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Abstract

We show the underpinnings of a method for summarizing

documents: it ingests a document and automatically high-

lights a small set of sentences that are expected to cover

the different aspects of the document. The sentences are

picked using simple coverage and orthogonality criteria. We

describe a novel combinatorial formulation that captures ex-

actly the document-summarization problem, and we develop

simple and efficient algorithms for solving it. We compare

our algorithms with many popular document-summarization

techniques via a broad set of experiments on real data. The

results demonstrate that our algorithms work well in prac-

tice and give high-quality summaries.

1 Introduction

The task of automatic identification of important in-
formation themes within a text document is often re-
ferred to as Automatic Document Summarization. Al-
though research on document summarization dates back
in the 1950’s [13], the emergence of Web 2.0 applications
has revealed new angles of the problem. For example,
when one is reading online comments and discussions
following blogs, videos and news articles, it is desirable
to have a summary that highlights different aspects of
these comments because each one of them often has a
different focus, and there usually does not exist a single
central idea like in traditional text documents.

In this paper, we focus on single-document sum-
marization by reusing a subset of the sentences of the
original document. This is often referred to as sum-
marization by extraction. Our goal is given an input
document to construct a summary that highlights dif-
ferent aspects of the document. We require the follow-
ing two properties to be exhibited by the constructed
summaries:

Coverage: The summary should consist of sentences
that span a large portion of the spectrum of aspects
discussed in the document.

Orthogonality: Each sentence in the summary
should capture different aspects of the document.
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That is, the sentences in the summary should be as
orthogonal to each other as possible.

Note that the notion of coverage is different from
relevance used in query-oriented summarization systems
(e.g., [2]), where important sentences should be relevant
to a user-generated query or question. It is also different
from centrality used in centroid-based summarization
systems (e.g., [16]), where important sentences should
be close to the centroid of the document(s). Instead,
coverage encourages the selection of sentences such that
each of them represents a different aspects of the doc-
ument. The notion of orthogonality captures the same
concept of (anti)-redundancy in many other document
summarization systems (e.g., [2]); the sentences in the
summary are not redundant if they are not very similar
to each other.
Contribution: Our main contribution is in the novel
and clean combinatorial formulation for the Document
Summarization problem, which captures both cover-
age and orthogonality requirements. As a by-product of
this definition we also can demonstrate a natural con-
nection between Document Summarization and sev-
eral known combinatorial problems such as Maximum
Coverage and Unique Coverage [3].

Moreover, we develop simple and efficient algo-
rithms for solving the problem. These algorithms are
unsupervised, and do not need domain-specific infor-
mation (e.g., cue words, sentence’s position). We com-
pare our algorithms with many popular document-
summarization techniques via a broad set of experi-
ments on real data. Finally, we develop a new way of au-
tomatic evaluation of summaries produced by sentence-
extraction methods. We do so by creating mixed doc-
uments that contain sentences from different domains
and evaluating the coverage and orthogonality of the
summaries with respect to this ground truth.

Overall, despite the fact that document summariza-
tion as an extraction problem has been studied many
years in information-retrieval and text-mining commu-
nities, we are not aware of any prior work that abstracts
the problem in the way we present here.
Roadmap: The rest of the paper is organized as
follows. Section 2 gives an indicative overview of the
related work. Section 3 gives the necessary notation



and the formal problem definitions. Our algorithm
for the Document Summarization problem are given
in Section 4. Alternative algorithmic approaches to
the same problem are discussed in Section 5. We
present experimental results in Section 6 and conclude
in Section 7.

2 Related work

In this section, we give an indicative overview of this
topic with emphasis on summarization that is based
on sentence extraction from a single document. We
note that this review is far from complete, and we refer
the interested readers to http://www.summarization.

com/ and http://duc.nist.gov/ for a comprehensive
collection of resources favored by the community.

Traditional document summarization approaches
(see [14] for an excellent survey) have assumed that
the salient parts of a text document can be determined
by features like cue words, frequency of terms, position
of terms or sentences in the document etc. Most of
the traditional approaches (see for example [6]) have
focused on defining score functions for the sentences; a
score is assigned to every sentence using features like
the ones mentioned above. The score of a sentence is
independent of other sentences and the output summary
simply contains highly-scored sentences. Since the score
of every sentence is not affected by the other sentences,
two overlapping sentences, both with high scores, may
be picked together to be in the summary. In our
approach, we overcome this problem by assigning scores
to sets of sentences rather than sentences independently.
Therefore, our objective function does not encourage
overlapping sentences to co-exist in the constructed
summaries.

At a high level, approaches like MMR [2] and
Mead [16] also try to alleviate the problem of construct-
ing summaries with overlapping sentences by defining a
global objective function. Despite this high-level simi-
larity, the objective function of [2] and [16] is signifi-
cantly different from ours. For example, their objective
function does not take into account at all our require-
ment for high coverage. Moreover, their optimization
criterion, contrary to ours, is somewhat ad-hoc and does
not have an intuitive interpretation.

Another line of work has focused on developing
machine-learning approaches for summarization: a set
of sentences is labelled by human evaluators as impor-
tant for summarization and then a machine-learning al-
gorithm is trained to extract summaries using the la-
belled sentences as training data, See [5, 11] for some
examples of such methods. Document summarizers
that use linguistic knowledge have also been developed,
e.g., [17]. Our approach does not belong to either of

these categories because it is unsupervised and it makes
use of statistical information to generate summaries.

