Segmentations with Rearrangements

Aristides Gioni$ Evimaria Terzi

Yahoo! Research, Basic Research Unit, HIIT

Barcelona, Spain University of Helsinki, Finland
gi oni s@ahoo-i nc.com terzi @s. hel sinki.fi

January 26, 2007

Abstract cation. For a given error function, the goal is to find the

Sequence segmentation is a central problem in the ana@ggment_ation of the sequence itsegments apd the cor-
of sequential and time-series data. In this paper we intred(ieSPondingt representatives so that the error in the repre-
and we study a novel variation to the segmentation proble#gntation of the underlying data is minimized. We call this
in addition to partitioning the sequence we also seek tqapproblem the EGMENTATION problem. Segmentation prob-
a limited amount of reordering, so that the overall représen!®ms, particularly for multivariate time series, arise iamy
tion error is minimized. Our problem formulation has appldata mining applications, including bioinformatics, eovi-
cations in segmenting data collected from a sensor netw8iRNtal sciences, weather prediction, and context recognit
where some of the sensors might be slightly out of sync, i§rmobile devices. _ _ _

in the analysis of newsfeed data where news reports on a few The input data for time-series segmentation problems
different topics are arriving in an interleaved manner. We usually a sequencg consisting ofn points{t, ..., .}
formulate the problem of segmentation with rearrangemeMféh t: € R?. The majority of the related work primarily
and we show that it is aNP-hard problem to solve or evenfocuses on finding a segmentatisrof 7" taking for granted
approximate. We then proceed to devise effective algosth#e order of the points iff’. That is, it is assumed that the
for the proposed problem, combining ideas from linear prgorrect order of the points coincides with the input order.
gramming, dynamic programming, and outlier-detection di? this paper we assume that the order of the pointd’in
gorithms in sequences. We perform extensive experimergaPnly approximatelycorrect. We thus consider the case
evaluation on synthetic and real datasets that demonstri{gere the points need a “gentle” rearrangement (reordgring

the efficacy of the suggested algorithms. This reordering will result in another sequen€é which
consists of the same points 8 Our focus is to find
1 Introduction the rearrangement of the points such that the segmentation

error of the reordered sequen@® is minimized. We call

A central problem related to time-series analysis is the cqf. . . .
; . . is alternative formulation of the segmentation problem
struction of a compressed and concise representation of the

; ! . GMENTATION WITH REARRANGEMENTS
data, so that the time-series data can be handled efficiently . :
o . In this paper we formally define theEBMENTATION

One commonly used such representation is gleeewise- . .

o . : WITH REARRANGEMENTSproblem and some of its variants.
constantapproximation. A piecewise-constant representg- " .
! . . : . e show that under several conditions the problem is NP-
tion approximates a time serigsof lengthn usingk non-

: . hard and, even worse, hard to approximate. Furthermore, we
overlapping and contiguous segments that span the whol

. . Cdise heuristics that are intuitive and work well in preeti
quence. Each segment is represented by a single (constan j) :
The following example motivates theeESMENTATION

point, e.g., the mean of the points in the segment. We call . .
:) . . . WITH REARRANGEMENTS problem. Consider a setting
mean this point theepresentativeof the segment, since it :
- .. where there are many sensors, located at different places,
represents all the points in the segment. The error in this a . .
; o : reporting their measurements to a central server. Assume
proximate representation is measured using sera func-

tion, usually the sum of squares of the differences betwetgr?t at all time points the sensors are functioning properly
and they send correct and useful data to the server. However,

all points in the segment and their representative point. D ue to communication delays or malfunctions in the network,

ferent error functions may be used depending on the aPRe data points do not arrive to the server in the right order.

In such a case, if the segmentation algorithm (or more

~*Work done while the author was with Basic Research Unit, HIlgeneral any data analysis algorithm employed) takes tlae dat
University of Helsinki, Finland.

order for granted it may produce misleading results. @imd the best set of deviants that if removed from the dataset,
the other hand, choosing to ignore data points that setita histogram built using the rest of the points has the small
to be incompatible with their neighbors leads to omittingst possible error. Although our problem definition is diffe
possibly valuable information. Omitting some data poinent from the one presented in [12, 16] we use some of their
is, of course, a type of correction, however, in this paper wechniques in our methodology. Similarly, the problem of
take the approach of correcting the data by reorderingaastdinding outliers in order to improve the results of clusterin
of omitting data points. algorithms has been studied in [3].

The rest of the paper is organized as follows. We start
by reviewing the related work in Section 2. In Section 3 Problem formulation
we introduce our notation and we give the basic problemat 7 — (¢,,¢,,....¢,) be ad-dimensional sequence of
definition. We discuss the complexity of the problem igngthy, with t; € RY, i.e..t; = (ti1, tin, - . ., tia).
Section 4, and we present our algorithms in Section 5. We A x-segmentationS of a sequence of length is a

discuss the experimental evaluation of our algorithms jtition of {1,2, ..., n} into k non-overlapping contiguous

Section 6, and finally, Section 7 is a short conclusion. gypsequences (segments), = {si,ss,...,s,}. Each
segments; consists of|s;| points. The representation of

2 Related work sequencd’ when segmentatiofl is applied to it, collapses

The work presented in this paper is closely related to tttee values of the sequence within each segmemtto

literature on segmentation algorithms. Despite the faxtsingle valueu, (e.g., the mean). We call this value

that the basic SGMENTATION problem can be solved op-the representativeof the segment, and each point €

timally in polynomial time, the quadratic performance of is “represented” by the valug,. Collapsing points

the optimal algorithm makes the use of the algorithm promo representatives results in less accuracy in the seguen

hibitive for large datasets. For this reason several subopépresentation. We measure this loss in accuracy using the

mal, though more efficient algorithms have been proposedtimor functionE,,, defined as

the literature. Some of them have provable approximation .

bounds [8, 18], while others have proved to work very well »

in practice [5, 11, 14, 13, 17]. Variants of the basietien- (31 Ep(T55) = <Z > lt- “s|p>)

TATION problem have been studied in different contexts, for sES1Es

example [2, 7, 9]. The main idea in these cases is to findvaereT denotes the sequence afidhe segmentation. We

segmentation of the input sequence ihteegments, subjectconsider the cases whefe = 1,2. For simplicity, we

to some constraints imposed on the output representativeif. sometimes writeE, (S) instead ofE, (T, S), when the

Finally, reordering techniques over the dimensions of muequencé’ is implied.

