
Clustered segmentations

Aristides Gionis Heikki Mannila Evimaria Terzi

HIIT, Basic Research Unit
Department of Computer Science

University of Helsinki, Finland
lastname@cs.helsinki.fi

ABSTRACT
The problem of sequence and time-series segmentation has
been discussed widely and it has been applied successfully in
a variety of areas, including computational genomics, data
analysis for scientific applications, and telecommunications.
In many of these areas the sequences involved are multi-
dimensional, and the goal of the segmentation is to discover
sequence segments with small variability. One of the charac-
teristics of existing techniques is that they force all dimen-
sions to share the same segment boundaries, yet, it is often
reasonable to assume that different dimensions are more cor-
related than others, and that concrete and meaningful states
are associated only with a subset of dimensions.

In this paper we study the problem of segmenting a multi-
dimensional sequence when the dimensions of the sequence
are allowed to form clusters and be segmented separately
within each cluster. We demonstrate the relevance of this
problem to many data-mining applications. We discuss the
connection of our setting with existing work, we show the
hardness of the suggested problem, and we propose a num-
ber of algorithms for its solution. Finally, we give empirical
evidence showing that our algorithms work well in practice
and produce useful results.

1. INTRODUCTION
Methods for segmenting sequence and time-series data have
been discussed widely in the area of data mining. The goal of
the segmentation problem is to discover sequence segments
with small variability, and segmentation algorithms have
been a key to compact representation and knowledge discov-
ery in sequential data. A variety of segmentation algorithms
have been proposed and they have been used successfully in
many application areas, including computational genomics,
data analysis for scientific applications, and telecommunica-
tions [8, 10, 14, 17]. In the next paragraphs we discuss three
concrete examples in which different kinds of segmentation
methods have been applied effectively; these examples also

motivate the work presented in this paper.

Example 1. Himberg et al. [10] demonstrated the applica-
bility of sequence-segmentation algorithms for the problem
of “context awareness” in the area of mobile communica-
tions. The notion of context awareness can be a very pow-
erful cue for improving the friendliness of mobile devices. As
a few examples consider the situations where a mobile de-
vice adjusts automatically the ring tone, the audio volume,
the screen font size, and other controls depending on where
the users are located, what they are doing at that time,
who else is around, what is the current noise or tempera-
ture level, and numerous other such context variables. The
approach followed by Himberg et al. [10] is to infer context
information from sensors attached to mobile devices: sen-
sors for acceleration, noise level, temperature, luminosity,
etc. Measurements from these sensors form naturally multi-
dimensional time series. “Context” can then be inferred
by segmenting the time series and annotating the various
segments with concrete state descriptions (for example, if
Acceleration ≈ u0, Noise ≈ v0, and Illumination ≈ w0,
then State = WalkingInTheStreet).

Example 2. The problem of discovering recurrent sources
in sequences is examined in [8]. The idea is that many ge-
nomic (or other multivariate) sequences are often assembled
by a small number of possible “sources”, each of which might
contribute several segments in the sequence. For instance,
Azad et al. [2] try to identify a coarse-grained description
of a given DNA string in terms of a smaller set of distinct
domain labels. The work in [8] extends existing sequence-
segmentation algorithms in a way that the resulting seg-
ments are associated with a description label, and the same
label might appear in several segments of the sequence.

Example 3. One of the most important discoveries for
the search of structure in genomic sequences is the “block
structure” discovery of haplotypes. To explain this notion,
consider a collection of DNA sequences over n marker sites
(e.g., SNPs) for a population of p individuals. The “haplo-
type block structure” hypothesis states that the sequence of
markers can be segmented in blocks, so that, in each block
most of the haplotypes in the population fall into a small
number of classes. The description of these haplotypes can
be used for further knowledge discovery, e.g., for associating
specific blocks with specific genetic-influenced diseases [9].

Figure 1: An illustrating example.

From the computational point of view, the problem of dis-
covering haplotype blocks in genetic sequences can be viewed
as partitioning a long multidimensional sequence into seg-
ments, such that, each segment demonstrates low diversity
among the different dimensions. Naturally, segmentation
algorithms have been applied to a good effect for this prob-
lem [17, 6, 20, 22].