The proliferation of the Web has also inspired the
text mining community to create hybrid systems for
generating snippets in web search [19], for summarizing
web sites [1], for identifying important blocks of web
pages [18], and for extracting opinions from product
reviews [10]. There is only a high-level similarity
between these and ours since our methodology has no
technical overlap with the solutions they proposed.

3 Problem definition

In this section we provide a formal definition of the
Document Summarization problem that exactly cap-
tures the two requirements of coverage and orthogonal-
ity defined in the Introduction. We start this section by
giving the necessary notation in Section 3.1. In Sec-
tion 3.2 we explore the connection between different
combinatorial problems and document summarization.
We show that despite the high-level connection, there
are certain obstacles that need to be overcome in order
to find a clean combinatorial definition of the Docu-
ment Summarization problem that captures success-
fully all our requirements. We given this definition in
Section 3.3.

3.1 Preliminaries We consider every document as
a collection of sentences D = {s1, . . . , sm}, and use
T to denote the set of unique terms that appear in
the document. These are the set of terms that appear
in the sentences of D after we remove stopwords and
eliminate duplicates by performing stemming. Note
that we have avoided adding refinements such as term-
weighting, synonyms, N-grams (all of which generally
result in performance improvements) in order to better
evaluate the utility of our basic framework. No matter
what the building blocks of sentences, the underlying
assumption throughout this paper is that the elements
in T are important parts of the document and thus
capture its main themes. In the following presentation,
we only consider binary associations of terms with
sentences; that is, we consider sentences as simple sets
of terms. The cardinality of T is |T | = n.

3.2 Combinatorial aspects of the Document
Summarization problem In this section, our goal is
to demonstrate how certain combinatorial definitions of
the Document Summarization problem have certain
shortcomings. In principle we are seeking a problem
definition that captures the requirements of coverage
and orthogonality. We start by giving the definition of
a cover of a set of sentences.



Definition 1. (Cover of a set of sentences)
Given a set of sentences S ⊆ D, we define the cover
of the set of sentences S to be the union of the terms
appearing in the sentences in S. That is,

C (S) =
⋃

s∈S

⋃

t∈s

t.

Constructing summaries with large C (S) satisfies
the coverage requirement. But how about orthogonal-
ity? One could explicitly capture the requirement of or-
thogonality; for example, by asking for summary S ⊆ D
such that for every si, sj ∈ S it holds that si ∩ sj = ∅
and C (S) is maximized. The corresponding problem
definition is the following.

Problem 1. (Pairwise Independence) Given a
document consisting of m sentences D = {s1, . . . , sm}
and an integer k, find a set of sentences S ⊆ D
consisting of at most k sentences (|S| ≤ k) such that
C (S) is maximized and for every s, s′ ∈ S s ∩ s′ = ∅.

In this case, the sentences in the summary are forced
to be strictly orthogonal. In practice, summaries with
absolute orthogonality and large cover are expected to
rarely exist. A more reasonable requirement would be
to allow for some overlap between the sentences in the
summary S. Problem 2 captures exactly this need.

Problem 2. (Bounded Cover) Given a document
consisting of m sentences D = {s1, . . . , sm} and an in-
tegers k and ℓ, find a set of sentences S ⊆ D consisting
of at most k sentences (|S| ≤ k) such that C (S) is
maximized and every term in the original document D
belongs to at most ℓ sentences in S.

Though less strict this problem definition comes with
its own disadvantages. For example, what is the right
value of ℓ? Or even more, should the value of ℓ be the
same for every element in T ?

From the computational complexity point of view,
both Problems 1 and 2 are NP-hard problems, since
they can be either be mapped to known NP-hard
problems, or they contain an NP-hard problem as a
special case: Problem 1 is identical to the k-Unique
Coverage problem (see [3]) which is known to be
NP-hard. Finally, Problem 2 is also NP-hard since it
is a generalization of Problem 1; Problem 2 becomes
identical to Problem 1 if the value of ℓ is set to ℓ = 1.

3.3 On a proper definition of the Document
Summarization problem Overall, the solutions to
Problems 1 and 2 capture to a certain extent the original
requirements for summaries that exhibit high coverage
and high orthogonality. However, as the preceding

discussion suggested, none of these definitions leaves us
completely satisfied. The question is can we do better
than Problems, 1 and 2? Or is there a more subtle
and general way to capture the properties of cover and
orthogonality in a simple problem definition? In this
section, we address this question in a positive way.

We start by expressing the orthogonality require-
ment in a more subtle form. Consider a summary
S ⊆ D consisting of k sentences. We define function
f : {0, 1, . . . , k} → R, such that f(x) defines the benefit
we have by covering a term exactly x times. Intuitively,
we do not have any benefit for terms that are not cov-
ered and therefore f(0) = 0. Moreover, orthogonality
suggests that the more sentences in S a term appears
in, the less important this term is and the less bene-
fit the summary has by covering it. Formally, for all
x1, x2 ∈ {1, . . . , k} such that x1 ≤ x2, it holds that
f(x1) ≥ f(x2).

Observe that function f abstracts and somehow
softens the hard constraints of Problems 1 and 2. Using
this abstraction we can easily define the Document
Summarization problem in a much cleaner way. We
start with the definition of the gain of a summary
S ⊆ D.

