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ABSTRACT
Advancements in mobile technology and computing have fostered
the collection of a large number of civic datasets that capture the
pulse of urban life. Furthermore, the open government and data
initiative has led many local authorities to make these datasets pub-
licly available, hoping to drive innovation that will further improve
the quality of life for the city-dwellers. In this paper, we develop a
novel application that utilizes crime data to provide safe urban nav-
igation. Specifically, using crime data from Chicago and Philadel-
phia we develop a risk model for their street urban network which
allows us to estimate the relative probability of a crime on any
road segment. Given such model we define two variants of the
SAFEPATHS problem where the goal is to find a short and low-risk
path between a source and a destination locations. Since both the
length and the risk of the path are equally important but cannot be
combined into a single objective, we approach the urban-navigation
problem as a biobjective shortest path problem. Our algorithms aim
to output a small set of paths that provide tradeoffs between dis-
tance and safety. Our experiments demonstrate the efficacy of our
algorithms and their practical applicability.

1. INTRODUCTION
A recent United Nations report states that more than 50% of the

world’s population currently lives in cities. This percentage is pro-
jected to increase to 70% by 2050 [8]. One of the main reasons for
these levels of urbanization is the long-lived thought of cities as the
paramount instrument for innovation and wealth creation. Never-
theless, there are side effects attached to this phenomenon. Cities
have become the main source of crimes, diseases and pollution,
significantly deteriorating the quality of life of their dwellers.

During the last years, local authorities have collected a large
number of civic datasets that capture various aspects of urban life.
These datasets include information for street constructions, crimes,
bicycle routes, etc. The open government and data initiative from
President Obama’s administration [7] has further led many local
authorities to systematically collect, organize and publicize such
datasets. Besides the transparency of federal and local government
operations, this initiative seeks the development of innovative ser-
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vices that will impact people’s lives, from the people themselves.
In this paper, we take steps towards this direction. In particular,

we focus on one of the major aforementioned problems present in
almost every megacity today: crimes and public safety. We develop
a novel application aiming to identify safe and short paths for peo-
ple to take when they navigate the city. For this purpose, we take
into consideration both the spatial constraints imposed by the struc-
ture of the city’s road network as well as the criminal activity in the
city. Ideally, prioritizing the safety of dwellers, one would like to
provide the user with the safest path from origin s to destination t.
However, such a path may incur a significant penalty in the total
distance that needs to be traveled. Conversely, the shortest path be-
tween s and t may be risky. Therefore, we approach the problem
of safe urban navigation as a bicriteria optimization problem where
the goal is to provide users with a small collection of paths, each
offering a different tradeoff between distance and safety. Possibly,
none of the available walking options might be satisfying to the
user, who might consider that the safest path is still too risky, for
instance, and in light of this information decide to use alternative
means of transportation (e.g., taxi).

As an example, consider the scenario illustrated by Figure 1: a
city dweller is at the Philadelphia Museum of Art (s) and wants
to return to her home on Wharton Street (t). Her shortest way to
home is given by Path 1. However, according to the crime model
we develop in Section 2, the itinerary indicated as Path 5 constitutes
her safest option, which is also about 1.5 times longer than Path
1. Instead, our art lover may prefer one of the intermediate routes
(Paths 2–4), that offer various tradeoffs between distance and risk.

Our approach in a nutshell: Our approach includes a modeling
and an algorithmic component. As part of the former, we develop
a framework for the crime risk on street urban networks. We focus
on the US cities of Chicago and Philadelphia. After exporting their
street networks from OpenStreetMap (OSM) into a graph format
we use publicly available crime datasets to assign a risk score to
each edge (i.e. street segment).

As part of the algorithmic component, we define the SAFEPATHS
problem as a biobjective shortest path problem where the goal is to
output a collection of paths that offer different tradeoffs between
their length and the associated risk. Of course the space of all pos-
sible paths can be extremely large and showing all such paths to
the users may be overwhelming. Thus, our goal is to select a small
subset of paths that gives a good summary of the solution space
and the available tradeoffs. We study two variants of this generic
problem that differ on their definition of the risk of a path. In the
first variant, the risk of the path is defined as the total probability
of a crime happening along all its segments. In the second variant,
the risk of the path is defined as the maximum risk to which the
user is exposed on any segment. The key challenge in designing
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Path 1 Path 2 Path 3 Path 4 Path 5
Length ` (m) 3955 4027 4060 4922 5988
Risk r (×10−3) 2.32 2.02 2.01 1.71 1.70

Figure 1: An illustrative example of safe urban navigation. The
routes depicted as Paths 1–5 offer various compromises between
distance and risk for traveling between s and t.

algorithms for these problems stems from the fact that they aim to
explore and summarize a possibly exponential solution space. The
algorithms we present can report a representative set of paths in a
matter of seconds. Moreover, we enhance these algorithms with
early-stopping criteria which, in practice, lead to 4-fold reduction
of the running time with minimal sacrifices in the information con-
tent they provide to the user.

Roadmap: The rest of the paper is organized as follows. Section 2
describes the civic datasets as well as the risk model we developed
for the urban road networks. Then, in Section 3, we provide the
necessary notation and formally define the SAFEPATHS problem
using the developed risk model, before describing our algorithms
to solve two specific instances of the problem in Section 4. In Sec-
tion 5 we present our experimental results, and after reviewing the
related work in Section 6, we conclude in Section 7.