tidimensional data have been proposed in [20]. The goal of The SSGMENTATION problem asks for the segmentation

this technique is mainly to improve the performance of inhat minimizes the erro,. The optimal representative

dexing structures that allow for more efficient answering of each segment depends pn Forp = 1 the optimal

similarity (e.g.,k-NN queries). representative for each segment is the median of the points
The SEGMENTATION WITH REARRANGEMENTSprob- in the segment; fop = 2 the optimal representative of the

lem is a classical segmentation problem, where all the poipbints in a segment is their mean.

appearing in the sequence are assumed to have the correct

values, but the structure of the sequence itself may be 8¢ The SEGMENTATION problem We now give a formal

roneous. Thus, in this problem we are given the additiordgfinition of the SGMENTATION problem, and we describe

“freedom” to move points around in order to improve ththe optimal algorithm for solving it. Le§,, ;, denote the set

segmentation error. To the best of our knowledge, the praif-all k-segmentations of sequences of lengthFor some

lem of SEGMENTATION WITH REARRANGEMENTShas not sequencd’, and for error measurg,, we define the optimal

been studied in the literature. Slightly related is the wodegmentation as

on identifying “unexpected” or surprising behavior of the

data used for various data-mining tasks. The mainstream ap-

proaches for such problems find the data points that exhibit _ _ L

surprising or unexpected behavior and remove them from tHat iS: Sopt iS the k-segmentations’ that minimizes the

dataset. These points are usually caktedliers and their £»(Z5). For a given sequence of lengthn the formal

removal from the dataset allows for a cheapest (in termsdgfinition of thek-segmentation problem is the following:

model cost) and more concise representation of the data. pRbgLEM 1. (SEGMENTATION) Given a sequencd’ of

example, [12, 16] study the problem of finding outliers (Qgngthy, an integer value:, and the error functiorz,, find
deviant§in time-series data. More specifically, the goal is (T, k)

Sopt(T, k) = arg min E,(T,S5).

SESnwk

Problem 1 is known to be solvable in polynomial time [1}ith the restriction thatO| < C.
The solution consists of a standard dynamic-programming When the operations are restricted to bubble-sort swaps

i i i 2 i - . . .
(DP) algorithm that_runs n t'mé).(n k). T_he main recur o corresponding segmentation problem is called BeN-
rence of the dynamic-programming algorithm is the fOHOWF_ATION WITH Swaps, while when the operations are re-
Ing: stricted to moves, we call the corresponding segmentation
(3.2) E,(Sopt(T'[1...n],k)) = problem $GMENTATION WITH MOVES.
min;<p, {Ep (Sopd(T[1...5],k — 1)) We mainly focus on the?, error measure, and partic-
! ner . 7 ularly we are interested in the cases where= 1,2 (see
+E:D (SOPI(T [] + 17 R n]) 1))}7

Equation (3.1)).

whereT [i . . ., j] denotes the subsequenc&tthat contains 4 Problem complexity
all points in positions from to j, with 4, j included. Although the basid:-segmentation problem (Problem 1) is
solvable in polynomial time the alternative formulations w
3.2 The SEGMENTATION WITH REARRANGEMENTS study in this paper are NP-hard.
problem We now define the SGMENTATION WITH REAR- We first argue the NP-hardness of theG31ENTATION
RANGEMENTS problem. Assume again an input sequen¢eTH SWAPS and SEGMENTATION WITH MOVES for the
T = {t1,...,t,}. We associate the input sequence with tle@se of error functiorf, with p = 1,2 and for sequence
identity permutatiorr i.e., thei-th observation is positioned? = {t¢4,...,t,} with t; € R¢ andd > 2. Consider for
in the i-th position in the sequence. Our goal is to find aexample, the SGMENTATION WITH SWAPS problem with
other permutatiomr of the data points iff". There are many C = n2. This value forC' allows us to move any point freely
possible ways to permute the points of the initial sequertgearbitrary position, irrespective to its initial locatio Thus
T. Here we allow two types of rearrangements of the pointe SEGMENTATION WITH SWAPS problem withC' = n? is
namelybubble-sort swapgor simply swap$ andmoves the well-studiectlustering problemForp = 1 it is the Eu-
clideank-median problem, and fgr = 2 it is the k-means
problem of findingk points such that the sum of distances to
following rearrangement of the elementsiaf B(, i + thel ch;est rioint is. rlrlipimi?ed.dsoth thesel groblems car:j be
1) 0T = {tr, . tisnste,tiro, bl solved in polynomia tl_me o_ii— imensiona .ata [15], an
+ + both are NP-hard for dimensiods> 2 [6]. Similar observa-
e MOVES. A move corresponds to a single-element tranten holds for the 8GMENTATION WITH MOVES problem
position [10]. That is, a mova1(i — j) (: < j) when when setting” = n. In this case again theESMENTATION

e BUBBLE-SORT SWAPS: A bubble-sort swagB (i, i+ 1)
when applied to sequen@e= {ty,...,t,} causes the

applied to sequencé = {¢1,...,t,} causes the fol- wiTH MOVES problem becomes equivalent to thenedian
lowing rearrangement of the elementsin M(i — (forp = 1) and thek-means (fop = 2) clustering problems.
JoT ={tr,....,tic1,tig1,. .- ti tj, tjp1,..., tn . Similar arguments show that the windowed versions of both

We usually apply a series of swaps or moves to the initfglese problems are NP-hard.

sequence. We denote /such a sequence of bubble-sott EMMA 4.1. The SEGMENTATION WITH SWAPS and the

swaps and byM a sequence of single-element transpoSPEGMENTATION WITH MOVES problems are NP-hard, for
tions. When a sequence of swaps (or moves) is appliedter 1,2 and dimensionalityl > 2.

the input sequencE we obtain a new sequen@g = Bo T

(or Ty = Mo T). Finally we denote byBs| (or | M]) the

number of bubble-sort swaps (or moves) included in the

Proof. Assume the BGMENTATION WITH SWAPS problem
with C > n2. In this case, the budgét on the number
il 1 -swaps allows us to move every point in any position in
quences (or M). _ _ _ the sequence. That is, the initial ordering of the points
We use the generic terraperationto refer to either s iyqitferent. Then, the SGMENTATION WITH SWAPS
swaps or moves. The transformation of the input sequengghiem becomes equivalent to clustering intalusters.
T' using a series of operat!or@ (all of the same type) is Thus, forC' > n? andp = 1, solving SEGMENTATION
denoted byO o T' = Tj;. Given the above notational conyy,ry swaps would be equivalent to solving themedian
ventions, we are now ready to define the geneEGBEN- clustering problem. Similarly, fop = 2 the problem of
TATION WITH REARRANGEMENTSproblem. SEGMENTATION WITH SWAPS becomes equivalent té-

