
Segmentations with Rearrangements

Aristides Gionis∗

Yahoo! Research,
Barcelona, Spain

gionis@yahoo-inc.com

Evimaria Terzi
Basic Research Unit, HIIT

University of Helsinki, Finland
terzi@cs.helsinki.fi

January 26, 2007

Abstract

Sequence segmentation is a central problem in the analysis
of sequential and time-series data. In this paper we introduce
and we study a novel variation to the segmentation problem:
in addition to partitioning the sequence we also seek to apply
a limited amount of reordering, so that the overall representa-
tion error is minimized. Our problem formulation has appli-
cations in segmenting data collected from a sensor network
where some of the sensors might be slightly out of sync, or
in the analysis of newsfeed data where news reports on a few
different topics are arriving in an interleaved manner. We
formulate the problem of segmentation with rearrangements
and we show that it is anNP-hard problem to solve or even
approximate. We then proceed to devise effective algorithms
for the proposed problem, combining ideas from linear pro-
gramming, dynamic programming, and outlier-detection al-
gorithms in sequences. We perform extensive experimental
evaluation on synthetic and real datasets that demonstrates
the efficacy of the suggested algorithms.

1 Introduction

A central problem related to time-series analysis is the con-
struction of a compressed and concise representation of the
data, so that the time-series data can be handled efficiently.
One commonly used such representation is thepiecewise-
constantapproximation. A piecewise-constant representa-
tion approximates a time seriesT of lengthn usingk non-
overlapping and contiguous segments that span the whole se-
quence. Each segment is represented by a single (constant)
point, e.g., the mean of the points in the segment. We call
mean this point therepresentativeof the segment, since it
represents all the points in the segment. The error in this ap-
proximate representation is measured using someerror func-
tion, usually the sum of squares of the differences between
all points in the segment and their representative point. Dif-
ferent error functions may be used depending on the appli-
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cation. For a given error function, the goal is to find the
segmentation of the sequence intok segments and the cor-
respondingk representatives so that the error in the repre-
sentation of the underlying data is minimized. We call this
problem the SEGMENTATION problem. Segmentation prob-
lems, particularly for multivariate time series, arise in many
data mining applications, including bioinformatics, environ-
mental sciences, weather prediction, and context recognition
in mobile devices.

The input data for time-series segmentation problems
is usually a sequenceT consisting ofn points{t1, . . . , tn}
with ti ∈ R

d. The majority of the related work primarily
focuses on finding a segmentationS of T taking for granted
the order of the points inT . That is, it is assumed that the
correct order of the points coincides with the input order.
In this paper we assume that the order of the points inT
is only approximatelycorrect. We thus consider the case
where the points need a “gentle” rearrangement (reordering).
This reordering will result in another sequenceT ′, which
consists of the same points asT . Our focus is to find
the rearrangement of the points such that the segmentation
error of the reordered sequenceT ′ is minimized. We call
this alternative formulation of the segmentation problem
SEGMENTATION WITH REARRANGEMENTS.

In this paper we formally define the SEGMENTATION

WITH REARRANGEMENTSproblem and some of its variants.
We show that under several conditions the problem is NP-
hard and, even worse, hard to approximate. Furthermore, we
devise heuristics that are intuitive and work well in practice.

The following example motivates the SEGMENTATION

WITH REARRANGEMENTS problem. Consider a setting
where there are many sensors, located at different places,
reporting their measurements to a central server. Assume
that at all time points the sensors are functioning properly
and they send correct and useful data to the server. However,
due to communication delays or malfunctions in the network,
the data points do not arrive to the server in the right order.
In such a case, if the segmentation algorithm (or more
general any data analysis algorithm employed) takes the data



order for granted it may produce misleading results. On
the other hand, choosing to ignore data points that seem
to be incompatible with their neighbors leads to omitting
possibly valuable information. Omitting some data points
is, of course, a type of correction, however, in this paper we
take the approach of correcting the data by reordering instead
of omitting data points.

The rest of the paper is organized as follows. We start
by reviewing the related work in Section 2. In Section 3
we introduce our notation and we give the basic problem
definition. We discuss the complexity of the problem in
Section 4, and we present our algorithms in Section 5. We
discuss the experimental evaluation of our algorithms in
Section 6, and finally, Section 7 is a short conclusion.

2 Related work

The work presented in this paper is closely related to the
literature on segmentation algorithms. Despite the fact
that the basic SEGMENTATION problem can be solved op-
timally in polynomial time, the quadratic performance of
the optimal algorithm makes the use of the algorithm pro-
hibitive for large datasets. For this reason several subopti-
mal, though more efficient algorithms have been proposed in
the literature. Some of them have provable approximation
bounds [8, 18], while others have proved to work very well
in practice [5, 11, 14, 13, 17]. Variants of the basic SEGMEN-
TATION problem have been studied in different contexts, for
example [2, 7, 9]. The main idea in these cases is to find a
segmentation of the input sequence intok segments, subject
to some constraints imposed on the output representatives.
Finally, reordering techniques over the dimensions of mul-
tidimensional data have been proposed in [20]. The goal of
this technique is mainly to improve the performance of in-
dexing structures that allow for more efficient answering of
similarity (e.g.,k-NN queries).