2. MODELING URBAN SAFETY
Throughout the paper, we will represent the road network using

an undirected graph G = (V,E). The nodes of the graph, V , rep-
resent intersections and the edges, E, represent the road segments
that connect intersections. The focus on undirected graphs is due
to the fact that our framework is targeted primarily to pedestrians,
since they are more exposed to risks in urban areas. Clearly, such
users can traverse street segments in both directions. However, we
emphasize that this assumption is not restrictive and the proposed
framework can also be used with directed graphs.

Each road segment e ∈ E is associated with two (unrelated)
types of weights: its length, denoted by `(e), and its risk, denoted
by r(e). The length of edge e corresponds to the actual distance
between the two intersections connected by the associated street
segment, while the risk of edge e should be interpreted as the prob-
ability that a crime will be committed on that segment.

We now describe how this model can be obtained. More specifi-
cally, we explain how we combine information from different civic
datasets in order to build a risk model for two US cities.

2.1 Urban road networks
We extract the actual road network of a city using OpenStreetMap

(OSM) [3]. OSM is a crowdsourcing-based open platform, which
aims to make the world map freely available. The OSM commu-
nity has developed a number of tools that facilitate the integration
of OSM maps with a variety of applications. For our purposes we
make use of the osm4routing parser [5], that exports the map
of interest from an OSM format (appropriate for traditional GIS
systems) to a graph-based format (appropriate for graph-based al-
gorithms).

In particular, each node v in the exported graph G corresponds
to an intersection, while each edge e represents a street segment
that connects two intersections. osm4routing provides addi-
tional information about the intersections and the street segments
as node and edge attributes. Specifically, the geographical loca-
tion (latitude/longitude pair) of each node is provided. Each edge
e is annotated with a variety of features. The following ones are of
particular interest for our study:

– Length `(e), the physical length of the corresponding street
segment. It is the length value we associate with every edge
in our input graph.

– Geometry Γ(e), a sample set of discrete latitude/longitude
points from the street segment. It essentially provides infor-
mation about the actual geographic shape of the street seg-
ment.

– Accessibility flags, indicators that capture the accessibility of
a street segment by car, bicycle and foot.

Here, we consider the pedestrian street network of Chicago and
Philadelphia. We obtained the OSM maps for the metropolitan ar-
eas of these two cities from Metro Extracts [4]. The resulting two
graphs, Chicago and Philadelphia, representing the street net-
works of the metropolitan areas of these two cities, respectively,
have fairly similar sizes: Chicago comprises 57 998 nodes and
91 695 edges, compared to 55 234 nodes and 82 676 edges in Philadel-
phia. In both cities, most edges span a short geographic distance,
that is, less than 250m. There are few edges spanning long dis-
tances, 4km and above, that most likely correspond to highways.

2.2 Crime and safety
A risk model for the urban road network is essentially an as-

signment of a risk score r to each edge that is proportional to the
probability of a crime happening on the corresponding street seg-
ment. Note that we do not intend to infer the exact risk probability
of individual edges with this model. Rather, we are interested in
the relative values of r for different edges and the fact that they can
be interpreted as probabilities.

In addition to the above, we also use two civic datasets made
available by the cities of Chicago [1] and Philadelphia [2] that en-
code information about crimes in the two cities for the one year
period between October 2012 and September 2013. Their formats
do not align, as it is true with the majority of civic datasets made
available from different cities even when they aim to convey the
same information. Nevertheless, some basic information that both
of our datasets include are encoded in the tuple:

< Date, Time, Latitude, Longitude, TypeofCrime >.

Criminal activity: To build our model we will first use the ge-
ographic coordinates of the crime incidents to compute a spatial
density for the crime activity by applying a Gaussian kernel density
estimation (KDE). Given n points of crime incidents c1, c2, ..., cn
on a 2-dimensional plane, the Gaussian kernel estimates the density



Figure 2: KDE for crime activity in Chicago (left) and Philadelphia
(right).

of criminal activity density at point p as:

λ(p) =
1

nh2

n∑
i=1

1√
2π

exp(−||ci − p||22
2h2

), (1)

where ||ci−p||2 is the Euclidean distance between points ci and p
and h is the bandwidth used. The bandwidth h dictates the spread
of the Gaussian kernel that is centered at each datapoint and hence,
it controls the smoothness of the estimated density. Small values of
h can capture more detail while large values of h lead to smoother
estimation. In other words, it is the analogue of the bin width of
a histogram. We determine h according to Scott’s rule [32]. Fig-
ure 2 visualizes the estimated crime activities for the two cities.
As we can observe, crimes are not uniformly distributed over the
metropolitan areas of the two cities but there are hotspots of crimes,
something expected based both on our experience as city-dwellers
as well as on existing literature in a variety of fields (e.g. [13, 31]).

Once the density function is estimated, we evaluate it on the ac-
tual road segments. For this purpose, we make use of the geometry
Γ(e) of each edge e of the road network. Evaluating Equation (1)
on every point ξi ∈ Γ(e) and summing up we obtain the crime
activity density Λ(e) on road segment e: Λ(e) =

∑
ξi∈Γ(e)

λ(ξi).

Λ(e) is proportional to the probability of observing a crime incident
on edge e.

