of balance between over-generalizing and over-
fitting into a computational requirement.

In brief the MDL principle states the following: assume
two parties P and P’ that want to communicate with each
other. More specifically, assume that P wants to send event
sequence S to P’ using as less bits as possible. In order for P
to achieve this minimization of communication cost, she has
to select model M from a class of models M, and use M to
describe her data. Then, she can send P’ model M plus the
additional information required to describe the data given
the transmitted model.

Thus, party P has to encode the model M and then encode
the data given this model. The quality of the selected model

is evaluated based on the number of bits required for this
overall encoding of the model and the data given the model.

MDL discourages complex models with minimal data cost
and simple models with large data costs. It tries to find a
balance between these two extremes. It is obvious that the
MDL principle is a generic principle and it can have mul-
tiple instantiations that are determined by a set of model-
ing assumptions. It has been previously successfully applied
in a variety of settings that range from decision-tree classi-
fiers [11], genetic-sequence modeling [8], patterns in sets of
strings [7] and many more. We devote the rest of the section
to describe our instantiation of the MDL principle.

3.2 The Encoding Scheme

Recall that we model event sequences using a segmen-
tation model that partitions the input observation interval
[1,n] into contiguous, non-overlapping intervals I,..., Ij.
Therefore, S is split into (Si,...,Sk), where S; = S[L].
The data in each S; are described by local model M;; the
local model is in fact a grouping of the event types based on
their frequency of appearance in S;.

Local encoding scheme: We start by describing the pro-
cedure that estimates the number of bits required to encode
the data within a single segment S;.

Let model M; partition the rows of S; (which correspond
to events of all types, present or not in S;) into ¢ groups
X1,...,Xe. Each group Xj is described by a single param-
eter p (X;), the probability of appearance of any event type
in X; within subsequence S;. Given the X;’s, and corre-
sponding p (X;)’s for 1 < j < ¢, and assuming independence
of occurrences of events and event types, the probability of
data S; given model M; is given by

H H p(X;)"ED (1 — p(x;))I=mED

j=1EeX;

The number of bits required to describe data S; given model
M; is —log (Pr(S;|M))'. Therefore, local data cost of S;
given M; is

4
=33 (n(E D logp(X;) +

j=1EeX;

+ (1] = n(E, 1)) log (1 = p(X,))).

Equation (1) gives the number of bits required to describe
data in S; given model M;. For the encoding of S; we also
need to calculate the number of bits required to encode the
model M; itself. We call this cost (in bits) the local model
cost LM(M;). In order to encode M; we need to describe
the event types associated with every group X; (1 < j <
£), and for each group X; we need to specify parameter
p(X;). By standard arguments [15], we need log m bits to
describe each one of the p (X;)’s. Since there are £ groups we
need a total of £logm bits to encode the ¢ different p (X;)’s.
The encoding of the partitioning is slightly more tricky; first
we observe that if we fix an ordering of the event types

!By standard arguments the number of bits required for
encoding an event with probability ¢ is —log(q).

that is consistent with the partitioning X7,...,Xs,? then
we need m log m bits to specify the ordering and ¢log m bits
to identify the £ partition points on that fixed order. This is
because for this fixed order the partition points are integers
in the range [1, m] and thus logm bits are necessary for the
description of each partition point. Summing up these costs
we get the local model cost for M; that is

LM (M;) = 2Llogm + mlogm. (2)

Therefore, the total local cost in bits for describing segment
S, is the number of bits required to describe S; given model
M; and the cost of describing model M; itself. By summing
Equations (1) and (2) we get the valuation of the local cost
Lr, which is

Generative model: The above encoding schemes assume
the following data-generation process; within segment S;
events of different types are generated independently. For
each event type £ € X, with 1 < j </, an event of type
E is generated at every time point ¢ € I independently with
probability p (X;).