The SEGMENTATION WITH REARRANGEMENTSprob-
lem is a classical segmentation problem, where all the points
appearing in the sequence are assumed to have the correct
values, but the structure of the sequence itself may be er-
roneous. Thus, in this problem we are given the additional
“freedom” to move points around in order to improve the
segmentation error. To the best of our knowledge, the prob-
lem of SEGMENTATION WITH REARRANGEMENTShas not
been studied in the literature. Slightly related is the work
on identifying “unexpected” or surprising behavior of the
data used for various data-mining tasks. The mainstream ap-
proaches for such problems find the data points that exhibit
surprising or unexpected behavior and remove them from the
dataset. These points are usually calledoutliers, and their
removal from the dataset allows for a cheapest (in terms of
model cost) and more concise representation of the data. For
example, [12, 16] study the problem of finding outliers (or
deviants) in time-series data. More specifically, the goal is to

find the best set of deviants that if removed from the dataset,
the histogram built using the rest of the points has the small-
est possible error. Although our problem definition is differ-
ent from the one presented in [12, 16] we use some of their
techniques in our methodology. Similarly, the problem of
finding outliers in order to improve the results of clustering
algorithms has been studied in [3].

3 Problem formulation

Let T = (t1, t2, . . . , tn) be ad-dimensional sequence of
lengthn with ti ∈ R

d, i.e.,ti = (ti1, ti2, . . . , tid).
A k-segmentationS of a sequence of lengthn is a

partition of{1, 2, . . . , n} into k non-overlapping contiguous
subsequences (segments),S = {s1, s2, . . . , sk}. Each
segmentsi consists of|si| points. The representation of
sequenceT when segmentationS is applied to it, collapses
the values of the sequence within each segments into
a single valueµs (e.g., the mean). We call this value
the representativeof the segment, and each pointt ∈
s is “represented” by the valueµs. Collapsing points
into representatives results in less accuracy in the sequence
representation. We measure this loss in accuracy using the
error functionEp, defined as

Ep(T, S) =

(

∑

s∈S

∑

t∈s

|t− µs|
p

)
1

p

,(3.1)

whereT denotes the sequence andS the segmentation. We
consider the cases wherep = 1, 2. For simplicity, we
will sometimes writeEp(S) instead ofEp(T, S), when the
sequenceT is implied.

The SEGMENTATION problem asks for the segmentation
that minimizes the errorEp. The optimal representative
of each segment depends onp. For p = 1 the optimal
representative for each segment is the median of the points
in the segment; forp = 2 the optimal representative of the
points in a segment is their mean.

3.1 The SEGMENTATION problem We now give a formal
definition of the SEGMENTATION problem, and we describe
the optimal algorithm for solving it. LetSn,k denote the set
of all k-segmentations of sequences of lengthn. For some
sequenceT , and for error measureEp, we define the optimal
segmentation as

Sopt(T, k) = arg min
S∈Sn,k

Ep(T, S).

That is, Sopt is the k-segmentationS that minimizes the
Ep(T, S). For a given sequenceT of lengthn the formal
definition of thek-segmentation problem is the following:

PROBLEM 1. (SEGMENTATION) Given a sequenceT of
lengthn, an integer valuek, and the error functionEp, find
Sopt(T, k).



Problem 1 is known to be solvable in polynomial time [1].
The solution consists of a standard dynamic-programming
(DP) algorithm that runs in timeO(n2k). The main recur-
rence of the dynamic-programming algorithm is the follow-
ing:

Ep(Sopt(T [1 . . . n] , k)) =(3.2)

minj<n {Ep (Sopt(T [1 . . . j] , k − 1))

+Ep (Sopt(T [j + 1, . . . , n] , 1))},

whereT [i . . . , j] denotes the subsequence ofT that contains
all points in positions fromi to j, with i, j included.

3.2 The SEGMENTATION WITH REARRANGEMENTS

problem We now define the SEGMENTATION WITH REAR-
RANGEMENTS problem. Assume again an input sequence
T = {t1, . . . , tn}. We associate the input sequence with the
identity permutationτ i.e., thei-th observation is positioned
in the i-th position in the sequence. Our goal is to find an-
other permutationπ of the data points inT . There are many
possible ways to permute the points of the initial sequence
T . Here we allow two types of rearrangements of the points,
namely,bubble-sort swaps(or simplyswaps) andmoves.

• BUBBLE-SORT SWAPS: A bubble-sort swapB(i, i+1)
when applied to sequenceT = {t1, . . . , tn} causes the
following rearrangement of the elements ofT : B(i, i +
1) ◦ T = {t1, . . . , ti+1, ti, ti+2, tn}.

• MOVES: A move corresponds to a single-element trans-
position [10]. That is, a moveM(i → j) (i < j) when
applied to sequenceT = {t1, . . . , tn} causes the fol-
lowing rearrangement of the elements inT : M(i →
j) ◦ T = {t1, . . . , ti−1, ti+1, . . . , ti, tj , tj+1, . . . , tn}.

We usually apply a series of swaps or moves to the initial
sequence. We denote byB such a sequence of bubble-sort
swaps and byM a sequence of single-element transposi-
tions. When a sequence of swaps (or moves) is applied to
the input sequenceT we obtain a new sequenceTB = B ◦ T
(or TM = M ◦ T ). Finally we denote by|B| (or |M|) the
number of bubble-sort swaps (or moves) included in the se-
quenceB (orM).

We use the generic termoperation to refer to either
swaps or moves. The transformation of the input sequence
T using a series of operationsO (all of the same type) is
denoted byO ◦ T = TO. Given the above notational con-
ventions, we are now ready to define the generic SEGMEN-
TATION WITH REARRANGEMENTSproblem.

PROBLEM 2. (SEGMENTATION WITH REARRANGEMENTS)
Given sequenceT of lengthn, integer valuesC andk, and
error functionE, find a sequence of operationsO such that

O = argmin
O

′

E
(

Sopt
(

T
O

′ , k
))

,

with the restriction that|O| ≤ C.