Risk model: The crime activity is typically higher in denser, pop-
ular areas simply because there are more opportunities for criminal
activities [22]. Hence, from a risk perspective we should normal-
ize the crime activity with the population/mobility density in the
corresponding urban environment. Simply put, for a more accu-
rate definition of the risk imposed to a city-dweller while traversing
street segment e, one would also need to estimate the spatial urban
activity density on e. The latter essentially captures the popula-
tion density observed on e and can be computed using fine-grained
mobility traces (e.g., from call detail records, GPS-traces etc.). In
particular, givenm points z1, z2, ..., zn on the 2-dimensional plane
that capture the locations where dwellers have been observed, we
can estimate the activity density α(p) at point p using Equation
(1). Similarly to above, we can further estimate the urban activ-
ity density on edge e as: A(e) =

∑
ξi∈Γ(e)

α(ξi). We can then
use the logistic function of the ratio between the crime and urban
activity densities to define the risk r(e) associated with edge e as:

r(e) =
1

1 + e−Λ(e)/A(e)
(2)

For our current study, we do not have access to detailed urban
mobility traces and hence, in our experiments we will directly make
use of the spatial crime density. In particular, we compute the risk

weights for every edge e as the normalized densities:

r(e) =
Λ(e)∑

e′∈G Λ(e′)
. (3)

Temporal dimension: Finally, criminal activity has a strong tem-
poral component as well. The temporal dimension can be incorpo-
rated in our model by filtering the data points that we use for train-
ing the KDE, in particular, by focusing the crime incidents (and the
mobility traces) that have been recorded within a time window ∆t
prior and after the query time during the previous δ days, based on
the time t of the path query from a user. Nevertheless, identifying
the optimal time granularity (i.e., ∆t and δ) is beyond the scope
of our work. While incorporating the time dimension is straight-
forward, it requires fine tuning of parameters that can be highly
dependent of the final application scenario. Therefore, we ignore
the temporal dimension in our experiments.

3. PROBLEM DEFINITION
We now turn to an application exploiting the model presented

above to provide safe pedestrian navigation in urban environments.
In this section, we present the necessary notation and then formally
define the SAFEPATHS problem and its variants.

Preliminaries: To reiterate, we consider a graph G = (V,E) with
two (unrelated) types of weights on its edges, the length `(e), and
the risk r(e).

A path P on G is defined as a connected sequence of edges;
a path P from a particular source, s, to a particular destination t
is a connected sequence of edges such that the first edge in the
sequence has its starting point in s and the last edge in the sequence
has its ending point in t. When we want to specify the source and
destination nodes of a path P , we denote it by Ps,t.

Clearly, the length of a path P is the sum of the lengths of its
edges; that is, `(P ) =

∑
e∈P `(e). The risk of a path P , r(P ),

is also a function of the risks of its edges, but we consider two
alternative definitions for it: the total-risk, denoted by rt(P ) and
the max-risk, denoted by rm(P ).

On one hand, rt(P ) is the probability of a crime happening any-
where along the path, or in other words, on any edge of P . More
specifically, it is defined as follows:

rt(P ) = 1−
∏
e∈P

(1− r(e)) . (4)

On the other hand, rm(P ) is the highest crime probability en-
countered on any single edge along the path P , that is,

rm(P ) = max
e∈P

r(e). (5)

Note that both rt(P ) and rm(P ) have a probability interpreta-
tion. However, while rm(P ) depends only on the most risky edge
of the path, rt(P ) involves the risk of all the edges in P . In both
cases, we look for safe paths. That is, we want to minimize r(P ),
whether it is instantiated as rt(P ) or rm(P ).

The SAFEPATHS problem: At a high level, the SAFEPATHS prob-
lem takes as input the road network G = (V,E) together with a
pair of source-destination nodes, (s, t), and its goal is to provide to
the user a (set of) short and safe paths between s and t.

The difficulty with this high-level problem definition is that clearly,
the shortest path (in terms of length) is not necessarily the one with
the smallest risk and vice versa. Therefore, the problem we actually
want to solve is a bicriteria optimization problem, where the goal
is to minimize both the length as well as the risk of the reported



path. Of course, there are multiple ways of formalizing, and subse-
quently, solving such a bicriteria optimization problem. One way
to approach it is by combining the two objectives, the length and
the risk of the path, into a single objective and ask for the path Ps,t
minimizing the weighted combination:

Ps,t = arg min
P ′s,t

(
α× `(P ′s,t) + β × r(P ′s,t)

)
,

where α and β are appropriately-tuned real-valued coefficients and
r(P ) encodes the max or the total risk of P .

Although such a formulation could be an option, it has its short-
comings. First, it is not straightforward to appropriately define
the parameters α and β since they depend on the user preference.
In this particular case, setting them is even more difficult because
`(P ) and r(P ) are not measured in comparable units. This latter
point also highlights that finding a single path that optimizes the
above objective does not have a direct and intuitive interpretation
since it is a single solution that optimizes a summation of distances
and probabilities.

Instead of combining the two objectives into a single one and
finding a unique solution with respect to that composite objective,
we take a different approach. We look for a small set of paths that
provide tradeoffs between the two objectives.

Every path P from s to t is a 2-dimensional point with its x-
coordinate corresponding to `(P ) and its y-coordinate correspond-
ing to r(P ) (see Figure 3 for an example). Clearly, there are many
paths from s to t, corresponding to different 2-dimensional points.
Therefore, in order to exhaustively explore the solution space one
needs to consider all possible paths and investigate the tradeoffs
they offer in terms of length versus risk. From a practical per-
spective, such an exhaustive exploration of the solution space is
infeasible, simply because the number of possible paths can be ex-
ponential in the input size.