Global Encoding Scheme: The global model is the seg-
mental model M that splits S into segments S1, ..., Sg; each
segment is specified by its boundaries and the correspond-
ing local model M;. If for every segment i, the data in S;
is described using the encoding scheme described above, the
only additional information that needs to be encoded for
describing the global model is the positions of the segment
boundaries that define the starting points of the segments
on timeline [1,n]. Since there are n possible boundary po-
sitions the encoding of k segment boundaries would require
klogn bits. Therefore, the total length of the description in
bits would be

k
TL(S,M) = klogn+ Y LL(Si M),

=1

where LL (S;, M;) is evaluated as in Equation (3).
3.3 Problem Definition Revisited

We are now ready to give the formal definition of the
SUMMARIZATION problem.

PROBLEM 1. (SUMMARIZATION) Given event sequence S
over observation period [1,n] in which event types from set £
occur, find integer k and a segmental grouping M of S into
(S1,...,Sk) and identify the best local model M; for each S;
such that the total description length

k
TL(S,M) = klogn+ » LL(S; M), (4)
i=1
is minimized.

Problem 1 gives the optimization function that consists
of the number of bits required to encode the data given the
model, and the model itself. Note that the total model cost
can be decomposed in the cost for encoding the global seg-
mentation model klogn plus the cost for encoding the dif-
ferent local models evaluated as in Equation (2). The cost of

2A trivial such ordering is the one that places first all the
event types in X, followed by the event types in X2 and so
on.

encoding the data given the model is simply the summation
of the local data costs for every segment.

We use LL* (S;) to denote the minimum value of LL (S;, M;),
over all possible local models M;. Similarly, we use TL* (S)
to denote the minimum value of TL (S, M) over all possible
summaries M.

Since the definition of the optimization function is formed
based on the MDL principle, the function is such that: (a)
complex summaries are penalized because they over-fit the
data and (b) simple summaries are also penalized since they
over-generalize and fail to describe the data with the desired
accuracy. Moreover, using the MDL principle allows for a
problem formulation that is parameter-free; no parameter
setting is required from the analyst who is attempting to
extract knowledge from the input event sequence S.

4. ALGORITHMS

Despite the apparent interplay between the local models
picked and the positions of the segment boundaries on the
timeline, we can show that, in fact, Problem 1 can be solved
optimally in polynomial time.

Given data segment S; we call the problem of identify-
ing the local model that minimizes LL (S;, M;) the LOCAL-
GROUPING problem, and we formally define it as follows.

PROBLEM 2. (LOCALGROUPING) Given sequence S and
interval I C [1,n] find the optimal local model M; that min-
imizes the local description length of S; = S[I] given M;.
That is, find M; such that

M, = argminLL(Si,M{)
M

= arg H]\l/[l’n (LD (SZ|M;) + LM (M{))

Our algorithmic approach exploits the following statement.

STATEMENT 1. If the LOCALGROUPING problem (Prob-
lem 2) can be solved optimally in polynomial time, then the
SUMMARIZATION problem (Problem 1) can also be solved op-
timally in polynomial time.

In the rest of this section we give optimal polynomial-
time algorithms for the SUMMARIZATION problem. The al-
gorithms exploit the above statement. Moreover, we pro-
vide alternative sub-optimal, but practical and efficient, al-
gorithms for the SUMMARIZATION problem.

4.1 Finding the Optimal Global Model

We first present an optimal dynamic-programming algo-
rithm for the SUMMARIZATION problem. We also show that
not all possible segmentations of interval [1, n] are candidate
solutions to the SUMMARIZATION problem.

THEOREM 1. For any interval I C [1,n], let LL* (S[I]) =
minag, LL (S [I], M;). Then, Problem 1 can be solved opti-
mally by evaluating the following dynamic-programming re-
cursion. For every 1 < i < n,

TL* (S[1,4]) = (5)
= min {TL" (S[1,j] + LL" (S[j + 1,1]))} .

1<5<i

The proof of optimality is omitted due to space constraints.

However, a similar proof can be found in [2]. We call the
dynamic-programming algorithm that implements Recur-
sion (5) the Segment-DP algorithm. If 77 is the time re-
quired to evaluate LL* (S [I]), then the running time of the
Segment-DP algorithm is O(n>Ty,).

Not all points on the interval [1,n] are qualified to be seg-
ment boundaries in the optimal segmentation. In fact, only
the timestamps on which an event (of any type) occurs are
candidate segment boundaries. The following proposition
summarizes this fact.