When the operations are restricted to bubble-sort swaps
the corresponding segmentation problem is called SEGMEN-
TATION WITH SWAPS, while when the operations are re-
stricted to moves, we call the corresponding segmentation
problem SEGMENTATION WITH MOVES.

We mainly focus on theEp error measure, and partic-
ularly we are interested in the cases wherep = 1, 2 (see
Equation (3.1)).

4 Problem complexity

Although the basick-segmentation problem (Problem 1) is
solvable in polynomial time the alternative formulations we
study in this paper are NP-hard.

We first argue the NP-hardness of the SEGMENTATION

WITH SWAPS and SEGMENTATION WITH MOVES for the
case of error functionEp with p = 1, 2 and for sequence
T = {t1, . . . , tn} with ti ∈ R

d andd ≥ 2. Consider for
example, the SEGMENTATION WITH SWAPS problem with
C = n2. This value forC allows us to move any point freely
to arbitrary position, irrespective to its initial location. Thus
the SEGMENTATION WITH SWAPS problem withC = n2 is
the well-studiedclustering problem. Forp = 1 it is the Eu-
clideank-median problem, and forp = 2 it is thek-means
problem of findingk points such that the sum of distances to
the closest point is minimized. Both these problems can be
solved in polynomial time for1-dimensional data [15], and
both are NP-hard for dimensionsd ≥ 2 [6]. Similar observa-
tion holds for the SEGMENTATION WITH MOVES problem
when settingC = n. In this case again the SEGMENTATION

WITH MOVES problem becomes equivalent to thek-median
(for p = 1) and thek-means (forp = 2) clustering problems.
Similar arguments show that the windowed versions of both
these problems are NP-hard.

LEMMA 4.1. The SEGMENTATION WITH SWAPS and the
SEGMENTATION WITH MOVES problems are NP-hard, for
p = 1, 2 and dimensionalityd ≥ 2.

Proof. Assume the SEGMENTATION WITH SWAPS problem
with C ≥ n2. In this case, the budgetC on the number
of swaps allows us to move every point in any position in
the sequence. That is, the initial ordering of the points
is indifferent. Then, the SEGMENTATION WITH SWAPS

problem becomes equivalent to clustering intok clusters.
Thus, forC ≥ n2 and p = 1, solving SEGMENTATION

WITH SWAPS would be equivalent to solving thek-median
clustering problem. Similarly, forp = 2 the problem of
SEGMENTATION WITH SWAPS becomes equivalent tok-
means clustering.

The NP-hardness proof of the SEGMENTATION WITH

MOVES problem is identical. The only difference is that
SEGMENTATION WITH MOVES becomes equivalent to clus-
tering when our budget isC ≥ n. �



We now turn further our attention to the SEGMENTA-
TION WITH SWAPSproblem and we study its complexity for
d = 1. We have the following lemma.

LEMMA 4.2. For error function Ep, with p = 1, 2, the
SEGMENTATION WITH SWAPS problem is NP-hard even for
dimensiond = 1.

Proof. The result is by reduction from the GROUPING BY

SWAPPING problem [6], which is stated as follows:

INSTANCE: Finite alphabetΣ, stringx ∈ Σ∗, and a positive
integerK.

QUESTION: Is there a sequence ofK or fewer adjacent
symbol interchanges that convertsx into a stringy in
which all occurrences of each symbola ∈ Σ are in a
single block, i.e.,y has no subsequences of the form
aba for a, b ∈ Σ anda 6= b?

Now, if we can solve SEGMENTATION WITH SWAPS in poly-
nomial time, then we can solve GROUPING BY SWAPPING

in polynomial time as well. Assume stringx input to the
GROUPING BY SWAPPING problem. Create an one-to-one
mappingf between the letters inΣ and a set of integers, such
that each lettera ∈ Σ is mapped tof(a) ∈ N. Therefore,
the input stringx = {x1, . . . , xn} is transformed to an1-
dimensional integer sequencef(x) = {f(x1), . . . , f(xn)},
such that eachf(xi) is an1-dimensional point. The ques-
tion we ask is whether the algorithm for the SEGMENTATION

WITH SWAPS can find a segmentation with errorEp = 0 by
doing at mostK swaps. If the answer is “yes”, then the an-
swer to the GROUPING BY SWAPPINGproblem is also “yes”
and vice versa. �

A corollary of the above lemma is that we cannot hope
for an approximation algorithm for the SEGMENTATION

WITH SWAPS problem with bounded approximation ratio.
Lets denote byEA the error induced by an approximation
algorithmA of the SEGMENTATION WITH SWAPS problem
and by E∗ the error of the optimal solution to the same
problem. The following corollary shows that there does not
exist an approximation algorithm for the SEGMENTATION

WITH SWAPSproblem such thatEA ≤ α ·E∗ for anyα > 1,
unlessP = NP .

COROLLARY 4.1. There is no approximation algorithmA
for the SEGMENTATION WITH SWAPS problem such that
EA

p ≤ α ·E∗
p , for p = 1, 2 andα > 1, unlessP = NP.

Proof. We will prove the corollary by contradiction. Assume
that an approximation algorithmA with approximation fac-
torα > 1 exists for the SEGMENTATION WITH SWAPSprob-
lem. This would mean that for every instance of the SEG-
MENTATION WITH SWAPS problem it holds that

EA
p ≤ α ·E∗

p .