However, if P is the set of all possible paths from s to t, then not
all of these paths are of interest to the user. For instance, consider
two paths P1 and P2, such that `(P1) ≤ `(P2) and r(P1) < r(P2):
P1 is better than P2 both in terms of length and risk. In this case,
we say that P2 is dominated by P1. Obviously, solutions in P that
are dominated by other solutions need not be considered. Since
the notion of domination of paths is important for the rest of the
discussion we provide a formal definition below.

DEFINITION 1. Given two paths P and P ′ and assuming that
their lengths and risks can be computed using functions `() and r(),
respectively, which are to be minimized, we say that P dominates
P ′ if `(P ) ≤ `(P ′) and r(P ) ≤ r(P ′) and at least one of the
two inequalities is strict, that is, either `(P ) < `(P ′) or r(P ) <
r(P ′).

We are also not interested in returning equivalent paths, i.e. paths
P and P ′ for which `(P ) = `(P ′) and r(P ) = r(P ′). In such
cases we break ties arbitrarily.

Given the above, we are now ready to define the SAFEPATHS
problem:

PROBLEM 1 (SAFEPATHS). IfP is the set of all possible paths
from s to t, our goal is to select a small subset of these paths S ⊆ P
such that for every path P ∈ S, P is neither dominated by nor
equivalent to any other path P ′ ∈ S.

Observe that in the above discussion we kept the definition of the
risk of the path generic, using r(P ) to denote indistincly the max
risk as well as the total risk. We call the instance of the SAFEPATHS
problem where the risk of the path is computed using rt(P ) (Equa-
tion (4)) the TOTAL-PATHS problem. On the other hand, when the
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Figure 3: The 2-dimensional representation of paths from the solu-
tion space P of a SAFEPATHS instance.

risk of P is computed using rm(P ) (Equation (5)), we call the cor-
responding problem the MAX-PATHS problem.

Observe that Problem 1 asks for a “small” subset of nondom-
inated paths. One can naturally wonder what the right number of
paths is. Here we aim to provide the end user with a set of paths that
she can easily parse. At the same time, this set should adequately
represent the space of nondominated paths.

4. ALGORITHMS
In this section, we present algorithms for TOTAL-PATHS and

MAX-PATHS. Given a source-destination pair (s, t), the common
goal of these algorithms for both problems is to efficiently explore
the space of nondominated paths from s to t.

These algorithms can be more easily understood if we visualize
every path P ∈ P as a 2-dimensional point, with its x-coordinate
corresponding to `(P ) and its y-coordinate corresponding to r(P ).
An example of a 2-dimensional representation of some of the paths
of P is shown in Figure 3.

For a fixed (s, t) pair, there are two important paths: the shortest
path, denoted by P ∗` , and the safest path, denoted by P ∗r . If the two
coincide, then the point that corresponds to the shortest and safest
solution dominates all others, and the algorithms report this as the
only solution.

When these two paths are distinct, they are both nondominated.
Furthermore, they define the “region" of the solutions in their 2-
dimensional representation. In fact, all the nondominated solutions
will have lengths in the interval [`(P ∗` ), `(P ∗r )] and risks in the
interval [r(P ∗r ), r(P ∗` )].

We propose recursive algorithms for both versions of the SAFEPATHS
problem that share the same high-level principle. Starting with the
shortest and the safest paths, P ∗` and P ∗r , they consider in each it-
eration a pair of nondominated paths Pu and Pl and search for an
intermediate nondominated path Pi inside the subintervals [`(Pl),
`(Pu)] and [r(Pu), r(Pl)] that they define within the original in-
tervals. This process is repeated recursively with the pairs (Pu, Pi)
and (Pi, Pl) until convergence.

Despite their common high-level description, the details of our
algorithms for TOTAL-PATHS and MAX-PATHS differ. We describe
them in turn in Sections 4.1 and 4.2. We also present speedups
which can be applied to both algorithms and lead to significant
computational savings, in Section 4.3



Sum-Recursive(G, `(), r())
1: P ∗` ← Dijkstra(G, `())
2: P ∗r ← Dijkstra(G, r())
3: S ← {P ∗` , P ∗r }
4: sum-rec(P ∗` , P

∗
r ,S)

5: return S

Routine sum-rec(Pu, Pl,S)
1: λ← (r(Pu)− r(Pl))/(`(Pu)− `(Pl))
2: ∀e ∈ E : f(e) = r(e)− λ`(e)
3: Pi ← Dijkstra(G, f())
4: if Pi 6= Pu and Pi 6= Pl then
5: S ← S ∪ {Pi}
6: sum-rec(Pu, Pi,S)
7: sum-rec(Pi, Pl,S)

Routine max-rec(Pu, Pl,S)
1: ρ← (r(Pu) + t(Pl))/2
2: if ∃e ∈ E, t(Pl) < r(e) < ρ then
3: Pi ← Dijkstra(Gr(e)<ρ, `())
4: if Pi 6= Pl then
5: S ← S ∪ {Pi}
6: max-rec(Pi, Pl,S)

7: max-rec(Pu, Pi,S)

Figure 4: The Sum-Recursive algorithm (left) associated to the sum-rec routine (middle) for the TOTAL-PATHS problem and the
sum-rec routine (right) for the MAX-PATHS problem.

Computing shortest paths: In all our algorithms we will often use
the Dijkstra shortest path routine. Dijkstra(G, f()) will indicate
that we run the Dijkstra shortest-path algorithm on input graph G
with weights on edges defined by function f(). That is, the output
of Dijkstra(G, f()) is a path P in G minimizing

∑
e∈P f(e).