PROBLEM 2. (SEGMENTATION WITH REARRANGEMENTS) Means clustering.
Given sequencg of lengthn, integer values”' and k, and The NP-hardness proof of theEBMENTATION WITH

error functionE, find a sequence of operatiofssuch that MOVES problem is identical. The only difference is that
_) SEGMENTATION WITH MOVES becomes equivalent to clus-
O =argmin &/ (Sopt (Té/, k)) ,
O/

tering when our budget i€’ > n. O

We now turn further our attention to theEBMENTA-
TION WITH SwWAPS problem and we study its complexity for E;,“ <a-Ey.

d = 1. We have the following lemma. Now consider again the proof of Lemma 4.2 and the
. . GROUPING BY SWAPPING problem. Assume the string €
LEMMA 4.2. For error function Ep, with p = 1,2, the sy ingut 1o the ®OUPING BY SWAPPING problem and
S_EGMENTAT'ON WITH SWAPS problem is NP-hard even forIet f be the one-to-one transformation of sequende the
dimensiont = 1. sequence of integerf(z). The instance of the GOUPING
BY SWAPPING problem with parametek” has an affirmative
answer if and only if the BGMENTATION WITH SWAPS
problem has an affirmative answer for ertby, = 0 and
INSTANCE: Finite alphabek, stringz € ¥*, and a positive C' = K. This instance of the EEsMENTATION WITH SWAPS
integerk. has errorE; = 0. Therefore, if we feed this instance to
the approximation algorithrd it would output a solution
QUESTION: Is there a sequence df or fewer adjacent with E;,“ = 0 and thus using algorithml we could decide
symbol interchanges that convertsnto a stringy in the GROUPING BY SWAPPING problem. However, since
which all occurrences of each symhole 3 are in a GROUPING BY SWAPPINGis NP-hard, the assumption of the
single block, i.e.;y has no subsequences of the formxistence of the polynomial-time approximation algoritdm
aba for a,b € ¥ anda # b? is contradicted.]

Proof. The result is by reduction from the ®®UPING BY
SWAPPING problem [6], which is stated as follows:

Now, if we can solve BGMENTATION WITH SWAPSin poly- 5 Algorithms

nomial time, then we can SolveR®UPING BY SWAPPING hi , . q iotion f laorithmi
in polynomial time as well. Assume string input to the In this section we give a description for our algorithmic

GROUPING BY SWAPPING problem. Create an one-to-on@PProaches for the generiESMENTATION WITH REAR-

mapping/ between the letters if and a set of integers, suctRANGEMENTS problem. When necessary we focus our dis-
that each letten < 3 is mapped tof(a) & N. Therefore, CUSSION to the specific rearrangement operations that we are

the input stringz = {x1,...,,} is transformed to an- considering, namely the moves and the swaps.
dimensional integer sequen¢ér) = {f(z1),..., f(xn)}
such that eactf(z;) is an1-dimensional point. The ques
tion we ask is whether the algorithm for the SMENTATION

5.1 The SEGMENT&REARRANGE algorithm Since our
problem is NP-hard, we propose algorithms that are sub-

WITH SwAPS can find a segmentation with errék, = 0 by optimal. The general algorithmic idea, which we will de-
doing at mostk” swaps. If the answer is “yes”, then the arscribe in this subsection and expand in the sequel, is sum-

swer to the ®OUPING BY SWAPPING problem is also “yes” marized in Algorithm 1.. We.caII this algorithm ES-.
and vice versa. MENT&REARRANGEand it consists of two steps. In the first

step it fixes a segmentation of the sequence. This segmenta-

A corollary of the above lemma is that we cannot ho#n is the optimal segmentation of the input sequefice
for an approximation algorithm for the EBMENTATION ANy Segmentation algorithm can be used in this step includ-
WITH SwaPs problem with bounded approximation ratiolnd the optimal dynamic-programming algorithm (see recur-
Lets denote byE the error induced by an approximatior$i0n (3.2)), or any of the faster segmentation heuristics pr
algorithm.A of the SEGMENTATION WITH SwAPS problem Posed in the literature. Once the segmentaiaof 7" into &
and by E* the error of the optimal solution to the sam&edments is fixed, the algorithm proceeds to the second step
problem. The following corollary shows that there does néglled therearrangemenstep. Given input sequendeand

exist an approximation algorithm for theeESMENTATION ItS Segmentatiory, the goal of this step is to find a good set
WITH SWAPS problem such thaB4 < o E* foranya > 1, Of rearrangements of points, so that the total segmentation

unlessP — N P. error of the rearranged sequence is minimized. We call this
subproblem the RARRANGEMENT problem. Note that the

COROLLARY 4.1. There is no approximation algorithtd REARRANGEMENT problem assumes a fixed segmentation.

for the SEGMENTATION WITH SWAPS problem such that Once the algorithm has decided upon the rearrangements that

E;,“ <a-E, forp =1,2anda > 1, unlessP = NP. need to be made, it segments the rearranged sequence and
outputs the obtained segmentation.

Proof. We will prove the corollary by contradiction. Assume In the rest of our discussion we focus in developing a

that an approximation algorithtd with approximation fac- methodology for the RARRANGEMENT problem. Consider

tora > 1 exists for the EGMENTATION WITH SwAaPSprob- all segments of segmentatich= {s,...,s;} as possible

lem. This would mean that for every instance of thecS new locations for every point ifi’. Each pointt; € T is

MENTATION WITH SWAPS problem it holds that associated with a gain (or losg); that is incurred to the

Algorithm 1 The SSGMENT&R EARRANGE algorithm. Knapsack
Input: Sequencel’ of n points, number of segments Z; gzziéi
number of operation§'. ’
Ouput: A rearrangement of the points ifi and a segmen- :

tation of the new sequence intcsegments. an_| (wn,pn)
1: Segment: S = Sop(T', k)
2: Rearrange: O = rearrangéT’, S, C)
3: Segment: S” = Sopi(T5, k)

Table 2: The tabular formulation of theNdPSACK problem.

program.
S1 S92 Sk [o k
maximize z = -) iiLiq
tr | (wi,p11) (w2r,p21) ... (Wi, Pr1) Lt Zt]eT Pig%is
ta | (wiz,p12) (w22,p22) ... (w2, pr2) subject to: ZLI theT wijri; < C (constraint 1)
Zlexij <1, foreveryj (constraint2)
tn <w1n7p1n> <w2n7p2n> s <wkn7pkn>

Tij € {071}, 1= {17...,k}7 t; eT.