Now consider again the proof of Lemma 4.2 and the
GROUPING BY SWAPPING problem. Assume the stringx ∈
Σ∗ the input to the GROUPING BY SWAPPING problem and
let f be the one-to-one transformation of sequencex to the
sequence of integersf(x). The instance of the GROUPING

BY SWAPPINGproblem with parameterK has an affirmative
answer if and only if the SEGMENTATION WITH SWAPS

problem has an affirmative answer for errorEp = 0 and
C = K. This instance of the SEGMENTATION WITH SWAPS

has errorE∗
p = 0. Therefore, if we feed this instance to

the approximation algorithmA it would output a solution
with EA

p = 0 and thus using algorithmA we could decide
the GROUPING BY SWAPPING problem. However, since
GROUPING BYSWAPPING is NP-hard, the assumption of the
existence of the polynomial-time approximation algorithmA
is contradicted. �

5 Algorithms

In this section we give a description for our algorithmic
approaches for the generic SEGMENTATION WITH REAR-
RANGEMENTSproblem. When necessary we focus our dis-
cussion to the specific rearrangement operations that we are
considering, namely the moves and the swaps.

5.1 The SEGMENT&REARRANGE algorithm Since our
problem is NP-hard, we propose algorithms that are sub-
optimal. The general algorithmic idea, which we will de-
scribe in this subsection and expand in the sequel, is sum-
marized in Algorithm 1. We call this algorithm SEG-
MENT&REARRANGEand it consists of two steps. In the first
step it fixes a segmentation of the sequence. This segmenta-
tion is the optimal segmentation of the input sequenceT .
Any segmentation algorithm can be used in this step includ-
ing the optimal dynamic-programming algorithm (see recur-
sion (3.2)), or any of the faster segmentation heuristics pro-
posed in the literature. Once the segmentationS of T into k
segments is fixed, the algorithm proceeds to the second step
called therearrangementstep. Given input sequenceT and
its segmentationS, the goal of this step is to find a good set
of rearrangements of points, so that the total segmentation
error of the rearranged sequence is minimized. We call this
subproblem the REARRANGEMENT problem. Note that the
REARRANGEMENT problem assumes a fixed segmentation.
Once the algorithm has decided upon the rearrangements that
need to be made, it segments the rearranged sequence and
outputs the obtained segmentation.

In the rest of our discussion we focus in developing a
methodology for the REARRANGEMENT problem. Consider
all segments of segmentationS = {s1, . . . , sk} as possible
new locations for every point inT . Each pointtj ∈ T is
associated with a gain (or loss)pij that is incurred to the



Algorithm 1 The SEGMENT&REARRANGE algorithm.
Input: SequenceT of n points, number of segmentsk,

number of operationsC.
Ouput: A rearrangement of the points inT and a segmen-

tation of the new sequence intok segments.
1: Segment: S = Sopt(T, k)
2: Rearrange: O = rearrange(T, S, C)
3: Segment: S′ = Sopt(TO, k)

s1 s2 . . . sk

t1 〈w11, p11〉 〈w21, p21〉 . . . 〈wk1, pk1〉
t2 〈w12, p12〉 〈w22, p22〉 . . . 〈wk2, pk2〉
... . . . . . . . . . . . .

tn 〈w1n, p1n〉 〈w2n, p2n〉 . . . 〈wkn, pkn〉

Table 1: The rearrangement table for fixed segmentation
S = {s1, . . . , sk}.

segmentation error if we movetj from its current position
pos(tj , T ) to segmentsi. Note that the exact position
within the segment in which pointtj is moved does not
affect the gain (loss) in the segmentation error. Letλj be
the representative of the segment ofS wheretj is initially
located andµi the representative of segmentsi. Then, for a
fixed segmentationS the gainpij is

pij = |tj − µi|
p − |tj − λj |

p.

Moreover, pointtj is associated with cost (weight)wij ,
which is theoperationalcost of moving pointtj to segment
si. If we useai, bi to denote the start and the end points
of the segmentsi, then the operational cost in the case of a
move operation is

wij =

{

1, if tj 6∈ si,

0, otherwise.

For the case of swaps the operational cost is

wij =







min{|ai − pos(tj , T )|,
|bi − pos(tj , T )|}, if tj 6∈ si,

0, otherwise.

Note that since the segmentation is fixed, when repositioning
the pointtj to the segmentsi (if tj 6∈ si) it is enough to
make as many swaps as are necessary to put the point in the
beginning or ending positions of the segment (whichever is
closer).

Given the above definitions the REARRANGEMENT

problem can be easily formulated with the following integer

Knapsack
α1 〈w1, p1〉
α2 〈w2, p2〉
... . . .

αn 〈wn, pn〉

Table 2: The tabular formulation of the KNAPSACK problem.

program.

maximize z =
∑k

i=1

∑

tj∈T pijxij

subject to:
∑k

i=1

∑

tj∈T wijxij ≤ C (constraint 1)
∑k

i=1
xij ≤ 1, for everyj (constraint 2)

xij ∈ {0, 1}, i = {1, . . . , k}, tj ∈ T.

That is, the objective is to maximize the gain in terms of error
by moving the points into new segments. At the same time
we have to make sure that at mostC operations are made
(constraint 1), and each pointtj is transferred to at most one
new location (constraint 2). Table 1 gives a tabular represen-
tation of the input to the REARRANGEMENT problem. We
call this table therearrangementtable. The table hasn rows
andk columns and each cell is associated with a pair of val-
ues〈wij , pij〉, wherewij is the operational cost of rearrang-
ing pointtj to segmentsi andpij corresponds to the gain in
terms of segmentation error that will be achieved by such a
rearrangement. The integer program above implies that the
solution to the REARRANGEMENTproblem contains at most
one element from each row of the rearrangement table.