4.1 Algorithms for the TOTAL-PATHS
First, let us take a closer look at the two objectives of the TOTAL-

PATHS problem. For every path P the length of the path, `(P ), is
written as a summation of the lengths of the edges in P . Moreover,
the total risk of the path, rt(P ), given in Equation (4), can equiv-
alently be minimized as a summation, namely, as the sum of the
negative logarithms of one minus the risk of the edges along the
path. Therefore, both our objectives can be computed as summa-
tions of (appropriately-defined) weights of the graph edges.
The solution space: Exploring the solution space of such “sum-
sum” biobjective shortest path problem is a long-studied research
topic and there exist many approaches that aim to compute the set
of nondominated paths [24] or solve variants of this problem [28,
17]. However, there can be exponentially many nondominated paths.
In addition to being expensive to compute, reporting such a solu-
tion set to the end user can be very overwhelming in practice and
thus, unrealistic and impractical.

Hence, we consider the following alternative: if P is the set of
all paths between s and t, we are content with reporting the lower
convex hull of P , defined with respect to the 2-dimensional repre-
sentation of the points. We denote as S the set of points in the lower
convex hull, also known as the linear path skyline [35]. Clearly,
S ⊆ P and all points in S correspond to nondominated paths.
The Sum-Recursive algorithm: The pseudocode of this algo-
rithm for finding S is given in Figure 4. At a high level, the algo-
rithm is a recursive algorithm that repeatedly calls the sum-rec
routine. This routine takes as input two nondominated paths Pu
and Pl and assigns to every edge e of the original graph a compos-
ite weight f(e) = r(e)− λ`(e), where λ is the gradient of the line
between paths Pu and Pl. The shortest path Pi of graph G with
weights assigned by f() is computed by Dijkstra(G, f()). This
new path is added to the set S and is used for recursively calling
the sum-rec routine using as input the pair of paths (Pl, Pi) and
the pair (Pi, Pu). Paths P ∗` and P ∗r are used as the initial pair, and
they are also members of S.

By the results of Mehlhorn and Ziegelmann [28], the set of paths
S reported by the Sum-Recursive algorithm upon termination
is the lower convex hull of the solution space P . If the algorithm
reports |S| points, it further requiresO(|S|) calls to the Dijkstra
routine. Thus, the worst-case running time of Sum-Recursive
is O (|S| (|E|+ |V | log |V |)).

4.2 Algorithms for the MAX-PATHS
Again, let us take a closer look at the two objectives of the MAX-

PATHS problem. For every path P the length of the path `(P ) is
again the summation of the lengths of the edges in P . However,
now the max-risk of the path, rm(P ), is the maximum of the risks of
the edges in P (cf. Equation (5)). Therefore, one of our objectives
can be written as a summation of edge lengths and the other as
the max of the edges risks, resulting in a “sum-max" biobjective
problem.

The solution space: This “sum-max” biobjective problem turns
out to have a more structured solution space than the “sum-sum”
problem we studied in the previous section. More specifically, any
set of nondominated and nonequivalent paths in the solution space
of the MAX-PATHS has size polynomial to the size of the input.
Indeed, since the risk of a path corresponds to the risk of a single
edge along the path, there can be only as many distinct values for
the path risks as there are edges in the network and there can be at
most one nondominated path for every such distinct value.

The Max-Exhaustive algorithm: The exhaustive algorithm
for finding the nondominated paths is straightforward: first, find P ∗`
and report this as a nondominated path. Then, identify in P ∗` the
edge with the maximum risk and remove from the original graph
all edges with risk greater or equal to that value. Find again the
shortest path in this reduced subgraph and add the new path into
the set of nondominated solutions. Iterate the above process un-
til the source and target are no longer connected. This algorithm,
that we call Max-Exhaustive, has at most O(|E|) repetitions
and each repetition requires running Dijkstra on the remaining
graph, resulting in an O(|E|2 + |E| |V | log |V |) running time.

The Max-Recursive algorithm: Instead of going over possi-
ble risk thresholds in decreasing order, like Max-Exhaustive,
Max-Recursive proceeds by recursion, similarly to Sum-Recursive,
but replacing the sum-rec routine by the max-rec routine shown
in Figure 4 (right).

At line 3, Max-Recursive runs the Dijkstra routine onGr(e)<ρ,
the subgraph obtained from G after removing all edges with risk
greater or equal to ρ. By doing so, it identifies the shortest path
Pi in G such that rm(P ) < ρ. For algorithmic purposes, we need
to remember the threshold with which a path P has been discov-
ered, which we denote by t(P ). Indeed, upon finding Pi, we know
that there is no nondominated path with risk between t(Pl) and
r(Pi), so we can leave out this range. Given two paths Pu and
Pl, max-rec considers as risk threshold ρ the mean of r(Pu) and
t(Pl). If there exist edges with risk between t(Pl) and ρ, and hence
potentially paths with rm inside that range, the Dijkstra routine is
run to identify the shortest such path. max-rec iterates with Pu
and the new path, as well as with the new path and Pl, if they differ.