Definition 2. (Gain of a summary) Consider a
document D with unique terms T and a summary
S ⊆ D. Let S partition the elements in T into
P (T , S) =

{

T0, . . . , T|S|

}

, where every term t ∈ Tx

appears in exactly x sentences in S. We then define
the gain of the summary S to be

Gf (S) =

|S|
∑

x=0

∑

t∈Tx

f(x) =

|S|
∑

x=1

∑

t∈Tx

f(x).(3.1)

Note that the definition of gain depends on the f
function, which can be used as a tuning mechanism to-
wards summaries that give priority to coverage, orthog-
onality or both.

Given function f we can then define the Document
Summarization problem as follows.

Problem 3. (Document Summarization) Given a
document described by the set of sentences D, function
f , and integer k, find S ⊆ D, with |S| ≤ k such that
Gf (S) is maximized.

In this paper we use two different forms of the function
f .

Uniform fu: In the case of uniform f we set that
f(0) = 0 and f(x) = 1 for every x > 0. The
uniform function implicitly gives higher weight to
coverage than orthogonality.



Exponential fe: In the case of exponential f we set
that f(0) = 0 and f(x) = 1

2x−1 for x > 0. The
exponential function imposes a relatively stronger
requirement for orthogonal summaries.1

It is obvious that when f is the uniform function,
then Problem 3 is identical to the k-Maximum Cover-
age problem (see [8]), which is known to be NP-hard.
Thus, Problem 3 is also NP-hard, since it is a general-
ization of an NP-hard problem. In fact, by using ap-
propriate f functions, we can instantiate Problem 3 to
Problems 1 and 2 as well. For example, if f(0) = 0,
f(1) = 1 and f(x) = 0 for every x > 1, then Prob-
lem 3 becomes identical to Problem 1. Similarly for f
such that f(0) = 0, f(x) = 1 for every 1 ≤ x ≤ ℓ
and f(x) = 0 for x > ℓ Problem 3 becomes identical to
Problem 2.

Notice that the definition of Problem 3 with
function fu is at a high-level related to (in fact is
a generalization of) the problem addressed in [7].
However, this connection remains only at a high-level
since there was no formal problem definition provided
in [7].

Weighted Document Summarization: Note that
the gain function given in Equation (3.1) can be en-
hanced to incorporate a weight w(t) for every term t.
Then, the gain is alternatively computed as follows:

Gw
f (S) =

|S|
∑

x=0

∑

t∈Tx

w(t) × f(x)

=

|S|
∑

x=1

∑

t∈Tx

w(t) × f(x).(3.2)

This gain function not only depends on the function
f , but also on the weighting scheme w. As before,
function f is a tuning mechanism towards summaries
that give priority to coverage, orthogonality or both.
The weighting scheme can bias preferences towards
covering some terms. For example, terms related to
major concepts can be assigned higher weight in order
to be included in a summary before terms associated
with less important concepts. In fact, gain function Gw

f

given in Equation (3.2) is a generalization of the gain
function Gf given in Equation (3.1); Gf is the instance
of Gw

f where the weights for all terms are set to 1, e.g.,
for all t ∈ T , w(t) = 1.

1Constant 2 in the denominator can in principle be replaced
by any other constant. In practice we have observed that for
constants in the range [2, 4] the results appear to be identical.

As long as the weighting scheme assigns constant
weight to every term, e.g, the weights are term specific,
then the above generalization does not affect any of
the results presented in this paper. For simplicity of
exposition we present our formulations, algorithms and
results for the simple version of the gain function first,
where unit weights are associated with all terms. The
different weighting schemes do not seem to significantly
affect the experimental results. This observation echoes
similar previous findings, e.g., [7].

4 Algorithms

In this section we give a simple and efficient algorithm
for solving Problem 3. Notice that the algorithm is as
general as the problem that it solves. The algorithm is a
simple greedy procedure that takes as input a document
D, integer k and function f and outputs a set S ⊆ D
of at most k sentences. The pseudocode of this generic
greedy algorithm is given in Algorithm 1.

The algorithm operates in rounds and it greedily
picks sentences from the set D. That is, it starts
by picking the sentence s1 ∈ D such that Gf (s1) is
maximized. Then, among all the sentences in D \ s1,
it proceeds by picking sentence s2 ∈ {D \ s1} such that
the marginal gain by adding this sentence to the existing
summary is maximized. This process continues until k
sentences are picked or if no sentence with a positive
marginal gain remains. We refer to this generic greedy
algorithm as Greedy. As we have already discussed,
we focus our attention on two specific f functions:
the uniform fu, and the exponential fe. We refer
to the instantiation of the greedy algorithm that uses
function fu in the evaluation of the marginal gain
(Algorithm 1, line 5) as the GreedyUniform algorithm.
Similarly, when function fe is used instead we refer
to the corresponding instantiation of the Greedy as
GreedyExp.

Algorithm 1 The Greedy algorithm.