ProPOSITION 1. Consider event sequence S that spans
interval [1,n] and let T C {1,2,...,n} be the set of times-
tamps at which events have actually occurred. Then, the
segment boundaries of the optimal segmentation model are
subset of T'.

Proposition 1 offers a speedup of the Segment-DP algo-
rithm from O (n*T%L) to O (|T[*Ty.), where |T| < n. That is,
the evaluation of Recursion (5) does not have to go through
all the points {1,...,n}, but rather all the points in T, on
which events actually occur. Although in terms of asymp-
totic running time Proposition 1 does not give any speedup,
in practice, there are many real data for which |T| << n
and therefore Proposition 1 becomes extremely useful. In
our experiments with real datasets we illustrate this fact.

4.2 The creedy Algorithm

The Greedy algorithm is an alternative to Segment-DP and
computes a summary M of S in a bottom-up fashion. The
algorithm starts with summary M?', where all data points
are in their own segment. At the t-th step of the algorithm,
we identify boundary b in M?* whose removal causes the max-
imum decrease in TL (S, M t). By removing boundary b we
obtain summary M‘T'. If no boundary that causes cost
reduction exists, the algorithm outputs summary M?.

Since there are at most n — 1 boundaries candidate for
removal the algorithm can have at most n — 1 iterations. In
each iteration the boundary with the largest reduction in the
total cost needs to be found. Using a heap data structure
this can be done in O(1) time.

The entries of the heap at iteration ¢ are the boundaries
of summary M?*. Let these boundaries be {b1,...,b}. Each
entry b; is associated with the impact, G(b;), of its removal
from M?'. The impact of b; is the change in TL (S,Mt)
that is caused by the removal of b; from M®. The impact
may be positive if TL (S, M") is increased or negative if the
total description length is decreased. For every point b; at
iteration ¢ the value of G(b;) is

G(bj) = LL"(S[bj-1,bj41 —1]) +1logn
—LL* (S [bjfl,bj — 1]) —logn
—LL* (S [bj, bj+1 — 1]) — logn.

The positive terms in the first row of the above equation
correspond to the cost of describing data S[bj_1,bj4+1 — 1]

after removing b; and merging segments [b;—1, b;] and [b;, bj4+1—

1] into a single segment. The negative costs correspond to
the cost of describing the same portion of the data using the
two segments [b;—1,b;] and [b;, b1 — 1].

Upon the removal of boundary b; at iteration ¢, the im-
pacts of boundaries b;_1 and b;41 need to be updated. With

the right bookkeeping this requires the evaluation of LL* for
two different intervals per update, and thus O(277%) time. In
addition to that, one heap update per iteration is required
and takes O(logn) time. Therefore, the total running time
of the Greedy algorithm is O(Trnlogn). Proposition 1 can
again speedup the running time of the Greedy algorithm to
O(Ti| T log |T}).

4.3 Finding Optimal Local Models

In this section we show that the LOCALGROUPING can also
be solved optimally in polynomial time using yet another
dynamic-programming algorithm. We call this algorithm
the Local-DP algorithm. The following proposition is at the
core of the Local-DP algorithm.

PROPOSITION 2. Consider interval I and let S; = S[I].
Without loss of generality assume that the events in £ are
ordered so that n(E1,I) > n(E2, 1) > ... > n(Em,I). Addi-
tionally assume that the optimal local model M; constructs ¢
groups Xi,...,Xe. Then, we have the following: if E;; € X
and E;, € X, with jo > ji, then for all E;’s such that
J e{ji+1,...,j2 — 1} we have that E; € X;.

Proposition 2 states that the grouping of the event types
in interval I respects the ordering of event types with respect
to their frequency of appearance in S [I].

The next proposition states that finding the optimal pa-
rameters p (X;) that minimize LD for local model M; that
partitions £ into X, ..., X, is simple. More specifically, the
value of p (Xj;) is the mean of the occurrence probabilities
of each event type E € X; within segment I.