Another difference between the two algorithms, Sum-Recursive
and Max-Recursive, is the computation of the safest path. While
in the sum variantP ∗r was obtained by simply running Dijkstra(G, r()),
here it is computed as follows. First, we compute the minimum
spanning tree (MST) of the graph considering the risks of the edges



as the weights. The risk ρ∗s,t of the safest path between a given
pair (s, t) is the maximum risk encountered along the unique path
from s to t in this spanning tree. Then, we compute the shortest
path verifying this risk threshold by running the Dijkstra routine on
Gr(e)≤ρ∗s,t to obtain P ∗r . Note that its length will generally differ
from the length of the path connecting s and t in the spanning tree.

Figure 3 illustrates a run of this algorithm. First, the shortest path
(P ∗` ) and safest path (P ∗r ) are found, then ρ1 is used as threshold,
finding P1. The next thresholds are ρ4 and ρ2 in the upper and
lower side respectively, and so on.

Since we are not looking for a unique solution we explore both
sides after a binary split. Thus, the worst-case complexity of this
approach is the same as the exhaustive search. In fact, the advan-
tage of Max-Recursive only appears when combined with the
approximation speedup discussed in the next section, which cannot
be applied to Max-Exhaustive.

4.3 Computational speedups
In this section we describe our strategies for speeding up the

above algorithms, applicable to both versions of the SAFEPATHS
problem.
Approximation via early stopping: The running time of our al-
gorithms for both versions of the SAFEPATHS problem depend lin-
early on the number of points in the set of paths returned by the
algorithms. Therefore, one way of speeding up the algorithms is
by reporting a subset of those paths. Hence, by restricting the num-
ber of recursions in Sum-Recursive and Max-Recursivewe
contribute to both of our aforementioned objectives, i.e., reducing
the runtimes and limiting the size of the reported solution sets.

Specifically, consider the shortest and the safest paths with 2-
dimensional representations (`(P ∗` ), r(P ∗` )) and (`(P ∗r ), r(P ∗` ))
respectively, defining a rectangle of area A. Before calling the
recursive routine with two paths Pu and Pl, we check the area
of the unexplored rectangle between them. If this area becomes
smaller than a chosen fraction γ of A we stop the iteration. With
sum-rec, the unexplored rectangle for paths Pu and Pl is delim-
ited by (`(Pu), r(Pu)) and (`(Pl), r(Pl)). With max-rec, it is
delimited by (`(Pu), r(Pu)) and (`(Pl), t(Pl)), since we know
there is no nondominated path with risk between t(Pl) and r(Pl).
For instance, consider the scenario in Figure 3 with γ = 0.1. Since
the hatched area is smaller than one-tenth of the total area A of the
solution space (delimited by a solid grey line), the recursive routine
is not called for P3 and P2. In summary, the choice of γ directly
limits the number of iterations and the number of paths in the solu-
tion; a larger γ results in fewer paths returned and shorter runtimes.
Pruning: Our pruning strategy, which we call the Ellipse prun-
ing, is based on the following observation: any path between s and
t that is longer than the safest path, will be dominated by it.

This observation has the following consequence: ifL is the length
of the safest path between s and t, then any node u such that the
sum of the distances “as the crow flies” from s to u and u to t is
greater than L cannot be part of the solution. This criterion defines
an ellipse with foci s and t and major axis of length L. Hence, af-
ter finding P ∗r we can safely remove any node that lies outside the
ellipse, thereby reducing the size of the graph processed in subse-
quent calls to the Dijkstra routine.

We combine the Ellipse pruning with another simple pruning
technique: we split the area that corresponds to the city (or neigh-
borhood) of interest into a grid and project the graphG on this grid.
Then, instead of considering the original graph we only consider
the grid cells that are included into or overlap with the ellipse.

Note that the Ellipse pruning reduces the size of the input
graph, without sacrificing the accuracy. That is, the set of nondom-

inated paths before and after the Ellipse pruning remains the
same.

5. EXPERIMENTS
In this section, we present an experimental assessment of our

proposed methods. Our main objective is to evaluate the practical
utility of our algorithms. We focus on two aspects: (i) the repre-
sentativeness of the small set of nondominated paths that our algo-
rithms return and (ii) their runtime.

We build our evaluation benchmark by sampling node pairs from
both cities. To ensure a good coverage of scenarios involving short
distances, which are of particular interest for a pedestrian urban
navigation system, we perform distance-aware sampling. More
specifically, we sample 100 nodes for each city. Then, for each
of these source nodes, we divide the remaining nodes into classes
based on their distance “as the crow flies” from the source. Consid-
ering distances of 1, 2, 3, 4 and 5 kilometers we have five concen-
tric circles around the source that divide the plane into six distance
classes further denoted by D0, D1, . . . D5. With this setting we
sample 4 targets from each class, obtaining a total of 2400 (s, t)
pairs for each city.

We run our algorithms for the TOTAL-PATHS and the MAX-
PATHS problems for each of the pairs on their respective road net-
work. For each run, we obtain a set of paths offering different trade-
offs between distance and safety. For instance, Figure 1 depicts an
actual solution of 5 paths to the TOTAL-PATHS problem for a pair
of nodes in Philadelphia.