Table 1: The rearrangement table for fixed segmentation

S ={s1,...,56} That s, the objective is to maximize the gain in terms of erro
by moving the points into new segments. At the same time
we have to make sure that at ma@stoperations are made

segmentation error if we mowvi from its current position (constraint 1), and each poititis transferred to at most one
pogt;,T) to segments;. Note that the exact positionnewlocation (constraint 2). Table 1 gives a tabular represe
within the segment in which point; is moved does not tation of the input to the RARRANGEMENT problem. We
affect the gain (loss) in the segméntation error. Dethe call this table theearrangementable. The table has rows
the representative of the segmentSivheret; is initially andk columns and each cellis assogiated with a pair of val-
located angy; the representative of segment Then, fora U€S(wij, pij), Wherew;; is the operational cost of rearrang-
fixed segmentatioss the gainp; ; is ing pointt; to segmens; andp;; corresponds to the gain in

! terms of segmentation error that will be achieved by such a

rearrangement. The integer program above implies that the

J— PIN I I W . .
pij = |t — mil” — [t; = A" solution to the RARRANGEMENT problem contains at most
_ _ _ _ _ one element from each row of the rearrangement table.
Moreover, pointt; is associated with cost (weighty;;, One can observe that theERRRANGEMENT problem
which is theoperationalcost of moving point;; to segment js a generalization of the KAPSACK. In KNAPSACK we
si If we usea;, b; to denote the start and the end poinigre given a set of items{a, ..., o, } and each itera,; is
of the segment;, then the operational cost in the case of g&ssociated with a weight; and a profitp;. The knapsack
move operation Is capacity B is also given as part of the input. The goal in
the KNAPSACK problemis to find a subset of the input items
1, ift; &s; with total weight bounded by3, such that the total profit is
) J (2]
W, ; =
i 0, otherwise. maximized. We can express this with the following integer
program.
For the case of swaps the operational cost is maximize z=3" i
subject to: S wiz; < B
min{|a; — pos(t;, T, z; €{0,1},i=1,2 k
Wij = |bZ - poqtja T)|}7 if tj g S_iv ' 7 ’ o ’
0, otherwise. The tabular representation of theNKPSACK is shown in

Table 2. Note that this table, unlike the rearrangemenétabl

Note that since the segmentation is fixed, when repositgpnimas just a single column. Each element is again associated
the point¢; to the segmens; (if ¢t; & s;) it is enough to with a weight and a profit and is either selected to be in the
make as many swaps as are necessary to put the point irktinegpsack or not. It is known that theNdPSACK problem
beginning or ending positions of the segment (whicheverissNP-hard [6]. However, it does admit a pseudopolynomial-
closer). time algorithm that is based on dynamic programming [19].

Given the above definitions the ERRRANGEMENT The similarity between RARRANGEMENT and KNAP-
problem can be easily formulated with the following integeyAck leads us to apply algorithmic techniques similar to

those applied for KAPSACK. First observe that, in ourcase, Animmediate corollary of Theorem 5.1 is the following.
the bound” on the number of operations that we can afford)

is an integer number. Moreover, for allj, we have that COROLLARY 5.1. Forthe special case of tHREARRANGE-

w;; € Z* andp;; € R. Denote now byA[i,] the maximum MENT problem where we consider only moves (or oply
gain in terms of error that we can achieve if we considBkbble-sort swaps), recurrence (5.3) computes the optimal
pointst; up tot; and afford a total cost(weight) up to< ¢, Solution in polynomial time.

Then, the following recursion allows us to compute all t

valuesAli, d rEroof. In the special cases in question, the weighis are

integers and bounded by Similarly C'is also polynomially
(5.3) Ali,c] = bounded byn. This is because we do not need more than
max {Ali —1,d n moves (orn? swaps). Therefore, for the special case of
T moves and swaps the dynamic-programming algorithm runs
(max (A[i =1, ¢ —wwi] + pri) }- in time polynomial inn. O

In the case of move operations thE ARRANGEMENT
The first term of the outemax corresponds to the gainproblem is even simpler. Recall that in the case of moves
we would obtain by not rearranging tfieh element, while we havew;; € {0,1} for all 4, j. This is because;; = 1
the second term corresponds to the gain we would havetlyeveryt; ¢ s; andw;; = 0 if t; € s;. Therefore, the
rearranging it. REARRANGEMENT problem can be handled efficiently in
terms of the rearrangement table (Table 1). hgbe the
%rgest profit obtained by moving point and letk’ be the
cell of thei-th row that indeed gives this maximum profit.

Proof. First observe that by construction the recursion préurthermore, let; = wy,;. The rearrangement requires the
duces a solution that has cost at mést For proving the movement of the”' points with the highesp;w; values to
optimality of the solution we have to show that the outptfte indicated segment. This can be done simply by sorting
solution is the one that has the maximum profit. The k¥ points of T" with respect to theip;w; values in time
claim is the following. Forevery € {1,...,n}, the optimal O(nlogn). Alternatively, we can do it simply in two passes
solution of weight at most is a superset of the optimal so{O(n) time) by finding the point with th€’-th largestp;w;
lution of weight at most: — wy;, for anyk’ € {1,...,k}. value (this can be done in linear time [4]) and then moving
We prove this claim by contradiction. Lef[i, ¢] be the gain all the points with values higher or equal to this.

of the optimal solution that considers pointsto ¢; and let

Ali—1, c—wyy;] be the gain of the subset of this solution witR-2 Pruning the candidates for rearrangement In the
weight at most: — wy;. Note thatA[i — 1, ¢ — wy;] is asso- previous subsection we have considered all pointsin

ciated with a set of rearrangements of pointo ¢,_;. Now as candidate points for rearrangement. Here we restrict
assume thati[i — 1, ¢ — wy] is not the maximum profit of this set of candidates. ~Algorithm 2 is an enhancement

weightc — wy/;. Thatis, assume that there exists another $ét Algorithm 1. The first step of the two algorithms
of points from{ty,...,t;_1}, that if rearranged gives gainare the same. The second step of trRUNICATEDSEG-
A > Ali — 1, ¢ — wy;] with weight still less tham — wy,;. MENT&REARRANGEalgorithm finds a set of point® C T

However, if such set of rearrangements exist then the priofit® be considered as candidates for rearrangement. Note that

Ali, ¢] would not have been optimal and therefore we reatlte cardinality of this set is bounded Ify, the total num-
a contradiction.] ber of operations allowed. In that way, we can reduce the

complexity of the actual rearrangement step, since we are
The following theorem gives the running time ofocusing on the relocation of a smaller set of points.

the dynamic-programming algorithm that evaluates recur- We argue that it is rational to assume that the points
sion (5.3). to be rearranged are most probably the points that have
values different from their neighbors in the input sequéerice
Notice that we use the term “neighborhood” here to denote
the closeness of points in the sequefiteather than the
Euclidean space.