PROPOSITION 3. Consider interval I C [1,n], and local
model M; for data in S; = S[I]. Let M; partition £ into
groups Xi,...,X¢. Then, for every X;, with 1 < j < ¥, the
value of p(X;) that minimizes LD (S;|M;) is

1 n(E,I)
P(Xj)—m Z T

EeX;

For the rest of this section we will assume that event
types in £ are ordered according to the ordering described
in Proposition 2. Given this ordering, we use £(j) to denote
the event type at the j-th position of the order and £(j,1) to
denote the set of event types at positions j, j+1,...,l—1,l on
that order. Moreover, given data segment S; we use S; [4,!]
to denote the subset of the events in S; that correspond to
event types in £(j,1).

Given the ordering of the event types in £ (Proposition 2)
the following dynamic-programming recursion computes the
minimum number of bits required to encode S;.

LL" (S; [1,j]) = mlogm-+ (6)
minlglgj {LL* (Sl [17“) +U(SZ [l+1,j]) +210gm},

where

USill+1,5]) =
= - Z n (E, I;)logp*
Eec&(l4+1,5)
- > (I=n(BD)log —p"),
BeE(+1,5)

and by Proposition 3 p* is given by

n(E,I)
1]

The m logm term in Recursion (6) corresponds to the cost
of encoding the ordering of the event types in S;, while the
term 2logm encodes the number of bits required to encode
the occurrence probability of any event type in the group
E(l+1,j) and the group itself. Note that the order of the
event types needs to be sent only once per segment, while
the probability of event appearance per group and the group
information needs to be sent once per group.

=y,

Ec&(l+1,5)

THEOREM 2. The Local-DP algorithm that evaluates Re-
cursion (6) finds the optimal local model for the data segment
S, in polynomial time.

The running time of the Local-DP algorithm is O (m2).
For every index j the algorithm recurses over all values of
[in the interval 1 < I < j. Since the largest value of j
is m, the running time of the algorithm is O(m?). This
quadratic running time is under the assumption that in a
preprocessing step we can compute the values of the U()
function for all the combination of indices j and [. In fact,
the asymptotic term O(m?) also contains the hidden cost
of sorting the event types in £ based on their frequency of
occurrence in S;, which is O(mlogm).

Note that a proposition similar to Proposition 1 of Sec-
tion 4.1 can also be applied here. Informally, this means
that event types that do not occur in S; can be ignored
when evaluating Recursion (6).

4.4 The LocalGreedy Algorithm

Similar to the Greedy algorithm for finding the optimal
segment boundaries in [1,n] (see Section 4.2), we give here
a greedy alternative to the Local-DP algorithm that we call
the LocalGreedy algorithm. By using the same data struc-
tures as the ones described in Section 4.2 the running time
of the LocalGreedy algorithm is O(mlogm).

As the Greedy algorithm, LocalGreedy computes the global
partitioning X of S; in a bottom-up fashion. It starts with
grouping X!, where each event type is allocated its own
group. At the t-th step of the algorithm grouping X' is
considered, and the algorithm merges the two groups that
introduce the maximum decrease in LL (S;, M;). This merge
leads to partition X**'. If no merging that causes cost re-
duction exists, the algorithm stops and outputs partition
Xt

4.5 Putting the Algorithms Together

Both Segment-DP and Greedy algorithms require a func-
tion that evaluates LL* for different data intervals. The
value of LL* can be evaluated using either Local-DP or
LocalGreedy algorithms. This setting creates four differ-
ent alternative algorithms for solving the SUMMARIZATION
problem; the DP-DP that combines Segment-DP with Local-
DP, the DP-Greedy that combines Segment-DP with Local-
Greedy, the Greedy-DP that combines Greedy with Local-
DP and Greedy-Greedy that combines Greedy with Local-
Greedy. DP-DP gives the optimal solution to the SUMMA-
RIZATION problem. However, all other combinations also
provide high-quality results, while at the same time they
give considerable computational speedups.

In terms of asymptotic running times the DP-DP algorithm
requires O(n*m?) time, the DP-Greedy O(n*mlogm), the
Greedy-DP O(m?*nlogn) and the Greedy-Greedy algorithm
time O(nm lognlogm).