1: Input: Document D, integer k and function f .
2: Output: A set of sentences S ⊆ D with |S| ≤ k.
3: C = D, S = ∅, W =

⋃

s∈D s, MaxImpr = ∞, ℓ = 0
4: while ℓ ≤ k and MaxImpr > 0 do

5: pick s ∈ C such that
s = arg maxs′∈C Gf (S ∪ s′) − Gf (S)

6: MaxImpr = Gf (S ∪ s) − Gf (S)
7: if MaxImpr > 0 then

8: C = C \ {s}
9: ℓ = ℓ + 1

10: S = S ∪ {s}
11: end if

12: end while



A classical result from combinatorial optimization
([15]), allows us to make the following statement:

Observation 1. The GreedyUniform algorithm is an
(

1 − 1

e

)

≈ 0.67-approximation algorithm for Problem 3,
when the gain is computed using the uniform function
fu.

Unfortunately, we cannot make an analogous
statement for the GreedyExp algorithm. However,
we have observed that not only does GreedyExp give
meaningful summaries in practice, but it also performs
better in terms of the objective function Gfe

, when
compared to other combinatorial algorithms with
provable approximation guarantees for this specific
function. For an extensive discussion on these algo-
rithms see [3]. We omit their presentation due to lack
of space and because we believe that GreedyExp is
much simpler to use in practice. In fact, our exper-
iments (not reported here) showed that GreedyExp

performs better than the combinatorial algorithms
in [3] in terms of the objective function Gfe

. Moreover,
GreedyExp algorithm is better in terms of running time.

Algorithms for the Weighted Document Sum-

marization: The generic Greedy algorithm can be
easily modified to handle the weighted gain function
Gw

f given in Equation (3.2). In fact, the only change
that needs to be made is to use function Gw

f instead
of Gf in the evaluation of the marginal gain of a
sentence (Algorithm 1, line 5). We call this instance
of the Greedy algorithm the WeightedGreedy algo-
rithm. As before, depending on the function f being
used we have the WeightedGreedyUniform and the
WeightedGreedyExp algorithms for fu and fe functions
respectively.

Running time: The running time of the Greedy

algorithm is O(kmn); every iteration of the while loop
(line 4 of Algorithm 1) requires going through the
remaining candidate sentences and the actual terms
these sentences contain. Therefore, every iteration
requires time O(nm). Since the loop is repeated for
at most k times, the total running time is O(knm).

5 Other approaches to Document
Summarization

In this section we describe some alternative solutions
to the document-summarization problem. These solu-
tions consider either one or both of the coverage and
orthogonality requirements. We use them as a baseline
for evaluating the performance of our methods in the
experimental section.

Clustering: Each sentence si corresponds to an n-
dimensional vector over the space of terms. Picking k
sentences that are representative of the document and
diverse of each other can also be considered as a cluster-
ing problem. The sentences can be clustered in k clus-
ters and the centroid of each cluster can be considered
as the representative of the sentences in the cluster. In
that way k-representatives are picked. In our implemen-
tation we use standard k-median algorithm combined
with the cosine similarity for measuring the similarity
between sentences. The classical k-median algorithm is
iterative and its running time is O (I (kmn)), where I is
the number of iterations of the algorithm, and the factor
of n comes from the fact that the distance computation
between two sentences takes O(n) time.
SVD: The requirement of orthogonality between the
sentences in the summary suggests that a row basis
found by doing a Singular Value Decomposition (SVD)
on the terms-sentence matrix D, could be a valid algo-
rithm for solving the document summarization problem.
We have implemented this approach in our system as
follows: First we find an orthonormal orthogonal basis
for the columns of the matrix using classical SVD algo-
rithm. Then we use the k basis vectors that correspond
to the k largest singular values as indicative representa-
tive sentences. The problem with these k vectors is that
they do not correspond to any of the original sentences
in the document. Thus, we map them to their clos-
est sentence from the original document using a simple
greedy heuristic. We refer to this two-step process as
the SVD algorithm. The time requirement for comput-
ing the singular value decomposition of the m × n doc-
ument matrix is O (mn (m + n)). In addition to that,
SVD needs O(knm) for the greedy step; in this step it
computes the distance between all the m sentences from
the k picked singular vectors. Since the computation of
the distance takes O(n) time.2.
Furthest: This is a simple heuristic that is moti-
vated by the furthest-first traversal algorithm, for which
Hochbaum and Shmoys [9] showed that it achieves a
2-approximation for the clustering formulation of p-
centers. Furthest works as follows: it starts with a
random sentence of the document and add it to the
summary. Then, it picks the sentence that is the most
dissimilar to the ones that has already picked. One
minus the cosine similarity is used as the measure of
dissimilarity between sentences. Also, the distance be-
tween a single sentence and a set of sentences is defined
as the sum of the distances between the former and ev-
ery element in the set. The running time of Furthest

2The running time of this algorithm can be improved by using
approximate algorithms for the SVD matrix decomposition. See
www.cs.rpi.edu/~drinep/svd_exper_PCI.pdf



is O(k2nm) since it runs in k iterations and in every
iteration it computes the distances between at most m
remaining sentences with at most k picked ones.
Mead: Mead [16] is a publicly available toolkit for
multi-lingual summarization and evaluation 3. The core
Mead system consists of two modules: classifier and
reranker. A classifier assigns a score to each sentence
by considering a list of features (e.g., distance of a
sentence to the centroid of the documents, position or
length of the sentence, etc.). The reranker modifies
the score to remove redundancy in the summary. In
our experiments, we used Mead’s default-classifier and
default-reranker. We refer to this version of Mead as
Mead(Default).