One can observe that the REARRANGEMENT problem
is a generalization of the KNAPSACK. In KNAPSACK we
are given a set ofn items{α1, . . . , αn} and each itemαj is
associated with a weightwj and a profitpj . The knapsack
capacityB is also given as part of the input. The goal in
the KNAPSACK problem is to find a subset of the input items
with total weight bounded byB, such that the total profit is
maximized. We can express this with the following integer
program.

maximize z =
∑n

i=1
pixi

subject to:
∑n

i=1
wixi ≤ B

xi ∈ {0, 1}, i = 1, 2, . . . , k.

The tabular representation of the KNAPSACK is shown in
Table 2. Note that this table, unlike the rearrangement table,
has just a single column. Each element is again associated
with a weight and a profit and is either selected to be in the
knapsack or not. It is known that the KNAPSACK problem
is NP-hard [6]. However, it does admit a pseudopolynomial-
time algorithm that is based on dynamic programming [19].

The similarity between REARRANGEMENT and KNAP-
SACK leads us to apply algorithmic techniques similar to



those applied for KNAPSACK. First observe that, in our case,
the boundC on the number of operations that we can afford
is an integer number. Moreover, for alli, j, we have that
wij ∈ Z

+ andpij ∈ R. Denote now byA[i, c] the maximum
gain in terms of error that we can achieve if we consider
pointst1 up toti and afford a total cost(weight) up toc ≤ C.
Then, the following recursion allows us to compute all the
valuesA[i, c]

A[i, c] =(5.3)

max {A[i− 1, c],

max
1≤k′≤k

(A[i− 1, c− wk′i] + pk′i)}.

.

The first term of the outermax corresponds to the gain
we would obtain by not rearranging thei-th element, while
the second term corresponds to the gain we would have by
rearranging it.

LEMMA 5.1. Recurrence (5.3) finds the optimal solution to
theREARRANGEMENT problem.

Proof. First observe that by construction the recursion pro-
duces a solution that has cost at mostC. For proving the
optimality of the solution we have to show that the output
solution is the one that has the maximum profit. The key
claim is the following. For everyi ∈ {1, . . . , n}, the optimal
solution of weight at mostc is a superset of the optimal so-
lution of weight at mostc − wk′i, for anyk′ ∈ {1, . . . , k}.
We prove this claim by contradiction. LetA[i, c] be the gain
of the optimal solution that considers pointst1 to ti and let
A[i−1, c−wk′i] be the gain of the subset of this solution with
weight at mostc−wk′i. Note thatA[i− 1, c−wk′i] is asso-
ciated with a set of rearrangements of pointst1 to ti−1. Now
assume thatA[i − 1, c− wk′i] is not the maximum profit of
weightc−wk′i. That is, assume that there exists another set
of points from{t1, . . . , ti−1}, that if rearranged gives gain
A′ > A[i− 1, c− wk′i] with weight still less thanc− wk′i.
However, if such set of rearrangements exist then the profit of
A[i, c] would not have been optimal and therefore we reach
a contradiction. �

The following theorem gives the running time of
the dynamic-programming algorithm that evaluates recur-
sion (5.3).

THEOREM 5.1. For arbitrary gainspij , costswij and inte-
ger C, recursion (5.3) defines anO(nkC2) time algorithm.
This is a pseudopolynomial algorithm for theREARRANGE-
MENT problem.

Proof. The dynamic-programming tableA is of sizeO(nC)
and each step requireskC operations. Thus, the total cost
is O(nkC2). SinceC is an integer provided as input the
algorithm is pseudopolynomial. �

An immediate corollary of Theorem 5.1 is the following.

COROLLARY 5.1. For the special case of theREARRANGE-
MENT problem where we consider only moves (or only
bubble-sort swaps), recurrence (5.3) computes the optimal
solution in polynomial time.

Proof. In the special cases in question, the weightswij are
integers and bounded byn. SimilarlyC is also polynomially
bounded byn. This is because we do not need more than
n moves (orn2 swaps). Therefore, for the special case of
moves and swaps the dynamic-programming algorithm runs
in time polynomial inn. �

In the case of move operations the REARRANGEMENT

problem is even simpler. Recall that in the case of moves
we havewij ∈ {0, 1} for all i, j. This is becausewij = 1
for every tj 6∈ si andwij = 0 if tj ∈ si. Therefore, the
REARRANGEMENT problem can be handled efficiently in
terms of the rearrangement table (Table 1). Letpi be the
largest profit obtained by moving pointti and letk′ be the
cell of the i-th row that indeed gives this maximum profit.
Furthermore, letwi = wk′i. The rearrangement requires the
movement of theC points with the highestpiwi values to
the indicated segment. This can be done simply by sorting
the n points ofT with respect to theirpiwi values in time
O(n log n). Alternatively, we can do it simply in two passes
(O(n) time) by finding the point with theC-th largestpiwi

value (this can be done in linear time [4]) and then moving
all the points with values higher or equal to this.

5.2 Pruning the candidates for rearrangement In the
previous subsection we have considered all points inT
as candidate points for rearrangement. Here we restrict
this set of candidates. Algorithm 2 is an enhancement
of Algorithm 1. The first step of the two algorithms
are the same. The second step of the TRUNCATEDSEG-
MENT&REARRANGE algorithm finds a set of pointsD ⊆ T
to be considered as candidates for rearrangement. Note that
the cardinality of this set is bounded byC, the total num-
ber of operations allowed. In that way, we can reduce the
complexity of the actual rearrangement step, since we are
focusing on the relocation of a smaller set of points.

We argue that it is rational to assume that the points
to be rearranged are most probably the points that have
values different from their neighbors in the input sequenceT .
Notice that we use the term “neighborhood” here to denote
the closeness of points in the sequenceT rather than the
Euclidean space.