S. EXPERIMENTAL EVALUATION

In this section we report our experiments on a set of
synthetic and real datasets. The main goal of the exper-
imental evaluation is to show that all four algorithms we
developed for the SUMMARIZATION problem (see Section 4)
give high-quality results. That is, we show that even our
non-optimal greedy-based algorithms (DP-Greedy, Greedy-
DP and Greedy-Greedy) use close to the optimal number of
bits to encode the input event sequences, while producing
meaningful summaries. Moreover, the greedy-based meth-
ods provide enormous computational speedups compared to
the optimal DP-DP algorithm.

The implementations of our algorithms are in Java Version
1.4.2. The experiments were conducted on a Windows XP
SP 2 workstation with a 3GHz Pentium 4 processor and 1
GB of RAM.

We evaluate the quality of the solutions produced by an
algorithm A, by reporting the compression ratio CR(A),
where A is any of the algorithms: DP-DP, DP-Greedy, Greedy-
DP and Greedy-Greedy. If M, is the summary picked by
algorithm A as a solution to the SUMMARIZATION problem
with input S, then, we define the compression ratio of algo-
rithm A to be

TL (S, MA)
CR(A) = TL(S, M) (7

Summary Munic is the model that describes every event
on S separately; such a model has n segment boundaries
(one segment per timestamp) and m groups per segment
and it corresponds to the model where no summarization is
done. By definition, compression ratio takes values in [0, 1];
the smaller the value of CR(A) the better the compression
achieved by algorithm A.

5.1 Experiments on Synthetic Data

In this section we give experiments on synthetic datasets.

The goal of these experiments is threefolds. First to demon-
strate that our algorithms find the correct model used for
the data generation; second to show that they significantly
compress the input datasets; third to show that the greedy
alternatives, though not provably optimal perform as well
as the optimal DP-DP algorithm in practice.
The datasets: We generate synthetic datasets as follows:
we first fix n, the length of the observation period, m, the
number of different event types that appear in the sequence
and k, the number of segments that we artificially “plant”
in the generated event sequence. In addition to {0} and
{n + 1} we select k — 1 other unique segment boundaries
at random from points {2,...,n}. These boundaries define
the k segments. Within each segment I; = [b;,biy1) we
randomly pick the number of groups to be formed. Each
such group X;, is characterized by parameter p (X;;), that
corresponds to the probability of occurrence of each event
type in X;; in segment I;. The values of p (X,;) are normally
distributed in [0, 1].

Parameter V is used to control the noise level of the gener-
ated event sequence. When V = 0, for every segment I; and
every X;; in I;, events of any type F € X;; are generated

0.2 T T

GT —+—

o DP-DP —%—

= 0.15 |+ DP-Greedy —»— |

© Greedy-DP —=—

_5 Greedy-Greedy —=—

g 0.1 + B

o R

£

8 0.05 N - i

0 . .

0.02 0.04 0.08 0.16 0.32
Noise level

Figure 2: Synthetic datasets: n = 1000, m = 20, k = 10;
x-axis: noise level V € {0.01, 0.02, 0.04, 0.08, 0.1, 0.2, 0.3,
0.4, 0.5}, y-axis: compression ratio for algorithms DP-DP,
DP-Greedy, Greedy-DP and Greedy-Greedy.

0.2 T T
GT ——
o DP-DP —%—
= 0.15 |+ DP-Greedy —»— |
© Greedy-DP —=—
_5 Greedy-Greedy —=—
a 0.1 B
<)
o
g
S 0.05]
o

2 4 8 16 32 64 128
Number of event types (m)

Figure 3: Synthetic datasets: n = 1000, V = 0.04, k = 10;
x-axis: number of event types m € {2, 4, 8, 16, 32, 64, 128},
y-axis: compression ratio for algorithms DP-DP, DP-Greedy,
Greedy-DP and Greedy-Greedy.