In all of the above examples, segmentation algorithms have
been employed for discovering the underlying structure of
multi-dimensional sequences. The goal is to find segments
with small variability. In previous approaches, however, di-
mensions are typically forced to share the same segment
boundaries. On the other hand, it is often reasonable to
assume that different dimensions are more correlated than
others, and that concrete and meaningful states are associ-
ated with only small subsets of the dimensions.

An illustrating example of the above assumption is shown in
Figure 1. The input sequence, a four-dimensional time se-
ries, is shown in the top box. In the middle box, it is shown a
globally optimal segmentation for the input time series when
all dimensions share common segment boundaries. In this
example, one can see that the global segmentation provides
a good description of the sequence—in all dimensions most
of the segments can be described fairly well using a con-
stant value. However, some of the segments are not quite
uniform, while on the other hand there are some segment
boundaries introduced in relatively constant pieces of the
sequence. These representation problems can be alleviated
if one allows different segment boundaries among subsets
of dimensions, as shown in the lower box of Figure 1. We
see that the segmentation after clustering the dimensions in
pairs {1, 2} and {3, 4} gives a “tighter” fit and a more intu-
itive description of the sequence, even though the number of
segments used for each cluster is smaller than the number
of segments used in the global segmentation.

In this paper we study the problem of segmenting a multi-
dimensional sequence when subsets of dimensions are al-
lowed to be clustered and segmented separately from other
subsets. We call this problem clustered segmentation.

Clustered segmentation can be used to extend and improve
the quality of results in all of the applications mentioned
in our motivating examples: In the application of context
awareness, certain context states might be independent of
some sensor readings, therefore, a segmentation based on
all sensors simultaneously would be a bad predictor. For the
problem of discovering recurrent segments one can imagine
situations that sources are associated only with a subset of
dimensions, for instance, specific regions in DNA sequences
(CpG-islands) are associated with a low-dimensional signal
(concentration of C and G bases) out of the whole genomic
“vocabulary”. Finally, in the problem of haplotype-block
discovery, the sequence dimensions correspond to different
individuals of the population, and thus, clustering of the di-
mensions would allow the discovery of subpopulation groups
with distinct haplotype block structure. The existence of
such subpopulations gives rise to a mosaic structure of hap-
lotypes, which is a viable biological hypothesis [23, 25].

For solving the problem of clustered segmentation, measures
and algorithms that give more refined segmentations and
describe the data accurately need to be found. In this paper
we are making the following contributions:

• We define the problem of clustered segmentation, and
we demonstrate its relevance with existing data-mining
applications.

• We demonstrate the hardness of the clustered segmen-
tation problem and we develop practical algorithms for
its solution.

• We perform extensive experimental evaluation on syn-
thetically generated and real data sets. Our experi-
ments study the behavior of the suggested algorithms.
Furthermore, for many cases of real data sets, we show
that clustered segmentation can provide a better model
for representing and understanding the data.

The rest of this paper is organized as follows. In the next
Section we define the problem of clustered segmentation in
detail and we discuss its connection with other known prob-
lems. In Section 3 we describe a number of algorithms for
solving the problem of clustered segmentation, and in Sec-
tion 4 we describe our experiments. Finally, Section 5 is a
short conclusion.

2. DESCRIPTION OF THE PROBLEM
As we discussed in the introduction, the goal of this paper is
to develop improved measures and algorithms for the prob-
lem of multi-dimensional sequence segmentation. We now
describe the problem in detail by first introducing the nec-
essary notation. Let S = {s1, . . . , sd} be a d-dimensional
sequence, where si is the i-th dimension (signal, attribute,
individual, etc.). We assume that each dimension is a se-
quence of n values, and we denote by si[u] the value at the
u-th position of si. We write S′ v S to denote that S′ is a

subsequence of S, and si[u, v] is the subsequence of si be-
tween the positions u and v. Similarly we denote by S[u, v]
the subsequence of S between the positions u and v when
all dimensions are considered. The positions on each dimen-
sion are naturally ordered, for example, in time-series data
the order is induced by the time attribute, while in genomic
data the order comes from the position of each base in the
DNA sequence. In addition, we assume that the dimensions
of the sequence are aligned, that is, the values at the u-th
position of all dimensions are semantically associated (e.g.,
they correspond to the same time).