Example. Consider the1-dimensional sequenceT =
{10, 9, 10, 10, 1, 1, 10, 1, 1, 1}. It is apparent that this se-
quence consists of two rather distinct segments. Notice
that if we indeed segmentT into two segments we ob-
tain segmentation with segmentss1 = {10, 9, 10, 10} and



Algorithm 2 The TRUNCATEDSEGMENT&REARRANGE

algorithm.
Input: SequenceT of n points, number of segmentsk,

number of operationsC.
Ouput: A rearrangement of the points inT and a segmen-

tation of the new sequence intok segments.
1: Prune: D = prune(T )
2: Segment: S = Sopt(T −D, k)
3: Rearrange: O = rearrange(D, S, C)
4: Segment: S′ = Sopt(TO, k)

s2 = {1, 1, 10, 1, 1, 1} with errorE1(T, 2) = 10. One can
also observe that the seventh point with value10 is an outlier
w.r.t. its neighborhood (all the points close to it have value
1, while this point has value10). Intuitively, it seems the
the seventh point has arrived early. Therefore, moving this
point at its “correct” position, is expected to be beneficialfor
the error of the optimal segmentation on the new sequence
T ′. Consider the move operationM(7 → 4), thenT ′ =
M(7 → 4) ◦ T = {10, 9, 10, 10, 10, 1, 1, 1, 1, 1}. The two-
segment structure is even more pronounced in sequenceT ′.
The segmentation ofT ′ into two segments would give the
segmentss′1 = {10, 9, 10, 10, 10} ands′2 = {1, 1, 1, 1, 1}
and total errorE′

1 = 1. �

We use the outliers of the sequenceT as candidate
points to be moved in new locations. For this we should
first clearly define the concept of an outlier by adopting the
definitions provided in [12, 16].

Following the work of [16] we differentiate between two
types of outliers, namely thedeviantsand thepseudodeviants
(a.k.a.pdeviants). Consider sequenceT , integersk and ℓ
and error functionEp. The optimal set ofℓ deviants for the
sequenceT and errorEp is the set of pointsD such that

D = arg min
D′⊆T,|D′|=ℓ

Ep (T −D, k) .

In order to build intuition about deviants, lets turn our
attention to a single segmentsi. The total error that this
segment contributes to the whole segmentation, before any
deviants are removed from it, isEp(si, 1). For pointt and
set of pointsP we usedp(t, P ) to denote the distance of
the point t to the set of points inP . For p = 1 this
is d1(t, P ) = |t − median(P )|, wheremedian(P ) is the
median value of the points inP . Similarly, for p = 2,
d2(t, P ) = |t − mean(P )|2, wheremean(P ) is the mean
value of the points inP . The optimal set ofℓi deviants ofsi

are the set of pointsDi ∈ si with |Di| = ℓi such that

Di = argmax
D′

i

∑

t∈D′

i

dp(t, si −Di).(5.4)

Example. Consider segments = {20, 10, 21, 9, 21, 9, 20,

9} and letℓ = 4. Then, the optimal set of4 deviants is
D = {20, 21, 21, 20}, andE2(s−D, 1) = 0.75. �

A slightly different notion of outliers is the so-called
pseudodeviants. Pseudodeviants are faster to compute but
have slightly different notion of optimality than deviants.
The differences between the two notions of outliers becomes
apparent when we focus our attention to the deviants of a
single segmentsi, where the representativeµi of the segment
is computedbeforethe removal of any deviant points. Then
the optimal set ofℓi pseudodeviants of segmentsi is

D̂i = argmax
D′

i

∑

t∈D′

i

dp(t, si).(5.5)

Example. Consider again the segments = {20,10,21,9,21,
9,20,9} and letℓ = 4, as in the previous example. The set of
pseudodeviants in this case iŝD = {21, 9, 9, 9}, with error
E2(s− D̂, 1) = 80.75. �

From the previous two examples it is obvious that
there are cases where the set of deviants and the set of
pseudodeviants of a single segment (and thus of the whole
sequence) may be completely different. However, finding
the optimal set of pseudodeviants is a much more easy
algorithmic task.

In order to present a generic algorithm for finding de-
viants and pseudodevians we have to slightly augment our
notation. So far the error functionE was defined over the
set of possible input sequencesT and integersN that rep-
resented the possible number of segments. Therefore, for
T ∈ T andk ∈ N, E(T, k) was used to represent the error of
the optimal segmentation of sequenceT intok segments. We
now augment the definition of functionE with one more ar-
gument, the number of outliers. Now we writeE(T, k, ℓ) to
denote the minimum error of the segmentation of a sequence
T − D, whereD is the set of outliers ofT with cardinality
|D| = ℓ. Finally, when necessary, we overload the notation
so that for segmentationS with segments{s1, . . . , sk} we
usesi to represent the points included in segmentsi.

The generic dynamic-programming recursion that finds
the optimal setD of ℓ deviants (or pseudodeviants) of
sequenceT is

Ep (T [1, n] , k, ℓ) =(5.6)

min1≤i≤n
0≤j≤ℓ

{Ep (T [1, i] , k − 1, j)

+Ep (T [i + 1, n] , 1, ℓ− j)}.

The recursive formula (5.6) finds the best allocation of out-
liers between the subsequencesT [1, i] andT [i + 1, n]. Note
that the recursion can be computed in polynomial time if
both the terms of the sum can be computed in polynomial



time. LetC1 be the cost of computing the first term of the
sum andC2 the computational cost of the second term. Then,
evaluating (5.6) takes timeO

(

n2ℓ (C1 + C2)
)

. TimeC1 is
constant since it is just a table lookup. TimeC2 is the time re-
quired to evaluate Equations (5.4) and (5.5) for deviants and
pseudodeviants respectively. From our previous discussion
on the complexity of Equations (5.4) and (5.5) we can con-
clude that recursion (5.6) can compute in polynomial time
the pseudodeviants of a sequence, irrespective of the dimen-
sionality of the input data. For the case of deviants and one-
dimensional data Recurrence 5.6 can compute the optimal set
of deviants in timeO(n2ℓ2). In the case of pseudodeviants
and arbitrary dimensionality, the time isO(n3ℓ).