The 2-dimensional representation of a solution consisting of 8
paths to MAX-PATHS for a pair of nodes in Chicago is plotted
in blue in Figure 3. As we explained previously, a path P can
be represented in a 2-dimensional space by a point whose x and y-
coordinates correspond to `(P ) and r(P ) respectively. Given a pair
of nodes, the shortest and safest paths joining them, P ∗` and P ∗r , de-
fine a rectangleR. A solution to the SAFEPATHS problem is a set of
paths S including P ∗` and P ∗r . In the 2-dimensional space, S can be
represented with a curve that starts from P ∗` , ends at P ∗r and passes
through intermediate nondominated paths in S acrossR. Formally,
given a solution S = (P ∗` , P1, P2, . . . , P

∗
r ), where the paths are or-

dered by increasing length, the corresponding curve is defined by:
(`(P ∗` ), r(P ∗` )), (`(P1), r(P ∗` )), (`(P1), r(P1)), (`(P2), r(P1)),
. . . (`(P ∗r ), r(P ∗r )).

Based on this representation, each solution is associated with an
area: the area of R located under the curve. Continuing on our
example in Figure 3, the area associated with the 8-paths solution is
colored in blue. Paths offering good tradeoffs correspond to points
close to the bottom left corner of R. Hence, solutions containing
good tradeoffs are associated with small areas (relative to the total
area of R).

Approximations: The representativeness of our algorithms can be
captured through their goodness of approximation as compared to
the exact algorithms for the corresponding problems. In particular,
we compare the exact algorithms Sum-Recursive (for TOTAL-
PATHS) and Max-Exhaustive (for MAX-PATHS), to both recur-
sive algorithms with applying the approximation via early stopping
– described in Section 4.3. For the latter we use three different val-
ues for the stopping criterion γ, namely, 0.05, 0.10 and 0.20. We
denote each of the above four runs for either problem by E, A5, A10
and A20, respectively.

Our goal is to evaluate the ability of our proposed approxima-
tions to capture the landscape of nondominated paths. When the
shortest and the safest paths coincide (i.e. |S| = 1) or when there
are no intermediate paths between P ∗` and P ∗r (i.e. |S| = 2), the



Table 1: Summary of the solution sizes. We indicate the total num-
ber of solutions, number of singletons and of two-paths solutions
(|S| = 1 and |S| = 2) and number of approximations multi-paths
solutions identical to the exact solution.

TOTAL-PATHS MAX-PATHS

Chicago Philadelphia Chicago Philadelphia
Total 2400 2400 2400 2400
|S| = 1 111 407 263 562
|S| = 2 182 148 317 253
Ident. A5 520 476 398 424
Ident. A10 420 407 340 351
Ident. A20 337 327 14 49

approximations trivially return the same solution as the exact al-
gorithms. Solutions containing intermediate paths (i.e. |S| > 2)
are called multi-paths solutions. The counts of singletons and two-
paths solutions found for both cities and both problems are reported
in Table 5. In addition, we also report the number of multi-paths
solutions found with the approximations that are identical to the
exact solutions. For instance, with the stricter approximation A5 for
the TOTAL-PATHS problem in Chicago, 111 + 182 + 520 = 813
solutions out of 2400 obtained are identical to the exact solutions,
as compared to only 630 with the looser approximation A20. The
difference is even more pronounced for the MAX-PATHS problem.

Still, we would like to measure the quality of the approxima-
tions beyond strict equality of the solution sets. For this purpose,
we compare the area associated with the solution obtained with an
approximation, denoted as SA, with the area associated with the so-
lution returned by the exact algorithm, denoted as SE. Note that
since the approximate solution is a subset of the exact solution, we
have SE/SA ≤ 1 and the equality holds if and only if the solutions
are identical. Thus, we use the ratio SE/SA to measure the qual-
ity of the approximations. It takes values in the unit interval, with
values closer to one indicating better approximations.

The statistics of our results on Chicago, grouped by distance
classes, are presented as box plots in Figures 5–6. In both figures,
the three lines of plots depict from top to bottom the distribution of
(i) area ratios (SE/SA), (ii) solution sizes (|S|) and (iii) runtimes in
seconds (T ) across the 400 pairs from each distance class. Note the
different scale used for the last column in each figure (for D5).

Results on Philadelphia are similar and we leave them out be-
cause of space constraints. For the same problem, the discrepancies
arising between the two cities are due to characteristics of their
respective road networks and crime distributions. For instance,
because of the Delaware river that runs through Philadelphia, the
walking distance between nodes on either side of the river is much
greater than their distance “as the crow flies”. Hence, the closer
distance classes contain pairs for which the shortest path is much
longer than expected. Besides, crime locations are more spatially
clustered in Chicago (see Figure 2) so the KDE for the crime activ-
ity is less regular, yielding a greater variety of risk thresholds in the
MAX-PATHS problem.

While remaining of high quality (average area ratios SE/SA al-
most always lie above 0.8), the approximations clearly deteriorate
for larger distances and especially for A20. This is due to the fact
that the average number of paths in the solutions returned by the ex-
act algorithms increases as distances expand while the number of
paths in the solutions with approximations is capped. The number
of paths per solution averages between 7.83 and 16.33 and reaches
up to 144 for the exact algorithms, while approximate solutions
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Figure 5: Results for TOTAL-PATHS on Chicago.
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Figure 6: Results for MAX-PATHS on Chicago.

never contain more than 8 paths, with an average between 2.93 and
4.30 depending on the scenario. As expected, the runtime scales
linearly with the size of the solution. Hence, combining the algo-
rithms with approximations yields notable reductions in the run-
times, especially for larger distances.

In summary, by using moderate approximations (e.g. A10) we ob-
tain very satisfactory solutions containing a small number of paths,
with shorter and more predictable runtimes, supporting the practi-
cal utility of our algorithms.