We denote by σ a k-segmentation of the sequence 〈1, . . . , n〉,
that is, a partitioning of 〈1, . . . , n〉 into k contiguous and
non overlapping segments. As a result, for specifying a k-
segmentation it suffices to provide the k−1 boundary points.
We write a k-segmentation as σ = 〈σ[1], . . . , σ[k]〉, so that
we can refer to the individual segments. Because σ[t] refers
only to a pair of boundary points, we use the notation S|σ[t]
to “extract” from S the subsequence between the boundary
points of σ[t]. In other words, the boundary points of a
segmentation can be viewed as operators that when “ap-
plied” to a sequence they provide the actual subsequence
segments. The set of all k-segmentations, i.e., all possible
subsets of k − 1 boundary points out of the n positions, is
denoted by Sk.

For accessing the quality of a segmentation of a sequence
S we need a measure of the variability of each segment of
S. Let f(S′) be such a measure defined for all S′ v S.
We typically assume that f is an easily computable cost
function. For example, for real-valued sequences, f is often
taken to be the variance of the values in S′. Now, the quality
of a k-segmentation σ = 〈σ[1], . . . , σ[k]〉 on a sequence S is
defined to be

f(S|σ) =

k�

t=1

f(S|σ[t]),

that is, the sum of the cost function f over all segments of
S defined by σ. The sequence-segmentation problem is to
compute the optimal such k-segmentation

σ∗ = arg min
σ∈Sk

f(S|σ).

For a wide variety of cost functions, a dynamic programming
(e.g., algorithm [3]) can be used for computing the optimal
k-segmentation.

In the above formulation, the number of segments k is given
in advance. If k is variable, the trivial n-segmentation can
typically achieve a zero cost. Thus, a popular way for al-
lowing k to be variable is to add a penalization factor for
choosing large values of k, for example, the optimal segmen-
tation is now defined to be

σ∗ = arg min
k,σ∈Sk

f(S|σ) + kγ.

A Bayesian approach for selecting the penalization term to
make it proportional to the description length [21] of the seg-
mentation model. For instance, by assuming that for each
segment we need to specify one boundary point and d val-
ues (one per dimension), one can choose γ = (d+1) log(dn).
An important observation, however, is that the same dy-
namic programming algorithm with no additional time over-

head can be used to compute the optimal segmentation for
the variable-k version of the problem. In the following and
mainly for clarity of exposition, we will only concentrate
on the fixed-k version, however, all of our definitions and
algorithms can be applied to the variable-k version, as well.

We now proceed to define the clustered version of segmen-
tation problems, which is the focus of our paper. As we
explained in the introduction, the main idea is to allow sub-
sets of dimensions to be segmented separately. For the next
definition we use the notation si|σ as we used S|σ: the seg-
mentation σ is applied to the one-dimensional sequence si

as it was applied to the multi-dimensional sequence S; the
cost function f(si|σ) is computed accordingly.

Problem 1. Given a d-dimensional sequence S with n
values in each dimension, a cost function f defined on all
subsequences and all dimensions of S, and integers k and
c, compute c different k-segmentations σ1, . . . , σc, so as to
minimize the sum

d�

i=1

min
1≤j≤c

f(si|σj).

In other words, we seek to partition the sequence dimensions
in c clusters, and compute the optimal segmentation in each
one of those, in a way that the total error is minimized.
As before, one can use the Bayesian approach to define the
variable-c version of the problem, where the optimal value
for c is sought, but again we assume that the value of c is
given.

2.1 Connections to related work
The clustered segmentation problem, as stated above, is
clearly related with the time-series clustering problem [24,
13]. Several definitions for time-series similarity have been
discussed in the literature, for example, see [4, 7, 1]. A key
difference, however, is that in our formulation signals are as-
signed to the same cluster if they can be segmented “well”
together, while most time-series clustering algorithms base
their grouping criteria in a more geometric notion of similar-
ity. To emphasize the difference, we note that our methods
can be used to segment non-numerical sequences like the
SNP data we described in the introduction.

The formulation in Problem 1 suggests that one can con-
sider clustered segmentation as a k-median type of problem
(e.g., see [18]). However, a main difficulty with trying to
apply k-median algorithms in our setting, is that the space
of solutions is extremely large. Furthermore, for k-median
algorithms it is often the case that a “discretization” of the
solution space can be applied (seek for solutions only among
the input points). Assuming the triangle inequality, this dis-
cretization degrades the quality of the solution by a factor of
at most 2. In our setting, however, the solution space (seg-
mentations) is different from the input space (sequence), and
also many natural distance functions between sequences and
segmentations does not form a metric.