Example. Consider thel-dimensional sequencé& =
Proof. The dynamic-programming tabléis of sizeO(nC) {10,9,10,10,1,1,10,1,1,1}. It is apparent that this se-
and each step requirés’ operations. Thus, the total costjuence consists of two rather distinct segments. Notice
is O(nkC?). SinceC is an integer provided as input thethat if we indeed segmerif’ into two segments we ob-
algorithm is pseudopolynomial. O tain segmentation with segments = {10,9,10,10} and

LEmMA 5.1. Recurrence (5.3) finds the optimal solution t
the REARRANGEMENT problem.

THEOREMS.1. For arbitrary gainsp;;, costsw;; and inte-
ger C, recursion (5.3) defines af(nkC?) time algorithm.
This is a pseudopolynomial algorithm for tREARRANGE-
MENT problem.

Algorithm 2 The TRUNCATEDSEGMENT&REARRANGE 9} and let/ = 4. Then, the optimal set of deviants is

algorithm. D ={20,21,21,20},andFEs(s — D, 1) = 0.75. O
Input: Sequencel’ of n points, number of segments A slightly different notion of outliers is the so-called
number of operation§'. pseudodeviants Pseudodeviants are faster to compute but
Ouput: A rearrangement of the points ifi and a segmen-have slightly different notion of optimality than deviants
tation of the new sequence intcsegments. The differences between the two notions of outliers becomes
1: Prune: D = prungT) apparent when we focus our attention to the deviants of a
2: Segment: S = Sopt(T" — D, k) single segmeny;, where the representatiyg of the segment
3: Rearrange: O = rearrangeD, S, C) is computedeforethe removal of any deviant points. Then
4. Segment: S” = Sopi(T5,) the optimal set of; pseudodeviants of segmentis
so = {1,1,10,1,1,1} with error E4(T,2) = 10. One can (5.5) Di = argmax Y dy(t,s:).
also observe that the seventh point with valQés an outlier b; teD!

w.r.t. its neighborhood (all the points close to it have ealu

1, while this pOint has V&luéO). |ntuitive|y, it seems the Examp|e_ Consider again the segment= {20’10,21,9,21’
the seventh point has arrived early. Therefore, moving tfgjgo’g} and let¢ = 4, as in the previous example. The set of
pointat its “correct” position, is expected to be benefittal pseudodeviants in this caselis = {21,9,9,9}, with error
the error of the optimal segmentation on the new sequengg s — P, 1) = 80.75.]

, ; . ;o
T". Consider the move operatioh(7 — 4), then” = From the previous two examples it is obvious that

é\;lér7ne_r>1t4s),t:ujc:1tu:re{i1s,0(’e\9/7elr10;nlc(>)r7el(p))’ré]qlo’L}ﬁié}j}i'n-rsheeq:g%-cethere are cases where the set of deviants and the set of
The segmentation af” into two segments would give thepseudodewants of a single segment (and thus of the whole

sequence) may be completely different. However, findin
segments;; = ,{10’9’10’10’10} andsy = {1,1,1,1,1} theq optimzal se)': of pseu%odei//iants is a much more eagy
and total errotr; = 1. algorithmic task.
~We use the outliers of the sequen¢eas candidate In order to present a generic algorithm for finding de-
points to be moved in new locations. For this we shoughnts and pseudodevians we have to slightly augment our
first clearly define the concept of an outlier by adopting thgytation. So far the error functiofl was defined over the
definitions provided in [12, 16]. _ set of possible input sequenc&sand integersN that rep-
Following the work of [16] we differentiate between tWgesented the possible number of segments. Therefore, for
types ofout!iers, namely thgeviantsand thepseudodeviantsT € T andk € N, E(T, k) was used to represent the error of
(a.k.a.pdevianty. Consider sequenc, integersk and? the optimal segmentation of sequeficmto k segments. We
and error function,,. The optimal set of deviants for the oy augment the definition of functidi with one more ar-
sequencd’ and errorE, is the set of point® such that gument, the number of outliers. Now we wri{T, &, ¢) to
denote the minimum error of the segmentation of a sequence
D=arg min E,(T—D,Fk). T — D, whereD is the set of outliers of” with cardinality

D'CT,|D'|=¢ R .
S . |D| = ¢. Finally, when necessary, we overload the notation
In order to build intuition about deviants, lets turn ou

ttention & inal The total that thi Lo that for segmentatiofi with segmentssy, ..., sx} we
atten |or; 0 at sblntg € tse?hmeai. | € lota ?rtr_or baf IS uses; to represent the points included in segment
segment contributes fo the whole segmentation, belore any o generic dynamic-programming recursion that finds

deviants are removed from it, Bp(s;, 1). For po_lntt and fthe optimal setD of ¢ deviants (or pseudodeviants) of
set of pointsP we used,(t, P) to denote the distance Osequenc@ is

the pointt to the set of points inP. Forp = 1 this
is di(t,P) = |t — mediariP)|, wheremedia{P) is the (5.6) E,(T[1,n],k ()=
median value of the points i#. Similarly, forp = 2, . .)
do(t, P) = |t — mear{P)|?, wheremear{P) is the mean R (B (T[], k= 1,7)
value of the points irP. The optimal set of; deviants ofs; 4R (Tli+1,n],1,0—).
are the set of point®); € s; with | D;| = ¢; such that P T

(5.4) D; = argmax Z dy(t, si — Dy). The recursive formula (5.6) finds the best allocation of out-
Dl D liers between the subsequendégs, i] andT[: + 1, n]. Note