Pruning: Next, we investigate the benefits of applying the Ellipse
pruning described in Section 4.3. These pruning techniques discard
nodes that are too far away from s and t to be part of nondominat-
ing solutions. The first pruning technique, denoted by LN, filters
individual nodes while the second, denoted by LG uses a grid and
filters entire cells at once. Both techniques only affect the runtime
of the algorithms without impacting the solutions.

For this experiment, we focus on the Sum-Recursive and
Max-Recursive algorithms combined with approximation us-
ing γ = 0.10, as they represent the most practical scenario. The
runtimes in seconds on the Chicago network for these algorithms
with and without the pruning techniques are reported in Figure 5.
LN drastically reduces the size of the input graph of the Dijkstra
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routines, as witnessed by the very short span of runtimes. However,
the pruning operation itself imposes a large overhead which takes
away most of the benefits of using this method. This is particularly
evident for the TOTAL-PATHS problem, where the average runtime
with the pruning is almost equivalent to the average runtime of the
original algorithm, if not greater.

On the contrary, LG does not suffer from this drawback. While se-
lecting whole cells at once is suboptimal in terms of the reduction of
the graph, it can be performed more efficiently, resulting in an over-
all gain for both problems. Tuning the size of the grid provides a
means to adjust the balance between stringency and speed of prun-
ing. Here, after a short exploration, we chose a grid of 20 × 20
cells.

When the source and target nodes are far apart, the ellipse cov-
ers the graph almost entirely. Then, no node can be discarded and
pruning only adds overhead runtime. However, such situations can
be easily detected and the pruning can be abandoned.

6. RELATED WORK
Within the realm of urban computing [40], our work is related

mainly to research on modeling crime events, on recommending
routes to city-dwellers, and on solving biobjective optimization prob-
lems. Here, we review these lines of research and their connections
to our study.

Crime event models: Crime events are neither random nor uni-
form [31], but they exhibit spatial and temporal patterns. Large
research efforts focus on the development of specialized systems
for crime mapping [26, 12, 33] that can be used by law enforcement
agencies to study and analyze crime patterns and to inform their de-
cisions on strategies against crime. While these methods can visu-
alize events in the physical urban environment, there is also a large
volume of urban and social literature that attempts to explain the
reasons behind the observed patterns of crimes [11, 14, 15]. Such
theories can also provide guidelines for policies that aim to prevent
crimes. For instance, environmental criminology studies the rela-
tion between crime events and the spatio-temporal context of peo-
ple’s activities [11]. Apart from these theories, there is a surge in
studies that aim to identify and exploit patterns in historical crime
data, hoping to forecast crimes (e.g. [36, 38, 25, 10]). These efforts
have produced an arsenal of software tools that is available to law
enforcement for proactive policing (e.g. COPLINK [21], ESRI’s
GIS platform [6]).

While we are unable to present an exhaustive account of the cor-

responding literature, we emphasize here that our study is comple-
mentary in two ways: firstly, we propose computational methods
relying on combinatorial algorithms that use crime data to recom-
mend routes. Secondly, our algorithms could be combined with
forecasting systems that project/update the probabilities of crime
in the various street segments for upcoming path queries.

Urban navigation: Systems with new navigation objectives that
go beyond the shortest path have recently appeared in the litera-
ture, considering the recommendation of healthy routes (i.e. maxi-
mizing physical activity) [34], “happy”, pleasant routes [29], routes
tailored to the personal interests and spatiotemporal constraints of
users [9, 27, 16, 18, 37], or routes that take into account traffic
information gathered from historical speed patterns and GPS de-
vices [19, 23, 39], among others. The PAROS interface [20] further
allows to select routes based on up to three criteria, relying on the
skyline algorithm proposed in [24]. To the best of our knowledge
we are the first to consider the biobjective problem of safe and short
routes.

Biobjective shortest paths: From a computational viewpoint, our
work is related to research on finding non-dominated multi-objective
paths, also known as skyline routes [24]. In particular, consider-
ing biobjective shortest paths problems, Shekelyan et al. [35] in-
troduced the concept of linear paths skyline, that forms the lower
convex hull of the nondominated solution points. They proposed
refinements of the label-correcting algorithm, identified as the best
solution strategy in an extensive comparison [30]. The algorithm
we use requires less book keeping and was proposed by Mehlhorn
and Ziegelmann [28] as part of their solution to a problem known
as the resource constrained shortest path. It draws on geometric
intuitions and lends itself to further approximations and speed-ups.

On the other hand, the MAX-PATHS problem proves to have a
much more structured solution space, allowing us to identify com-
plete sets of nondominated paths.

7. CONCLUSIONS
In this paper, we developed a risk model for an urban road net-

work that is based on civic datasets of criminal activity as well as on
city-dwellers mobility traces. More specifically, we used publicly
available records of crime incidents from Chicago and Philadelphia
as well as the urban road networks of these two cities obtained from
OpenStreetMap.

Then we formalized the SAFEPATHS problem as a biobjective
optimization problem and set as our goal to identify a small col-
lection of nondominated paths that provide different tradeoffs be-
tween distance and safety. Our results showed the efficacy and the
efficiency of our algorithms and demonstrated the practicality of
biobjective optimization formulations in this setting.

By bringing together urban modeling based on public data sources
and algorithmic solutions, we obtain an application that help city-
dwellers to navigate safely their urban environment. In the future
we plan to identify appropriate data sources that can drive the more
accurate risk model described by Equation (2) as well as to incor-
porate the temporal dimension in our evaluations.
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