Finally, our problem is also related with the notion of seg-
mentation problems as introduced by Kleinberg et al. [16].

In [16], starting from an optimization problem, the “seg-
mented” version of that problem is defined by allowing the
input to be partitioned in clusters, and considering the best
solution for each cluster separately. To be precise, in the ter-
minology of [16] our problem should be called “segmented
segmentation” since in our case the optimization problem is
the traditional segmentation problem. Even when starting
from very simple optimization problems, their correspond-
ing segmented versions turn out to be hard.

2.2 Problem complexity
In this subsection we demonstrate the hardness of the clus-
tered segmentation problem. In our case, the optimization
problem we start with is the traditional non-clustered seg-
mentation problem. This problem is solvable in polynomial
time when the k-segmentation variance is considered. Not
surprisingly the corresponding clustered segmentation is an
NP-hard problem.

Theorem 1. Clustered segmentation, as defined in Prob-
lem 1, with real-valued sequences, and cost function f the
variance function, is NP-hard.

The proof of the theorem can be found in the Appendix.

3. ALGORITHMS
In this section we describe two classes of algorithms for solv-
ing the clustered segmentation problem. In the first class
we define distance measures between sequence segmenta-
tions and we employ a standard clustering algorithm (e.g.,
k-means) on the pair-wise distance matrix. The second class
consists of two randomized algorithms that cluster sequences
using segmentations as “centroids”. In particular, we use
the notion of a distance between a segmentation and a se-
quence, which is the error induced to the sequence when the
segmentation is applied to it. The algorithms of the second
class treat the clustered-segmentation problem as a model
selection problem and they try to find the best model that
describes the data.

Before proceeding with the description of the algorithms,
we briefly review the dynamic-programming algorithm that
segments a sequence S into k segments. This algorithm is
used by almost all of our methods. The idea of the dynamic
programming algorithm is to compute the segmentation in-
crementally, for all subsequences S[1, i] with i = 1, . . . , n,
and all values for an l-segmentation with l = 1, . . . , k. In
particular, the computation of an l-segmentation σ for the
subsequence S[1, i] is based on the equation

f(S[1, i]|σ) = min
τ∈Sl−1, 1≤j<i

f(S[1, j]|τ) + f(S[j + 1, i]).

The running time of the dynamic programming algorithm is
O(n2dkF (n)), where F (t) is the time required to compute
the function f on a subsequence of length t. In the case that
f is the variance function, the computation can be done in
constant time (by precomputing the sum of values and the
sum of squares of values of all prefixes of the sequence), so
the running time of the dynamic programming algorithm is
O(n2dk).

3.1 Distance-based clustering of segmentations
In this section we define distance functions between the seg-
mentations of two sequences. Such distance functions can
be used to construct a pair-wise distance matrix between
the dimensions of the sequence. The distance matrix is then
used for clustering the dimensions via a standard distance-
based clustering algorithm; in our case, we use standard the
k-means algorithm. k-means despite its limitations as a hill-
climbing algorithm that is not guaranteed to converge to a
global optimum, is mainly used because it is efficient and
it works very well in practice. Variations of the k-means
algorithm have been proposed for time-series clustering, for
example in [24].

The main idea of the k-means algorithm is the following:
Given N points that need to be clustered and a distance
function d between them, the algorithm starts by selecting
k random points as cluster centers and assigning the rest of
the N −k points to the closest cluster center, according to d.
In that way k clusters are formed. Within each cluster the
mean of the points defining the cluster is evaluated and the
process continues iteratively with those means as the new
cluster centers, until convergence.

The two distance functions defined here are rather intuitive
and simple. The first one, DE , is based on the mutual ex-
change of optimal segmentations of the two sequences and
the evaluation of the additional error such an exchange in-
troduces. Therefore, two sequences are then similar if the
best segmentation of the one describes “well” the second,
and vice versa. The second distance function, DP , is proba-
bilistic and it defines the distance between two sequences by
comparing the probabilities of each position in the sequence
being a segmentation boundary.