' that the recursion can be computed in polynomial time if

Example. Consider segment = {20, 10, 21, 9, 21, 9, 20, both the terms of the sum can be computed in polynomial

time. LetC; be the cost of computing the first term of the
sum and’; the computational cost of the second term. Then,
evaluating (5.6) takes tim@ (n?¢ (Cy + C3)). TimeC} is
constant since itis just a table lookup. Tifigis the time re-
quired to evaluate Equations (5.4) and (5.5) for deviantk an
pseudodeviants respectively. From our previous discossio
on the complexity of Equations (5.4) and (5.5) we can con-
clude that recursion (5.6) can compute in polynomial time
the pseudodeviants of a sequence, irrespective of the dimen s}
sionality of the input data. For the case of deviants and one-
dimensional data Recurrence 5.6 can compute the optimal set
of deviants in timeD(n?¢?). In the case of pseudodeviants
and arbitrary dimensionality, the timed(n?/).

Although the pseudodeviant-extraction phase is rather
expensive, we note that the expensive step of outlier detec- 7 | ——
tion is independent of the rearrangement step, so in pectic s}
one can use a faster and less accurate algorithm for finding
the outliers. We defer the discussion of whether the quality
of the results in arbitrary datasets is improved when weyappl
the outlier-detection algorithm in the experimental satti
Here we just give an indicative (maybe contrived) example
(see Figure 1) of a case where the extraction of outliers be-
fore proceeding in the rearrangement step proves useful. 5

Example. Consider the input sequence shown in Fig- (b) Optimal segmentation of the input sequence
ure 1(a). The arrangement of the input points is such -
that the optimal segmentation of the sequence assigns the
66-th point, saypss, of the sequence alone in one small
segment (Figure 1(b)). Given the optimal segmentation
of the input sequence, theeBMENT&REARRANGE algo-
rithm does not consider movingss. This is because there
cannot exist another segment whose representative would
be closer to thepgs than the point itself. As a result,
the segmentation with rearrangements we obtain using the
SEGMENT&R EARRANGE algorithm and allowing at mo&t
moves is the one shown in Figure 1(c). The error of this
segmentation i$).388 which is a50% improvement over -
the error of the optimal segmentation of the input sequence -
without rearrangements. However, th&@ UNCATEDSEG-
MENT&REARRANGE algorithm immediately identifies that A4
pointspsg andpgg are the ones that differ from their neigh- FJ

o

o 10 20 30 40 50 60 70 80 90 100

(a) Input sequence

o 10 20 30 40 50 60 70 80 90 100

s

10

(c) Segmentation with rearrangements UuSINgEGS
MENT&REARRANGE

bors and it focuses on repositioning just these two points.
Furthermore, the segment representatives of the segmenta- -
tion used for the rearrangement are calculated by ignoring
the outliers and therefore, the algorithm produces the out-

o5l

put shown in Figure 1(d). This output has erfof05 that B T N
is almost100% improvement over the error of the optimal (d) Segmentation with rearrangements USingUNCATED-
segmentation (without rearrangements). O SEGMENT&REARRANGE

Figure 1: Pathological example where thRUNCATEDSE G-

5.3 The GREEDY algorithm The SEGMENT & REAR- MENT&R EARRANGE algorithm is useful,

RANGE and the RUNCATEDSEGMENT & REARRANGE al-
gorithms were focusing on finding a sequence of rearrange-
ment operations of cost at most that improved the error
of the segmentation of the input sequefiteThat is, the al-

gorithms were initially fixing a segmentation, and then the , Input sequence before the addition of noise

were deciding on all the possible operations that could ir Az |
prove the error of this specific segmentation. In this segtic OWWWMM%MWW
we describe the 8EEDY algorithm that (a) rearranges one
pointat a time and (b) readjusts the segmentation that guit , Input sequence with noise
the rearrangement of the points after every step. The ps: |

docode of the ®EEDY algorithm is given in Algorithm 3. OWW%WM%WWW

= | | | . .
Rearranged sequence with Greedy—Moves

Algorithm 3 The GREEDY algorithm.

2 T T T T T T

Input: Sequencel’ of n points, number of segments | gt |]
; e \ ¥ vy fhgheg il . ;
number of operation§'. St [RR—. LMWWM g
Ouput: A rearrangement of the points ifi and a segmen- _; — e
tation of the new sequence intcsegments. » Rearianged sequence with Greedy-Swaps
Lce O 1? . i i "H‘“’r\\ a‘nu‘w‘u‘\}"'u‘ *m‘r\“r‘a‘»’ M ’M:
2: S «— Sopt(T, k) o i . i
3 By ,<_ E (Som(T’ k))’ Eo o0 X 0 200 300 200 500 500 700 300 900 1000
4: whilec < C and (E; — Ey) < 0do
5 Eo— I Figure 3: Anecdotal evidence of algorithms’ qualitative
6: (O,p) —LER(T,S,C—¢) performance.
7. cec+|0]
8 T—O0OoT
9:_ g‘_ S%”(g’k)T i the optimal k-segmentation (without rearrangements) has
icl): end ;v(r;le (Sopi(T k)) error E*, then the error ratio is defined to be= E4/E*. In

our case, the error ratio is by definition less tHasince we
only do rearrangements that reduce the segmentation error.

Ateach step the ®EEDY algorithm decides to rearrang&yhen the value of- is small even for small number of
point p such that the largest reduction in the segmentatigihrrangements, then we can conclude that segmenting with
error of the rearranged sequence is achieved. The decisi@frangements is meaningful for a given dataset.
upon which point to be rearranged and the sequence of re- \we study the quality of the results for the different
arrangements is made in the LEP (Least Error Point) rolgorithms and rearrangement types. For the study we use
tine. The same routine ensures that at every step the COB@q'rh synthetic and real datasets, and we explore the cases
tion (c+ |0| < C) is satisfied. Note that the decision of thgyhere segmentation with rearrangements is meaningful.
point to be moved is guided by the recomputed segmentation
of the rearranged sequence and it is a tradeoff between ghe Experiments with synthetic data The synthetic data
error gain due to the rearrangement and the operational Gagf generated as follows. First, we generate a ground-truth
of the rearrangement itself. The algorithm terminatesegithyztaset (Step 1). Then, we rearrange some of the points
when it has made the maximum allowed number of opegthe dataset in order to produce the rearrangech(sy)
tions, or when it cannot improve the segmentation cost a¥taset (Step 2). The output of Step 2 is used as input for our
further. experiments.