For comparison purposes, we also tested Mead’s
default-classifier and the (MMR)-reranker, 4 which we
call Mead(MMR). MMR [2] is a method mostly suited
for query-based and multi-document summarization. In
MMR, sentences are assigned a score that is a lin-
ear combination of their relevance to a query (or for
generic summaries, the centroid of the documents) and
their redundancy with the sentences that have already
been extracted. The weight of every component of is
controlled by parameter λ; when λ = 0, MMR com-
putes a maximal diversity ranking among the sentences;
when λ = 1, it computes incrementally the standard
relevance-ranked list. For our experiments we used
λ = 0.3, as this was the value suggested by the MMR
original paper [2].

6 Experiments

The goal of our experimental evaluation is to show that
our algorithms give summaries that satisfy our origi-
nal requirements of coverage and orthogonality. We
show that the summaries produced by our methods
exhibit much higher coverage and orthogonality than
summaries produced by other methods (e.g., those de-
scribed in Section 5) or even human-generated sum-
maries. Moreover, we show that our algorithms produce
summaries that have comparable scores to human and
other computer-generated summaries when the evalua-
tion is done using ROUGE’s [12] precision and recall
measures. Note that this is despite the fact that opti-
mizing these measures was not our primary goal when
designing our framework.

6.1 Data description For the rest of the experimen-
tal evaluation we use text data from the 2002 Document
Understanding Conference (DUC) [4]. We refer to this

3http://www.summarization.com/mead/
4http://www.summarization.com/mead/addons/scripts/

mmr-reranker.perl

dataset as the DUC dataset. The DUC data consists
of news articles about different events ranging from nat-
ural disasters, everyday pieces of news and biographical
information about individuals. At a high level the base
documents (or simply documents) of the dataset are
organized into document clusters (or simply clusters).
The dataset consists of 60 such clusters (3 of which be-
ing disregarded due to logistic issues) and every cluster
contains 5–15 documents (on average there are 10 doc-
uments per cluster). Each one of the clusters belongs in
one of the following four thematic categories:
C1: All the documents in a cluster belonging in C1 refer
to a single natural disaster event.
C2: All the documents in a cluster of category C2 refer
to a single event (other than natural disaster event) that
appeared in the news.
C3: All the documents in a cluster of category C3 refer
to different distinct events of a certain type.
C4: Finally, all the documents in a cluster of category
C4 may present biographical information about a single
individual.

All the documents of a cluster belong in the same
category, namely the category of the cluster. All four
thematic categories are associated with approximately
the same number of clusters (and thus approximately
also the same number of documents).

For the majority of our experiments, and unless
mentioned otherwise, we used the DUC dataset as fol-
lows: we used the 57 clusters as 57 distinct documents.
We concatenated all the documents of each cluster into
a single large document which we then used as input
to the summarization algorithms. In this way, we ob-
tained 57 distinct documents that are used as input to
our summarization algorithms. We refer to the DUC

dataset processed in this way as the ClusteredDUC

dataset.
In addition to the documents and the clusters, the

DUC dataset also contains two sets of human-generated
summaries for every cluster. Each set contains two sum-
maries of 200 and 400 terms long. This is approxi-
mately equivalent to summaries consisting of 10 and
20 sentences respectively. Each such summary was gen-
erated by humans that picked subset of the sentences
in each cluster to summarize the whole cluster. We re-
fer to these human-generated summaries as Human1

and Human2. We compare those summaries with the
computer-generated ones produced by our algorithms.

We would like to note that the human-generated
summaries for this dataset are prepared specially for
the tasks defined in DUC. It does not guarantee that
these summaries satisfy our coverage and orthogonality
criteria. Some experimental results presented in the fol-
lowing subsections also validate this claim. Therefore,



experiments involving the comparison of our algorithms
and human-generated summaries should only be viewed
as an indicator of the general quality of our algorithms.
We still pick this dataset since it is considered as a stan-
dard, publicly available, dataset for general document-
summarization. Moreover, since the measures of cov-
erage and orthogonality are new, there does not exist
a standard dataset along with human-generated sum-
maries that are specially designed for these measures.

6.2 Coverage and orthogonality of the sum-

maries The goal of this experiment is to evaluate
the summaries produced by the different algorithms:
GreedyExp, GreedyUniform, SVD, k-median, Furthest,
Mead(Default) and Mead(MMR) with respect to our
original requirements of coverage and orthogonality.
We use the ClusteredDUC dataset. The result of the
experiment shows that our algorithms GreedyExp and
GreedyUniform produce summaries that demonstrate
both high coverage and high orthogonality.

Evaluation metrics: For this evaluation we report
the following two quantities that naturally capture the
notions of coverage and orthogonality.

For a summary S consisting of a number of sen-
tences we evaluate its coverage as the percentage of
terms from T that appear in the sentences in S. That
is,

Coverage (S) =

∣

∣

⋃

s∈S s
∣

∣

|T |
.

For any summary S, we have that 0 ≤ Coverage (S) ≤ 1.
The closer the coverage value is to 1 the better the
coverage of a summary.

Similarly, we evaluate the orthogonality of a sum-
mary S as the average Jaccard distance between the
distinct pairs of sentences that appear in the sum-
mary. Recall that the Jaccard distance between two
sentences (that is, sets of terms from T ) s, s′ is defined
as Jd (s, s′) = 1 − |s ∩ s′| / |s ∪ s′|. We evaluate the or-
thogonality of the summary S to be

Orthogonality (S) =
2

|S| (|S| − 1)

∑

s,s′∈Ss6=s′

Jd(s, s′).