3.1.1 Distance as a measure of fit of optimal segmen-
tations

The goal of our clustering is to cluster together dimensions
in such a way that similarly segmented dimensions are put
in the same cluster, while the overall cost of the clustered
segmentation to be minimized. Intuitively this means that
a distance function should perform well if it quantifies how
well the optimal segmentation of the one sequence describes
the other one and vice versa. Based on exactly this notion of
“exchange” of optimal segmentations of sequences, we define
the distance function DE in the following way.

Given two dimensions si, sj and their corresponding optimal
k-segmentations σ∗

i , σ∗
j ∈ Sk we define the distance of si

from σ∗
j denoted by DE(si, σ

∗
i |σ

∗
j) as follows:

DE(si, σ
∗
i |σ

∗
j) = f(si|σ

∗
j) − f(si|σ

∗
i)

However in order for the distance between two sequences
and their corresponding segmentations to be symmetric we
alternatively use the following symmetric definition of DE :

DE(si, σ
∗
i , sj , σ

∗
j) = DE(si, σ

∗
i |σ

∗
j) + DE(sj , σ

∗
j |σ

∗
i)

3.1.2 Probabilistic distance
Distance function DP is based on comparing two dimen-
sions by comparing the probability distributions of their

points being segment boundaries.1 For each dimension si

with 1 ≤ i ≤ d we associate a probability distribution pi.
The value of pi[t] at point t with 1 ≤ t ≤ n corresponds to
the probability of the t-th point of the series being a segment
boundary. Associating a probability distribution with each
sequence, allows us to define the distance between two se-
quences as the variational distance between the correspond-
ing distributions. Therefore, we define the distance function
DP (si, sj) between the dimensions si and sj as follows:

DP (si, sj) = Var(pi, pj) =
�

1≤t≤n

|pi[t] − pj [t]| (1)

Computing the probabilities of segment boundaries for a
given sequence and given the required k number of segments,
can be done in O(n2k) time using dynamic programming.
Consider a dimension s of our d-dimensional sequence. Let
the probability that there is a segment boundary at point t of

s, when segmented using k-segments. Denote by S(t)
k the set

of all k-segmentations having a boundary at point t. Then
we are interested in the probability of any segmentation from

the set S(t)
k given the sequence s:

p(S(t)
k |s) =

�

σ∈S
(t)
k

p(σ|s).

Since Sk refers to the set of all k-segmentations of the full
sequence s, the above equation can be rewritten as follows:

p(S(t)
k |s) =

�
σ′∈S

(t)
k

p(σ′, s)
�

σ∈Sk
p(σ, s)

For the joint probabilities of segmentation and sequence,
p(σ, s), it holds that:

p(σ, s) =
1

Z
2− � [a,b]∈σ f(s[a,b]|σ).

In the above equation Z is a normalizing constant that can-
cels out. For building the dynamic programming equations
we need to define the following entity for a segmentation σ:

q(a, b) = 2−f(s[a,b]|σ).

Additionally, for any interval [t, t′] and considering segmen-
tations consisting of i-segments (where 1 ≤ i ≤ k) we define:

Qi(t, t
′) =

�

σ∈Si[t,t
′]

�

[a,b]∈σ

q(a, b).

Since Sk[t, t + 1] is equal to the Cartesian product Si[1, t]×
Sk−i[t + 1, n] for 1 ≤ i ≤ k we have that:

p(S
(t)
k |s) =

�

1≤i≤k

Qi(1, t)Qk−i(t + 1, n)

Qk(1, n)
.

Finally the inner-most equations for the dynamic program-
ming, that consider segmentations of a fixed number of seg-
ments i (with 1 ≤ i ≤ k) are:

Qi(1, b) =
�

1≤a≤b

Qi−1(1, a − 1)q(a, b)

and

Qi(a, n) =
�

a≤b≤n

q(a, b)Qi−1(b + 1, n).

1For a similar development see [17].

Using the above equations we can compute the probabilities
of each point being a segment boundary in each one of the d
dimensions of S. Pairwise distances between two dimensions
are evaluated using Equation (1).

3.2 Non-distance based clustering of segmen-
tations

In this section we describe two algorithms that treat clus-
tered segmentation as a model-selection problem. The first
algorithm, SamplSegm, is a sampling algorithm and it is
motivated by the theoretical work of Kleinberg et al. [16],
Indyk [11, 12] and Charikar et al. [5]. The second, Iter-

ClustSegm, is an adaptation of the popular k-means algo-
rithm. Both algorithms are simple and intuitive and they
perform well in practice.