If ¢ is the time required by the LEP procedure ahd For Step 1 we first fix the dimensionality of the
the number of iterations of the algorithm, then thREEDY ata. Then we seledt segment boundaries, which are
algorithm needsD(It) time. The LEP procedure creategommon for all thed dimensions. For thg-th segment of
the rearrange matrix of size x k£ and among the entriesine ;-th dimension we select a mean valug, which is
with weight less than the remaining allowed operations, jhiformly distributed in[0, 1]. Points are then generated by
picks the one with the highest profit. This can be done iyging a noise value sampled from the normal distribution
O(nk) time and therefore the overall computational cost W(uij, 2). For the experiments we present here we have

the GREEDY algorithm isO(Ink). fixed the number of segments= 10. We have generated
_ datasets withl = 1,5, 10, and standard deviations varying
6 Experiments from 0.05 t0 0.9.

In this section we compare experimentally the algorithmswe Once the ground-truth dataset is generated we proceed
described in the previous sections. We usedher ratio with rearranging some of its points. There are two parame-
as a measure of the qualitative performance. That is, if &ms that characterize the rearrangemenisnd.. Parameter
algorithm A produces &-segmentation with erroE and np determines how many points are moved from their initial

location, whilel determines for every moved point its nevdoes not have a considerably bad effect on the quality of
position on the sequence. More specifically, for every poitite obtained segmentation. However it does not lead to
p; (located at position) that is moved, its new position isimprovements either, as we had expected when studying
uniformly distributed in the intervdl — 1,4 + 1]. pathological cases.

Figure 2 shows the values of the error ratio achieved
by the different combinations of algorithms and rearrangé2 Experiments with real data Figure 5 shows the er-
ment types. RS-Moves and RS-Swaps correspond to tberatio for different combinations of algorithms and re-
SEGMENT&REARRANGE algorithm for moves and swapsarrangement types, for a set of real datasetst @s,
respectively. Similarly, G-Moves and G-Swaps refer to thghone, power pl ant, robot_arm shuttl e and
GREEDY algorithm with moves and swaps. The results asoi | t enp). The datasets along with their description
shown for noisy datasets and for fixeg and! (np = 16, can be downloaded from the UCR time-series data mining
I = 20). Similar results were obtained for other combinarchive> We plot the results as a function of the number
tions of np and! values. Notice that for segmenting wittof allowed rearrangement operations. In this case, since we
rearrangements we use the number of swaps and movesdmatignorant of the data-generation process, we use in all
are implied for the data-generation process. That is, whexperiments the same number of moves and swaps. Under
np = 16 and/ = 20, we allow at mostl6 moves and these conditions the effect of moves is expected to be larger
16 x 20 = 360 swaps. For the synthetic datasets there arewhich indeed is observed in all cases. Furthermore, fora spe
significant differences in the quality of the results ob&ain cific type of rearrangements theeEMENT&REARRANGE
by SEGMENT&REARRANGE and QREEDY algorithms. We and GReeDY algorithms give results that are always compa-
observe though, that swaps give usually worse results thanmable. Finally, notice that there are cases where moving jus
equivalent number of moves. This effect is particularly-prd28 points of the input sequence leads to a faétérerror
nounced in the-dimensional data. This is because in lownprovement. For example, this is the casaftasandsoil-
dimensions the algorithms (botrEEMENT&REARRANGE tempdatasets, wher&28 points correspond to jud0% and
and QREEDY) are susceptible to err and prefer swaps tha of the data points respectively.
are more promising locally but do not lead to a good overall
rearrangement. 7 Conclusions

Figure 3 shows the effect of rearrangements on a nojgythis paper we have introduced and studied tEeBeN-
input sequence. There are four series shown in Figurerdson WiTH REARRANGEMENTS problem. In particu-
The firstis the generated ground-truth sequence. (Thi®is ff \ve have considered two types of rearrangement opera-
sequence output by Step 1 of the data-generation procegshs, namely moves and bubble-sort swaps. We have shown
The second sequence is the rearranged (noisy) sequencey@iidn most of the cases, the problem is hard to solve with
thus the output of Step 2 of the data-generation process)pHlnomial-time algorithms. For that reason we discussed
this sequence the existence of rearranged points is evidgn{et of heuristics that we experimentally evaluated using a
Notice, for example, interval§250 — 350], [450 — 550], set of synthetic and real time-series datasets. For each one
[580 — 610] and [800 — 850]. The sequence recovered by those heuristics we considered their potentials andtshor
the GReeDy algorithm with moves is almost identical to th@omings under different types of input data. Experimental
input sequence before the addition of noise. However, @dence showed that allowing a small number of rearrange-

same algorithm with swaps does not succeed in finding glbnts my significantly reduce the error of the output seg-
the correct rearrangements that need to be done. mentation.

Figure 4 shows the effect of pruning in the quality of the
segmentation r_esults. In this case we compare thg quality\@k nowledgments
four segmentation outputs; th(_e segmentation obtameddpy\tne would like to thank Taneli Mielikainen for many useful
SEGMENT&R EARRANGE algorithm (SR), the segmentation,. . .
obtained by the GEeDY algorithm (G) and the one obtaineéjlscussmns and suggestions.
by the TRUNCATEDSEGMENT&REARRANGE (TSR). We
also show the error ratio achieved by segmenting the grouRifer ences
truth sequence using the conventional optimal segmentatio
algorithm (GT). Observe first that surprisingly our methods
give better results than the segmentation of the grourtti-tru[1] R.Bellman. On the approximation of curves by line segtaen
sequence. This means that the methods find rearrangementsusing dynamic programmingCommunications of the ACM
that needed to be done in the input sequence but were not 4(6), 1961.
generated by our rearrangement step during data generation

Also note that focusing on rearrangement of pseudodeviam_}mp_ /) cs. uer . edu/ ~eanonn/ TS