For two sentences s, s′, the value of Jd (s, s′) takes
values between 0 and 1, and so does Orthogonality (S).
The closer the value of Orthogonality (S) is to 1, the
more orthogonal the summary.

Results: Figure 1 reports the average coverage (Fig-
ure 1(a)) and the average orthogonality (Figure 1(b))

of the summaries produced by algorithms GreedyExp,
GreedyUniform, SVD, k-median, Furthest,
Mead(Default) and Mead(MMR) for k = {4, 6, 8, . . . , 20}.
The average is taken over the 57 different documents in
the ClusteredDUC dataset that were used as input
to the summarization algorithms.

With respect to Coverage (Figure 1(a)) GreedyExp
and GreedyUniform produce summaries with noticeably
larger Coverage than the rest of the algorithms. In
fact, these two algorithms produce summaries that are
approximately equivalent with respect to Coverage, and
this Coverage is approximately 50% larger than the
the Coverage achieved by the second best algorithms,
namely Mead(Default), Mead(MMR) and SVD. Finally,
k-median and Furthest produce significantly lower-
coverage results than the other methods.

When it comes to Orthogonality (Figure 1(b)),
we observe that all five algorithms produce sum-
maries with high Orthogonality values. GreedyExp

has slightly higher average Orthogonality value than
GreedyUniform for all values of k; such an observation
is expected given that the f function used in GreedyExp

penalizes harsher non-orthogonal solutions. Notice that
the widely used Mead(Default) and Mead(MMR) algo-
rithms appear to have slightly smaller Orthogonality
values compared to all other algorithms. Notice that
Furthest algorithm produces summaries with Orthog-
onality value equal to 1 for all values of k. Although this
could be considered as a good feature of the Furthest

algorithm, when we look at the combination of the Cov-
erage and Orthogonality values of its summaries we ob-
serve that despite their high Orthogonality value, they
have significantly low Coverage. This implies that in
fact Furthest selects sentences with small number of
terms and thus does not necessarily give good sum-
maries. This is actually true when one looks at the ac-
tual summaries produced by Furthest. The takeaway
message from the above observation is that a summa-
rization algorithm cannot be judged only by the Cov-
erage or only by the Orthogonality value of the sum-
maries it produces. The two metrics should always be
considered together. This is similar to the measures of
precision and recall used in the classical evaluation of
information-retrieval and classification algorithms.

The results for WeightedGreedyExp and
WeightedGreedyUniform are almost the same as
those for their unweighted counterparts; and the
variances of the values Figure 1(a) and Figure 1(b) are
quite small, so for clarity of presentation, we exclude
them from the plots.

6.3 Computer-generated vs. human-generated

summaries The goal of this experiment is to compare
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Figure 1: ClusteredDUC dataset; Average Coverage

(Figure 1(a)) and Average Orthogonality (Figure 1(b)) of the

summaries produced by the different algorithms for values

of k ∈ {4, 6, 8, . . . , 20}.

the computer-generated summaries to the pre-existing
human-generated summaries Human1 and Human2.
We again use the ClusteredDUC dataset. The results
of the experiment demonstrate that 1) summaries pro-
duced by GreedyExp and GreedyUniform have higher
coverage and orthogonality than human-generated
summaries; 2) summaries produced by GreedyExp and
GreedyUniform are comparable to those generated by
widely-used summarization systems Mead(Default)

and Mead(MMR), when ROUGE [12] is used as the
evaluation metric.

Evaluation metrics 1: For this evaluation, we
compare the coverage and orthogonality of computer-
generated summary and human-generated summary
using the same metrics defined in the previous section.

Results: Figure 2 reports the average coverage and
the average orthogonality of the summaries produced
by GreedyExp and GreedyUniform, as well as human-
generated summaries Human1 and Human2. The
average is taken over the 57 different documents in the
ClusteredDUC dataset. We use values of k = 10
and 20 since these are the values of k for which we
have human-generated summaries. From the figures we
can see that GreedyExp and GreedyUniform produce
summaries with noticeably larger coverage and orthog-

k = 10  k = 20
0

0.1

0.2

0.3

0.4
GreedyExp
GreedyUniform
Human1
Human2

(a) Average Coverage

k = 10  k = 20
0.9

0.92

0.94

0.96

0.98

1
GreedyExp
GreedyUniform
Human1
Human2

(b) Average Orthogonality

Figure 2: ClusteredDUC dataset; Average Coverage

(Figure 2(a)) and Average Orthogonality (Figure 2(b)) of

the summaries produced by GreedyExp, GreedyUniform and

Human1 and Human2 for k = 10 and k = 20.

onality.