3.2.1 The SamplSegm algorithm
The basic idea behind the SamplSegm approach is the intu-
ition that if the data exhibit clustered structure, then a small
sample of the data would exhibit the same structure. The
reason is that for large clusters in the data set one would ex-
pect to sample enough data, so that similar clusters appear
in the sampled data. On the other hand, one can possibly
afford to miss data from small clusters in the sampling pro-
cess, because small clusters do not contribute much in the
overall error function. Our algorithm is motivated by the
work of Kleinberg et al. [16], in which a sampling algorithm
for the segmented version of the catalog problem is proposed.
Similar ideas have been used successfully by Indyk [11, 12]
for the problem of clustering in metric spaces.

For the clustered segmentation problem we adopt a natural
sampling-based technique: We first sample uniformly at ran-
dom a small set A of r log d dimensions, where r is a small
constant. Then we search exhaustively all possible parti-
tions of A into c clusters A1, . . . , Ac. For each cluster Aj we
find the optimal segmentation σj ∈ Sk for the sequence S
on the dimensions that are associated with Aj . The rest of
the dimensions si that are not included in the sample, are
assigned to the set j that minimizes the error f(si|σj). The
partition of the sample set A that causes the least error is
considered to be the solution found for the set A. The whole
sampling process is repeated with different sample sets A for
a small number of times (in our experiments 3 times) and
the best result is reported as the output of the sampling
algorithm.

When the size of the sample set is logarithmic in the number
of dimensions, the overall running time of the algorithm is
polynomial. In our experiments, we found that the method
is accurate for data sets of moderate size, but it does not
scale well for larger data sets.

3.2.2 The IterClustSegm algorithm
The IterClustSegm algorithm is an adaptation of the widely-
used k-means algorithm where the cluster means are re-
placed by the common segmentation of the dimensions in
the cluster and the distances of a sequence to the cluster is
the error induced when the cluster’s segmentation is applied
to the sequence.

Therefore in our case, the c centers correspond to c different

segmentations. The algorithm is iterative and at the t-th
iteration step it keeps an estimate for the solution segmen-
tations σt

1, . . . , σ
t
c, which is to be refined in the consecutive

steps. The algorithm starts with a random clustering of the
dimensions, and it computes the optimal k-segmentation for
each cluster. At the (t + 1)-th iteration step, each dimen-
sion si is assigned to the segmentation σt

j for which the error
f(si|σ

t
j) is minimized. Based on the newly obtained clusters

of dimensions, new segmentations σt+1
1 , . . . , σt+1

c are com-
puted, and the process continues until there is no more im-
provement in the error. The complexity of the algorithm is
O(I(cd+cP (n, d))), where I is the number of iterations until
convergence, and P (n, d) is the complexity of segmenting a
sequence of length n and d dimensions.

4. EXPERIMENTS
In this section we describe the experiments we performed in
order to evaluate the validity of the clustered segmentation
model and the behavior of the suggested algorithms. For
our experiments we used both synthetically generated data,
as well as real data consisting of time series and genomic
sequences. For the synthetic data we report that in all cases
the true underlying model, used to generate the data, is
found. For the real data we found that in all cases clustered
segmentations, output by the proposed algorithms, produce
better models than the models produced by non-clustered
segmentations.

4.1 Ensuring fairness in model comparisons
In the experimental results shown in this section we report
the accuracy in terms of errors. Our intention is to consider
the error as a measure of comparing models: a smaller error
indicates a better model. However, this is the case when
the compared models have the same number of parameters.
It would be unfair to compare the errors induced by two
models with different number of parameters, because in this
case the trivial model of each point described by itself would
induce the the least error and would be the best.

Therefore, to make the comparison between two different
models fair, we are taking care to ensure that the same
number of parameters is used in both models. We briefly
describe the methodology we followed in order to guarantee
fairness in comparing the different models. Consider a k-
segmentation for a d-dimensional sequence S of length n. If
no clustering of dimensions is considered, the number of pa-
rameters that are necessary to describe this k-segmentation
model is k(d + 1). This number comes from the fact that
we can describe the model by specifying the starting point
and the d mean values—one for each dimension—for each
one of the k segments. Consider now a clustered segmen-
tation of the sequence with c clusters and k′ segments for
each cluster. The number of parameters for this model is
d +

� c

i=1 k′(di + 1) = d + k′(d + c), since, in addition to
specifying the starting points and the values for each clus-
ter, we also need d parameters to indicate the cluster that
each dimension belongs to. In our experiments, in order
to compare the errors induced by the two models we select
parameters so that k(d + 1) = d + k′(d + c).