independently at every timestamp ¢ € I; with probability
p (Xij;). For noise levels V' > 0, any event of type E € Xj;
is generated at each point ¢ € I; with probability sampled
from the normal distribution N (p (X;,;),V).
Accuracy of the algorithms: Figure 2 shows the com-
pression ratio of the four different algorithms (DP-DP, DP-
Greedy, Greedy-DP and Greedy-Greedy) as a function of the
increasing noise level V' that takes values in [0.01,0.5]. For
this experiment we fix n = 1000, £k = 10 and m = |€| = 20.
In addition to our four algorithms, we also show the com-
pression ratio of the ground-truth model (GT). This is the
model that has been used in the data-generation process.
From Figure 2 we observe that all four algorithms provide
summaries with small CR values, close to 7%.% Further-
more, this compression ratio is very close the compression
ratio achieved by the ground-truth model. In fact for high
noise levels (V' = 0.3,0.4,0.5) the CR achieved by our al-
gorithms is better than the CR of the ground-truth model.
This is because for high noise levels, the data-generation
model is less likely to be the optimal model to describe the
data. Overall, even the greedy-based algorithms exhibit per-
formance almost identical to the performance of the optimal
DP-DP algorithm in terms of the number of bits required to
encode the data.

Figure 3, shows the compression ratio of our algorithms
as a function of the number of event types m that appear
in the sequence. For this experiment, we vary m to take

3Recall that the smaller the value of CR the better the sum-
mary produced by an algorithm.

values {2, 4, 8, 16, 32, 128} and fix the rest of the param-
eters of the data-generation process to n = 1000, £ = 10
and V = 0.04. As in the previous experiment, we can ob-
serve that the compression ratio achieved by our algorithms
is almost identical to the compression ratio achieved by the
corresponding ground-truth model. Furthermore, we can
observe that all our algorithms exhibit the same compres-
sion ratio and thus can be used interchangeably. Notice that
as the number of event types increases, the compression ra-
tio achieved by both the ground-truth model as well as the
models discovered by our algorithms decreases, i.e., better
summaries are found when compared to the raw data. This
is because the more event types appear in the data, the more
local patterns there are, which are discovered by our sum-
marization methods. Muynit on the other hand, is oblivious
to the existence of local groupings. As a result, for large
number of event types the denominator in Equation 7 grows
much faster than the numerator.

5.2 Experiments with Real Datasets

In this section we further illustrate the utility of our algo-
rithms in a real-life scenario. By using event logs managed
by Windows XP we show again that all four algorithms con-
siderably compress the data and that produce equivalent
and intuitive models for the input sequences.

The real datasets consist of the application log, the se-
curity log and the system log displayed by the Windows
XP Event Viewer on our machines*. The application log
contains events logged by application programs. The se-
curity log records events such as valid and invalid logon
attempts, as well as events related to usage of resources. Fi-
nally, the system log contains events logged by Windows
XP system components. Each one of the three log files we
use stores log records with the following fields: (Event_Type,
Date, Time, Source, Category, Event, User, Computer). We
exported each one of the three log files into a separate file
and processed them individually.

Our application log spans a period from June 2007 to
November 2007, the security log the period from May 2007
to November 2007 and the system log the period from
November 2005 to November 2007. For all these files we
consider all the logged events found on our computer, with-
out any modification.

Considering as event types the unique combinations of
Event_Type, Source and Event and as timestamps of events
the combination of Date and Time, we get the datasets with
characteristics described in Table 1 (upper part). Note that
the system records the events at a millisecond granular-
ity level. Therefore, the actual length of the timelines (n)
for the application, security and system logs are n =

12, 313,576,000, n = 14, 559, 274,000 and n = 61,979, 383, 000

respectively. However, this fact does not affect the perfor-
mance of our algorithms which by Proposition 1 only de-
pends on the number of unique timestamps N on which
events actually occur; the values of N for the three datasets
are are N = 2673, N = 7548 and N = 6579 respectively.
Elapse times for the computations are reported in sec-
onds in Table 1. For example, the elapse time for the DP-DP
method with the system dataset is roughly 10 hours; which
makes this method impractical for large datasets containing
a large number of event types. We see that the Greedy-

4We use the default Windows configuration for logging, so
similar datasets exist on all Windows machines.

application

security system

Observation Period
Observation Period (millisecs)

06/07-11/07
12,313,576,000

05/07 - 11/07
14,559,274,000

11/05-11/07
61,979,383,000

Number of events (N) 2673 7548 6579
Number of event types (m) 45 11 64
RUNNING TIMES (secs)

DP-DP 3252 2185 34691
CP-Greedy 976 2373 8310
Greedy-DP 18 1 91
Greedy-Greedy 7 1 24
COMPRESSION RATIO CR(A)

DP-DP 0.04 0.32 0.03
DP-Greedy 0.04 0.32 0.03
Greedy-DP 0.04 0.34 0.03
Greedy-Greedy 0.04 0.33 0.03

Table 1: Experiments with real datasets

Greedy algorithm ran in 24 seconds for the same dataset.