Although the pseudodeviant-extraction phase is rather
expensive, we note that the expensive step of outlier detec-
tion is independent of the rearrangement step, so in practice
one can use a faster and less accurate algorithm for finding
the outliers. We defer the discussion of whether the quality
of the results in arbitrary datasets is improved when we apply
the outlier-detection algorithm in the experimental section.
Here we just give an indicative (maybe contrived) example
(see Figure 1) of a case where the extraction of outliers be-
fore proceeding in the rearrangement step proves useful.

Example. Consider the input sequence shown in Fig-
ure 1(a). The arrangement of the input points is such
that the optimal segmentation of the sequence assigns the
66-th point, sayp66, of the sequence alone in one small
segment (Figure 1(b)). Given the optimal segmentation
of the input sequence, the SEGMENT&REARRANGE algo-
rithm does not consider movingp66. This is because there
cannot exist another segment whose representative would
be closer to thep66 than the point itself. As a result,
the segmentation with rearrangements we obtain using the
SEGMENT&REARRANGE algorithm and allowing at most2
moves is the one shown in Figure 1(c). The error of this
segmentation is0.388 which is a 50% improvement over
the error of the optimal segmentation of the input sequence
without rearrangements. However, the TRUNCATEDSEG-
MENT&REARRANGE algorithm immediately identifies that
pointsp59 andp66 are the ones that differ from their neigh-
bors and it focuses on repositioning just these two points.
Furthermore, the segment representatives of the segmenta-
tion used for the rearrangement are calculated by ignoring
the outliers and therefore, the algorithm produces the out-
put shown in Figure 1(d). This output has error0.005 that
is almost100% improvement over the error of the optimal
segmentation (without rearrangements). �

5.3 The GREEDY algorithm The SEGMENT & REAR-
RANGE and the TRUNCATEDSEGMENT & REARRANGE al-
gorithms were focusing on finding a sequence of rearrange-
ment operations of cost at mostC, that improved the error
of the segmentation of the input sequenceT . That is, the al-
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(c) Segmentation with rearrangements using SEG-
MENT&REARRANGE.
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(d) Segmentation with rearrangements using TRUNCATED-
SEGMENT&REARRANGE.

Figure 1: Pathological example where the TRUNCATEDSEG-
MENT&REARRANGE algorithm is useful.



gorithms were initially fixing a segmentation, and then they
were deciding on all the possible operations that could im-
prove the error of this specific segmentation. In this section,
we describe the GREEDY algorithm that (a) rearranges one
point at a time and (b) readjusts the segmentation that guides
the rearrangement of the points after every step. The pseu-
docode of the GREEDY algorithm is given in Algorithm 3.

Algorithm 3 The GREEDY algorithm.
Input: SequenceT of n points, number of segmentsk,

number of operationsC.
Ouput: A rearrangement of the points inT and a segmen-

tation of the new sequence intok segments.
1: c← 0
2: S ← Sopt(T, k)
3: E1 ← E (Sopt(T, k)), E0 ←∞
4: while c ≤ C and (E1 − E0) < 0 do
5: E0 ← E1

6: 〈O, p〉 ← LEP(T, S, C − c)
7: c← c + |O|
8: T ← O ◦ T
9: S ← Sopt(T, k)

10: E1 ← E (Sopt(T, k))
11: end while

At each step the GREEDYalgorithm decides to rearrange
point p such that the largest reduction in the segmentation
error of the rearranged sequence is achieved. The decision
upon which point to be rearranged and the sequence of re-
arrangements is made in the LEP (Least Error Point) rou-
tine. The same routine ensures that at every step the condi-
tion

(

c + |O| ≤ C
)

is satisfied. Note that the decision of the
point to be moved is guided by the recomputed segmentation
of the rearranged sequence and it is a tradeoff between the
error gain due to the rearrangement and the operational cost
of the rearrangement itself. The algorithm terminates either
when it has made the maximum allowed number of opera-
tions, or when it cannot improve the segmentation cost any
further.

If t is the time required by the LEP procedure andI
the number of iterations of the algorithm, then the GREEDY

algorithm needsO(It) time. The LEP procedure creates
the rearrange matrix of sizen × k and among the entries
with weight less than the remaining allowed operations, it
picks the one with the highest profit. This can be done in
O(nk) time and therefore the overall computational cost of
the GREEDY algorithm isO(Ink).

6 Experiments

In this section we compare experimentally the algorithms we
described in the previous sections. We use theerror ratio
as a measure of the qualitative performance. That is, if an
algorithmA produces ak-segmentation with errorEA and
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Figure 3: Anecdotal evidence of algorithms’ qualitative
performance.

the optimalk-segmentation (without rearrangements) has
errorE∗, then the error ratio is defined to ber = EA/E∗. In
our case, the error ratio is by definition less than1, since we
only do rearrangements that reduce the segmentation error.
When the value ofr is small even for small number of
rearrangements, then we can conclude that segmenting with
rearrangements is meaningful for a given dataset.

We study the quality of the results for the different
algorithms and rearrangement types. For the study we use
both synthetic and real datasets, and we explore the cases
where segmentation with rearrangements is meaningful.