Evaluation metrics 2: For this evaluation, we com-
pare the similarity of computer-generated summaries
and human-generated summaries using ROUGE5, a
standard package adopted by Document Understanding
Conference (DUC).6 In particular, we consider the fol-
lowing three ROUGE metrics: 1) ROUGE-N (for N =
1), which measures the co-occurrence of N-grams in a
computer-generated summary and a human-generated
summary; 2) ROUGE-L, which measures the longest
common subsequences in a computer-generated sum-
mary and a human-generated summary; 3) ROUGE-
SU4, which measures the co-occurrence of skip-bigrams
and unigrams with a maximum skip distance of 4. We
refer interested readers to [12] for detailed mathematical
definitions of these metrics.
Results: We run ROUGE 1.5.5 with the following
parameters ./ROUGE-1.5.5.pl -n 2 -2 4 -U -m -c 95.
Figures 3(a) and 3(b) show the average recall scores
for the computer-generated summaries when Human1

is used as the reference summary. Similarly, Fig-
ures 3(c) and 3(d) show the average recall scores for
the computer-generated summaries when Human2 is

5http://berouge.com
6http://duc.nist.gov
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(c) k = 10, Human2 used as the reference.
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Figure 3: ClusteredDUC dataset; Average Recall Scores of ROUGE-1, ROUGE-L, ROUGE-SU4 when k = 10
and k = 20.
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(b) k = 20, Human1 used as the reference.
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(c) k = 10, Human2 used as the reference.
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Figure 4: ClusteredDUC dataset; Average Precision Scores of ROUGE-1, ROUGE-L, ROUGE-SU4 when
k = 10 and k = 20.

used as reference. Among the computer-generated
summaries the following trend is obvious: the sum-
maries produced by Mead(Default) and Mead(MMR)

have the highest recall scores; after all Mead(Default)

and Mead(MMR) were generated to optimize those scores.
In most of the cases though, the summaries produced
by GreedyExp, GreedyUniform have scores very close to
those generated by Mead(Default) and Mead(MMR). On



the other hand, the summaries of SVD, k-median and
Furthest are relatively more distant from the human-
generated summaries. At this point, another indicative
observation is in place: the similarity between the two
human-generated summaries is not significantly larger
than (in fact in many cases is smaller than) the similar-
ity between computer-generated and human-generated
summaries. This observation illustrates the overall dif-
ficulty of document summarization and points out the
subjectiveness involved in the task.

Figures 4(a) and 4(b) show the average precision
scores for the computer-generated summaries when Hu-

man1 is used as the reference summary. Similarly, Fig-
ures 4(c) and 4(d) show the average precision scores
for the computer-generated summaries when Human2

is used as reference. It is interesting to observe that,
among the computer-generated summaries, those pro-
duced by GreedyExp, GreedyUniform have very low
precision scores. Contrast this with the high-precision
scores attained by k-median and Furthest. This find-
ing contradicts our intuition that Furthest produces
mostly low-quality summaries that consist of (rather
incoherent) small sentences. Recall though, that the
definition of precision in ROUGE is simply the number
of entities (e.g., N-grams) of the computer-generated
summary that are matched by the reference (e.g., hu-
man) summary, divided by the number of entities in
the computer-generated summary. Using this defini-
tion, summaries with small number of words are going
to exhibit very high precision scores. As an extreme
example, consider a summary that simply contains the
top-k most frequent words in the document. In most of
the cases, such a summary will have a precision score
close to 1. Therefore, high precision scores alone do
not mean high-quality summaries. The performance of
each algorithm should be judged collectively taking into
account all evaluation metrics.

To sum up, the high coverage and orthogonality
scores of GreedyExp and GreedyUniform, as well as
their low ROUGE precision scores show that these
algorithms can produce summaries that capture many
different aspects of a document while other algorithms
cannot. The high ROUGE recall scores of GreedyExp
and GreedyUniform indicate that they can still produce
summaries comparable to those generated by widely-
used summarization systems such as Mead(Default)

and Mead(MMR) when ROUGE is used as the evaluation
metric.

6.4 Topic identification In the following two ex-
periments, we want to explore the ability of different
algorithms to create summaries that pinpoint different
aspects of the input document. In the unweighted topic

coverage, we are only interested on whether a specific
theme touched in the document appears in the sum-
mary. In the weighted case, we are also interested in
the proportions (in terms of number of sentences) in
which different themes appear in the documents and
the summaries.

6.4.1 Unweighted topic identification The main
result of this experiment is that our algorithms,
GreedyExp and GreedyUniform are the ones that
successfully cover all possible aspects of a document,
even when they are restricted to construct summaries
with small number of sentences.

Dataset: For this experiment we use the base doc-
uments of the DUC datasets to compose synthetic
documents, which we then summarize. Every synthetic
document is a concatenation of four base documents
from the original DUC dataset; the i-th base document
that participates in this synthesis (with i = {1, 2, 3, 4}),
is selected uniformly at random amongst the base
documents of the i-th category. In this way, every one
of the four categories is represented in every synthetic
document. We generate 100 such synthetic documents
by repeating the above process 100 times. We refer to
the dataset we generate in such a way as the Mixed-

DUC dataset. The size of the synthetic documents in
the MixedDUC dataset are between 15Kb and 60Kb,
and each such document has approximately 120–500
sentences.

Metrics: A synthetic document generated as above
can be represented by a 4-dimensional vector D =
(1, 1, 1, 1), where D(i) = 1 denotes the fact that a
document from category 1 has been used in the synthesis
of D. A summary S of D can also be represented by a
4-dimensional vector S such that S(i) = 1 if a sentence
from category Ci is included in the summary. Otherwise
S(i) = 0. We define the topical coverage of summary S
with respect to document D to be the normalized dot
product of these two vectors.