Finally, the compression ratio (CR) achieved for the three

datasets by the four different algorithms are also reported in
Table 1. The results indicate that the greedy-based meth-
ods produce as good summaries as the optimal DP-DP algo-
rithm. Therefore, the results of Table 1 further illustrate
that despite the optimality of the solutions produced by DP-
DP, the latter algorithm can prove impractical for very large
datasets. Greedy-based algorithms on the other hand, give
almost as accurate and condensed summaries and are much
more efficient in practice.
Structural similarity of the results. We have observed
that all our algorithms achieve almost identical compres-
sion ratios for the same data. A natural question to ask is
whether the actual models they output are also structurally
similar. In other words, do the reported segmental group-
ings have the same segment boundaries and are the groups
within the reported segments similar?

The goal of Figure 4 is to answer this question in an af-
firmative way. This figure visualizes the output segmental
groupings reported by algorithms DP-DP, DP-Greedy, Greedy-—
DP and Greedy-Greedy (Figures 4(a), 4(b), 4(c), and 4(d)
respectively) for the application log dataset.

Each subfigure corresponds to the output of a different
algorithm and should be interpreted as follows: the x-axis
corresponds to the timeline that is segmented, with the ver-
tical lines defining the segment boundaries on the timeline.
Within each segment, different groups of event types are rep-
resented by different colors (darker colors represent groups
that have higher probability of occurrence within a seg-
ment). The vertical length of each group is proportional
to its size. The main conclusion that can be drawn from
Figure 4 is that the output segmental groupings of DP-DP
and DP-Greedy algorithms are almost identical, and the out-
put of all four algorithms are very close to each other. The
apparent similarity is that all segmentations have a large
segment in the beginning of the observation period and an
even larger segment towards its end. In these segments the
same number of groups are observed. In the interval that is
in-between these two large segments the outputs of DP-DP,
DP-Greedy and Greedy-DP exhibit very similar structure, by
identifying almost identical segment boundaries. Seemingly
different are the boundaries found by Greedy-Greedy algo-
rithm. However, a closer look shows that these latter bound-

aries are not far from the boundaries identified by the other
three algorithms; Greedy-Greedy in fact identified boundary
positions very close to the boundary positions identified by
the other three algorithms.

:

2007/06/23 2007/06/26 2007/11/09

(a) DP-DP algorithm

:

2007/06/23 2007/06/26 2007/11/09

(b) DP-Greedy algorithm

F

2007/06/23 2007/06/26 2007/11/09

(c) Greedy-DP algorithm

%

2007/06/25 2007/06/26

2007/11/09

(d) Greedy-Greedy algorithm

Figure 4: Output segmental groupings of different algo-
rithms for the application log data.

6. RELATED WORK

Although we are not aware of any work that proposes the

same summarization model for event sequences, our work
clearly overlaps with work on sequence mining and time-
series analysis.

Closely related to ours is the work on mining episodes and
sequential patterns ([1, 3, 10, 13, 19]). That work mostly
focuses on developing algorithms that identify configura-
tions of discrete events clustered in time. Although those
algorithms identify local event patterns, known as frequent
episodes, they do not provide a global description of the
event sequence neither do they care about the conciseness
of the produced patterns.

Summarization of event sequences via a segmentation model

is proposed in [9]. However, the technique presented there
can only model sequences of single event types; within each
local interval, the appearances of events are modelled by a
constant intensity model. In fact, one can think of our model
as a generalization of the model proposed in [9] since in fact
we split the event types into groups of constant intensities.

Also related is the segmentation framework developed by [8]
in order to identify block structures in genetic sequences. A
minimum description length approach is also used there for
identifying the number and positions of segment boundaries.
However, the models built within each block serve the partic-
ular modelling requirements of the genetic sequences under
study. For example, in the case of [8] finding the local model
in each segment is an NP-hard task, while in our case this
task is polynomial.