6.1 Experiments with synthetic data The synthetic data
are generated as follows. First, we generate a ground-truth
dataset (Step 1). Then, we rearrange some of the points
of the dataset in order to produce the rearranged (ornoisy)
dataset (Step 2). The output of Step 2 is used as input for our
experiments.

For Step 1 we first fix the dimensionalityd of the
data. Then we selectk segment boundaries, which are
common for all thed dimensions. For thej-th segment of
the i-th dimension we select a mean valueµij , which is
uniformly distributed in[0, 1]. Points are then generated by
adding a noise value sampled from the normal distribution
N (µij , σ

2). For the experiments we present here we have
fixed the number of segmentsk = 10. We have generated
datasets withd = 1, 5, 10, and standard deviations varying
from 0.05 to 0.9.

Once the ground-truth dataset is generated we proceed
with rearranging some of its points. There are two parame-
ters that characterize the rearrangements,npandl. Parameter
npdetermines how many points are moved from their initial



location, whilel determines for every moved point its new
position on the sequence. More specifically, for every point
pi (located at positioni) that is moved, its new position is
uniformly distributed in the interval[i− l, i + l].

Figure 2 shows the values of the error ratio achieved
by the different combinations of algorithms and rearrange-
ment types. RS-Moves and RS-Swaps correspond to the
SEGMENT&REARRANGE algorithm for moves and swaps
respectively. Similarly, G-Moves and G-Swaps refer to the
GREEDY algorithm with moves and swaps. The results are
shown for noisy datasets and for fixednp and l (np = 16,
l = 20). Similar results were obtained for other combina-
tions of np and l values. Notice that for segmenting with
rearrangements we use the number of swaps and moves that
are implied for the data-generation process. That is, when
np = 16 and ℓ = 20, we allow at most16 moves and
16×20 = 360 swaps. For the synthetic datasets there are no
significant differences in the quality of the results obtained
by SEGMENT&REARRANGE and GREEDY algorithms. We
observe though, that swaps give usually worse results than an
equivalent number of moves. This effect is particularly pro-
nounced in the1-dimensional data. This is because in low
dimensions the algorithms (both SEGMENT&REARRANGE

and GREEDY) are susceptible to err and prefer swaps that
are more promising locally but do not lead to a good overall
rearrangement.

Figure 3 shows the effect of rearrangements on a noisy
input sequence. There are four series shown in Figure 3.
The first is the generated ground-truth sequence. (This is the
sequence output by Step 1 of the data-generation process).
The second sequence is the rearranged (noisy) sequence (and
thus the output of Step 2 of the data-generation process). In
this sequence the existence of rearranged points is evident.
Notice, for example, intervals[250 − 350], [450 − 550],
[580 − 610] and [800 − 850]. The sequence recovered by
the GREEDY algorithm with moves is almost identical to the
input sequence before the addition of noise. However, the
same algorithm with swaps does not succeed in finding all
the correct rearrangements that need to be done.

Figure 4 shows the effect of pruning in the quality of the
segmentation results. In this case we compare the quality of
four segmentation outputs; the segmentation obtained by the
SEGMENT&REARRANGE algorithm (SR), the segmentation
obtained by the GREEDY algorithm (G) and the one obtained
by the TRUNCATEDSEGMENT&REARRANGE (TSR). We
also show the error ratio achieved by segmenting the ground-
truth sequence using the conventional optimal segmentation
algorithm (GT). Observe first that surprisingly our methods
give better results than the segmentation of the ground-truth
sequence. This means that the methods find rearrangements
that needed to be done in the input sequence but were not
generated by our rearrangement step during data generation.
Also note that focusing on rearrangement of pseudodeviants

does not have a considerably bad effect on the quality of
the obtained segmentation. However it does not lead to
improvements either, as we had expected when studying
pathological cases.

6.2 Experiments with real data Figure 5 shows the er-
ror ratio for different combinations of algorithms and re-
arrangement types, for a set of real datasets (attas,
phone, powerplant, robot_arm, shuttle and
soiltemp). The datasets along with their description
can be downloaded from the UCR time-series data mining
archive.1 We plot the results as a function of the number
of allowed rearrangement operations. In this case, since we
are ignorant of the data-generation process, we use in all
experiments the same number of moves and swaps. Under
these conditions the effect of moves is expected to be larger,
which indeed is observed in all cases. Furthermore, for a spe-
cific type of rearrangements the SEGMENT&REARRANGE

and GREEDY algorithms give results that are always compa-
rable. Finally, notice that there are cases where moving just
128 points of the input sequence leads to a factor0.5 error
improvement. For example, this is the case inattasandsoil-
tempdatasets, where128 points correspond to just10% and
5% of the data points respectively.

7 Conclusions

In this paper we have introduced and studied the SEGMEN-
TATION WITH REARRANGEMENTS problem. In particu-
lar we have considered two types of rearrangement opera-
tions, namely moves and bubble-sort swaps. We have shown
that in most of the cases, the problem is hard to solve with
polynomial-time algorithms. For that reason we discussed
a set of heuristics that we experimentally evaluated using a
set of synthetic and real time-series datasets. For each one
of those heuristics we considered their potentials and short-
comings under different types of input data. Experimental
evidence showed that allowing a small number of rearrange-
ments my significantly reduce the error of the output seg-
mentation.
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Figure 2: Error ratio for different algorithms and rearrangement types on synthetic datasets with dimensionsd = 1, 5 and
10.
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Figure 4: Error ratio with pruning for synthetic datasets with dimensionsd = 1, 5 and10.
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Figure 5: Error ratio of different algorithms and rearrangement types as a function of the number of rearrangements for
different real datasets.