Tc (S|D) =
1

4
S · D.

The higher the value of the topic coverage of a sum-
mary (the closer it is to 1), the better this summary is
in capturing the different aspects of the input document.

Results: Figure 5 shows the average topic coverage of
the summaries obtained by GreedyExp, GreedyUniform,
SVD, k-median, Furthest, Mead(Default) and
Mead(MMR) algorithms for values of k ∈ {4, . . . , 20}.
The average is taken over all the 100 documents of the
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Figure 5: MixedDUC dataset; topic coverage of
GreedyExp, GreedyUniform, SVD, k-median, Mead(Default),
Mead(MMR) and Furthest algorithms for summaries consist-
ing of k = {4, . . . , 20} sentences.

MixedDUC dataset. The variances are quite small
for all algorithms so we do not report them. From
the figure we can see that the summaries produced
by GreedyExp and GreedyUniform algorithms exhibit
almost identical topic coverage, which is also higher
than the topic coverage exhibited by the summaries
of the other algorithms. The second best pair of
algorithms with respect to the Tc measure are the SVD

and k-median, while Mead(MMR) is slightly worse than
the latter two. Mead(Default) and Furthest produce
significantly low topic-coverage summaries. Observe
that GreedyExp and GreedyUniform algorithms can
cover almost all 4 categories with summaries consisting
just of 6 sentences. Notice that the results of the
WeightedGreedyExp and WeightedGreedyUniform

were almost identical to the results for GreedyExp and
GreedyUniform. Thus, these algorithms were excluded
from the plots for the sake of clarity.

6.4.2 Weighted topic identification In this last
experiment we are primarily interested in comparing
the performance of the different Greedy algorithms
with their WeightedGreedy counterparts. For the
WeightedGreedy algorithms we have used a frequency-
based weighing scheme. That is, every term in T was
assigned weight equal to its frequency in the document.

Recall that WeightedGreedy algorithms with
frequency-based weighting schemes are expected to
be more sensitive to the proportion of sentences
from different themes that appear in the docu-
ment. Therefore, we tailor our data-generation and
result-evaluation process to be able to evaluate this
sensitivity. Our conclusion is that WeightedGreedyExp
and WeightedGreedyUniform performs slightly better
than their unweighted counterparts when k is small;
when k gets larger, the four algorithms perform almost
equally well.

Datasets: We form synthetic documents from base
documents as before. However, here every synthetic
document D is a concatenation of X documents from
category Ci and 1 document from all other categories
Cj with i 6= j and 1 ≤ i, j ≤ 4. We set X to take
values in {1, 2, . . . , 10} and for any given value of X we
generate 10 synthetic documents. That is we generate
a total of 100 synthetic documents. For a fixed value
of S, we refer to the dataset we generate in such a
way as the MixedDUC-X dataset. The size of the
synthetic documents in the MixedDUC-X dataset
are between 15Kb and 64Kb, and each such document
has approximately 120–700 sentences.

Metrics: A synthetic document D can again be rep-
resented by a 4-dimensional vector. But now, the i-th
element of the vector takes a real value that is the per-
centage of sentences in D that come from a document
in category Ci. Summaries also have the same vector
representation as in Section 6.4.1 but here the value
of S(i) gives the percentage of the sentences in S that
come from a document in category Ci. We define the
weighted topical coverage of summary S with respect to
document D to be the cosine similarity between vectors
D and S. That is,

WTc (S|D) =
S · D

|S||D|
.

The higher the value of the weighted topic coverage
of a summary, the better this summary is in capturing
the different aspects of the input document.

Results: Figure 6 shows the average topic coverage of
the summaries obtained by WeightedGreedyUniform,
WeightedGreedyExp, GreedyExp and GreedyUniform

algorithms for values of k ∈ {4, . . . , 20}. The average
is taken over all the 10 documents of the MixedDUC-
X dataset. We show here the results for X = 2
and X = 8, but the results for the other values of
X look similar. The variances for all the cases are
quite small, so we do not report them. From the
figure we can see that the summaries produced by
WeightedGreedyExp and WeightedGreedyUniform al-
gorithms exhibit slightly better weighted topic coverage
when k is small; as k increases, both weighted and un-
weighted algorithms perform almost equally well.

7 Conclusions

In this paper we provided a new combinatorial flavor to
the document summarization problem. Given a docu-
ment we defined the problem of summarizing it as the
problem of picking k sentences from the original docu-
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Figure 6: MixedDUC-X datasets, for X = 2, 8;
weighted topic coverage of WeightedGreedyExp,
WeightedGreedyUniform, GreedyExp and GreedyUniform

algorithms for summaries consisting of k = {4, . . . , 20}
sentences.

ment, such that the constructed summary exhibits two
key properties: coverage and orthogonality. We cap-
tured these two requirements in a simple combinatorial
formulation of the problem and presented simple and
efficient algorithms for solving it. In a wide set of ex-
periments on real document data we showed that our
methods, despite their simplicity, work extremely well
in practice.

The takeaway message from this paper, is that
simple combinatorial definitions and algorithms for
information-retrieval tasks seem to work well in practice
and should not be overlooked. In the future we plan
to combine our approach with other domain-specific
knowledge in order to further improve our results.
Moreover, an interesting direction of future research is
in the definition of other text-mining and information-
retrieval tasks as simple combinatorial problems.
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