At a high level there is an obvious connection between
our model and the standard segmentation model used for
time-series segmentation (see [4, 5, 6, 18] and indicative,
though not complete, set of references). Similarly, there
is an equally interesting line of work that deals with the
discovery of local patterns in time-series data, e.g., [12, 17,
20]. However, the connection to our work remains at a high
level since we focus on event sequences and not on time
series, while at the same time the local models we consider
per segment are quite distinct from the models considered
before. Same high-level connection exists between our model
and HMMs [14]. However, the assumptions behind HMMs
are different from the assumptions we make in this model.

7. CONCLUSIONS

We proposed a framework and an algorithmic solution to
the problem of summarizing deluging event sequences that
continuously record the activities of systems and individu-
als. Our framework is based on building segmental group-
ings of the data. A segmental grouping splits the timeline
into segments; within each segment events of different types
are grouped based on their frequency of occurrence in the
segment. Our approach is based on the MDL principle that
allows us to build summaries that are short and accurately
describe the data without over-fitting.

Our contribution is in the definition of the segmental group-
ings as a model for summarizing event sequences. This
model when combined with the MDL principle allowed us to
naturally transform the event-sequence summarization prob-
lem to a concrete optimization problem. We showed that
this problem can be solved optimally in polynomial time us-
ing a combination of two dynamic-programming algorithms.
Furthermore, we designed and experimented with greedy al-
gorithms for the same problem. These algorithms, though
not provably optimal, are extremely efficient and in practice
give high-quality results. All our algorithms are parameter

free and when used in practice produce meaningful sum-
maries.

8. REFERENCES

[1] R. Agrawal and R. Srikant. Mining Sequential
Patterns. In ICDE, 1995.

[2] R. Bellman. On the approximation of curves by line
segments using dynamic programming.
Communications of the ACM, 4(6), 1961.

[3] D. Chudova and P. Smyth. Pattern discovery in
sequences under a markov assumption. In KDD, pages
153-162, 2002.

[4] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In STOC, pages 471-475, 2001.

[5] P. Karras, D. Sacharidis, and N. Mamoulis. Exploiting
duality in summarization with deterministic
guarantees. In KDD, pages 380-389, 2007.

[6] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An
online algorithm for segmenting time series. In ICDM,
pages 289-296, 2001.

[7] P. Kilpeldinen, H. Mannila, and E. Ukkonen. Mdl
learning of unions of simple pattern languages from
positive examples. In FuroCOLT, pages 252-260, 1995.

[8] M. Koivisto, M. Perola, T. Varilo, et al. An MDL
method for finding haplotype blocks and for estimating
the strength of haplotype block boundaries. In Pacific
Symposium on Biocomputing, pages 502—-513, 2003.

[9] H. Mannila and M. Salmenkivi. Finding simple
intensity descriptions from event sequence data. In
KDD, pages 341-346, 2001.

[10] H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurrences. In KDD , pages
146-151, 1996.

[11] M. Mehta, J. Rissanen, and R. Agrawal. Mdl-based
decision tree pruning. In KDD, pages 216-221, 1995.

[12] S. Papadimitriou and P. Yu. Optimal multi-scale
patterns in time series streams. In SIGMOD , pages
647-658, 2006.

[13] J. Pei, J. Han, and W. Wang. Constraint-based
sequential pattern mining: the pattern-growth
methods. J. Intell. Inf. Syst., 28(2):133-160, 2007.

[14] L. R. Rabiner and B. H. Juang. An introduction to
Hidden Markov Models. IEEE ASSP Magazine, pages
4-15, January 1986.

[15] J. Rissanen. Modeling by shortest data description.
Automatica, 14:465-471, 1978.

[16] J. Rissanen. Stochastic Complexity in Statistical
Inquiry Theory. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1989.

[17] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid:
Stream mining through group lag correlations. In
SIGMOD, pages 599—610, 2005.

[18] E. Terzi and P. Tsaparas. Efficient algorithms for
sequence segmentation. In SDM, 2006.

[19] J. Yang, W. Wang, P. S. Yu, and J. Han. Mining long
sequential patterns in a noisy environment. In
SIGMOD, pages 406417, 2002.

[20] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real time.
In VLDB, pages 358-369, 2002.