[2] E.Bingham, A. Gionis, N. Haiminen, H. Hiisila, H. Manail segmentation. IrProceedings of the SIAM International
and E. Terzi. Segmentation and dimensionality reductian. | Conference on Data Mining (SDI\2006.
Proceedings of the SIAM International Conference on Dafa9] V. Vazirani. Approximation AlgorithmsSpringer, 2003.
Mining (SDM) 2006. [20] M. Vlachos, S. Papadimitriou, Z. Vagena, and P. S. YwaRi
[3] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Indexing and visualization of high-dimensional data via di
Algorithms for facility location problems with outliers. mension reorderings. IBuropean Conference on Principles
In Proceedings of the Symposium on Discrete Algorithms of Data Mining and Knowledge Discovery (PKDR2D06.
(SODA) pages 642—-651, 2001.
[4] T. Cormen, C. Leiserson, and R. Rivestntroduction to
Algorithms MIT Press, 1990.
[5] D. Douglas and T. Peucker. Algorithms for the reductidn o
the number of points required to represent a digitized line o
its caricature Canadian Cartographerl0(2):112—-122, 1973.
[6] M. Garey and D. S. JohnsorComputers and Intractability:
A Guide to the Theory of NP-Completene¥éH. Freeman,
1979.
[7] A. Gionis and H. Mannila. Finding recurrent sources in
sequences. lIrnternational Conference on Research in
Computational Molecular Biology (RECOMBpages 123—
130, 2003.
[8] S. Guha, N. Koudas, and K. Shim. Data-streams and his-
tograms. InProceedings of the Symposium on the Theory of
Computing (STOC)ages 471-475, 2001.
[9] N. Haiminen and A. Gionis. Unimodal segmentation of se-
quences. IrProceedings of the IEEE International Confer-
ence on Data Mining (ICDM)pages 106-113, 2004.
[10] T. Hartman and R. Sharan. A 1.5-approximation algonith
for sorting by transpositions and transreversalgurnal of
Computer and System Sciences (JCB3XB):300-320, 2005.
[11] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and
H. Toivonen. Time series segmentation for context recogni-
tion in mobile devices. IfProceedings of the IEEE Interna-
tional Conference on Data Mining (ICDMpages 203-210,
2001.
[12] H. V. Jagadish, N. Koudas, and S. Muthukrishnan. Mining
deviants in a time series database. Piroceedings of Very
Large Data Bases (VLDB) Conferengmages 102-113, 1999.
[13] E.J.Keogh and M. J. Pazzani. An enhanced represemitio
time series which allows fast and accurate classificatios; ¢
tering and relevance feedback. Mroceedings of the ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD) pages 239—-243, 1998.
[14] E. J. Keogh and P. Smyth. A probabilistic approach ta fas
pattern matching in time series databasesProceedings of
the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD)pages 24-30, 1997.
[15] N. Megiddo, E. Zemel, and S. L. Hakimi. The maximum
coverage location problenSIAM Journal on Algebraic and
Discrete Methods4:253-261, 1983.
[16] S. Muthukrishnan, R. Shah, and J. S. Vitter. Mining des
in time series data streams. PRroceedings of Statistical
and Scientific Database Management (SSDRMyes 41-50,
2004.
[17] H. Shatkay and S. B. Zdonik. Approximate queries and
representations for large data sequencesPrbiceedings of
the International Conference on Data Engineering (ICDE)
pages 536-545, 1996.
[18] E. Terzi and P. Tsaparas. Efficient algorithms for seqee

Number of dimensions = 1

Number of dimensions = 5

Number of dimensions = 10

1 1 L 4 —mbm —o 4
’,*---0--__,___*__-4-——-0 1 1 o ct = o - at = oaats S
0.9 1 —e— SR-Moves
0.9F —-e— SR-Moves 1 0.9 -e- SR-Swaps | |
o8 ° -+ - SR-Swaps ° —— G-Moves
= —— SR-Moves = e g:g"ﬁ;ﬁi B -+ G-Swaps
o -#- SR-Swaps o 08 1 o8 1
507 —o— G-Moves 15 5
= -+- G-Swaps = =
w Wozt { Wor 1
0.6 4
05] 0.6¢ 4 0.6 4
0.4 05 05
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Variance Variance Variance

Figure 2: Error ratio for different algorithms and rearrangent types on synthetic datasets with dimensibas1, 5 and

10.

Number of dimensions = 1

Number of dimensions = 5

Number of dimensions = 10

1 ,,__--o-—-q-"" i ir R e T el alebein 1 4
0.9 1
0.9r 1 0.9 1
—e— SR-Moves —o—- SR-Moves
2 0.8 1 o —6— G-Moves o —— G-Moves
_% . o= SR-Moves ﬁ —— TSR-Moves -% —+— TSR-Moves
@ —— G-Moves x 08f -+- GT 1 @08 -+- GT]
507 —+— TSR-Moves 18]
= -+- GT £ =
w W7t { Yoz E
0.6 1
05 1 o6t i 06 E
0.4 05 0.5
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Variance Variance Variance
Figure 4: Error ratio with pruning for synthetic datasetshwdimensionsgl = 1, 5 and10.
attas dataset phone dataset powerplant dataset
1 . 1 ; 1 —
0.95 1 0.98 1 0.95
0.9 4 0.96 4 0.9
—e— SR-Moves
0.85 —e— SR-Moves 9 0.94 9 0.85 ~— SR-Swaps
2 os —— SR-Swaps 1 200 1 2 o8 —6— G-Moves
T —— G-Moves T g —— G-Swaps
% 0.75 —— G-Swaps 4 % 0.9 4 'f 0.75
e e R-M e
5 o7 1 [§oss —o— SR-Moves 5 o7
—— SR-Swaps
0.65 1 0.86 —o— G-Moves 0.65
0.6 1 0.84 —— G-Swaps 06
0.55 1 0.82 1 0.55
058 16 32 64 128 088 16 32 64 128 0% 16 =2 64 128
Number of rearrangements Number of rearrangements Number of rearrangements
robot_arm dataset shuttle dataset soiltemp dataset
1 1
—_—
0.95 0.98& 1
0.9 0.96 1
0.85 0.94 1
—e— SR-Moves
(=} (=} (=}
g 08 g 092 —— SR-Swaps | | =
o5 T o9 —— G-Moves 4z
S o —— G-Swaps <]
o 07 - giflglloves | 0.88 1O SR-Moves
* —awaps] SR-Swaps
0.65 o— G-Moves 0.86 o Moves
0.6 —— G-Swaps q 0.84 1 G-Swaps
0.55 4 0.82 4
05k . . | 08l . | 050 . . |
28 16 32 64 128 28 16 128 248 16 128

Number of rearrangements

32 64
Number of rearrangements

3 64
Number of rearrangements

Figure 5: Error ratio of different algorithms and rearrangmt types as a function of the number of rearrangements for

different real datasets.