4.2 Experiments on synthetic data
We first describe our experiments on synthetic data. For
the purpose of this experiment, we have generated sequence
data from a known model, and the task is to test if the
suggested algorithms are able to discover that model.

The data we used were generated as follows: the d dimen-
sions of the generated sequence were divided in advance into
c clusters. For each cluster we select k segment boundaries,
which are common for all the dimensions in that cluster, and
for the j-th segment of the i-th dimension we select a mean
value µij , which is uniformly distributed in [0, 1]. Points are
then generated by adding a noise value sampled from the
normal distribution N (µij , σ

2). An example of a small data
set generated by this method is shown in Figure 1. For our
experiments we fixed the values n = 1000 points, k = 10 seg-
ments, and d = 200 dimensions. We created different data
sets using c = 2, ..., 6 clusters and with standard deviations
varying from 0.005 to 0.16.

The results for the synthetically generated data are shown
in Figure 2. One can see that the errors of the reported clus-
tered segmentation models are typically very low for all of
our algorithms. In most of the cases all proposed methods
approach the true error value. Here we report the results
for small sample sizes (usually (c + 4) samples with c being
the number of clusters). Since our algorithms are random-
ized we repeat each one of them for 5 times and report the
best found solution. Apart from the errors induced by the
proposed algorithms, the figures include also two additional
errors. The error induced by the non-clustered segmenta-
tion model with the same number of parameters and the
error induced by the true model that has been used for gen-
erating the data (“ground-truth”). The first one is always
much larger than the error induced by the models reported
by our algorithms. In all the comparisons between the dif-
ferent segmentation models we take into consideration the
fairness criterion discussed in the previous subsection.

As indicated in Figure 2(a) the difference in errors becomes
smaller as the standard deviation increases. This is natu-
ral since as standard deviation increases all dimensions tend
to become uniform and the segment structure disappears.
The error of the clustered segmentation model for different
number of clusters is shown in Figure 2(b). The better per-
formance of the clustered model is apparent. Notice that
the error caused by the non-clustered segmentation is an
order of magnitude larger than the corresponding clustered
segmentation results and thus omitted from the plot.

4.3 Experiments on time-series data
Next, we tested the behavior of the clustered segmentation
model on real time-series data sets obtained by the UCR
time-series data mining archive [15]. We used the phone

and the spot exrates data sets of the archive. The phone

data set consists of 8 dimensions each one corresponding
to the value of a sensor attached to a mobile phone. For
the clustered segmentation we used number of segments
k = 8 and number of clusters c = 2, 3 and 4, while for
the non-clustered segmentation we used k = 10, 11, and
11, respectively so that we again guarantee fair comparison.
Figure 3(a) shows the error induced by the clustered and the
non-clustered segmentations for different number of clusters.

0.51 2 4 8 16
0

1

2

3

4

5

6

7

8

9
x 10

4

T
ot

al
 E

rr
or

Standard deviation (%)

k−segmentation/Synthetic data
non−clustered
SamplSegm
IterClustSegm
D_P
D_E
ground−truth

(a) Total error of the model as a function of stan-
dard deviation in the generated data.

2 3 4 5 6
320

330

340

350

360

370

380

390

400

410

420

T
ot

al
 E

rr
or

Number of clusters

k−segmentation/Synthetic data
D_P
D_E
IterClustSegm
SamplSegm
ground−truth

(b) Total error as a function of the number of clusters
existing in the generated data. The bar that corre-
sponds to the non-clustered model is missing since it
is an order of magnitude larger.

Figure 2: Error for k-segmentations on synthetic

data sets.

2 3 4
4400

4600

4800

5000

5200

5400

T
ot

al
 E

rr
or

Number of clusters

Phone data set
non−clustered
D_P
D_E
IterClustSegm
SamplSegm

(a)

2 3 4
3200

3400

3600

3800

4000

4200

4400

T
ot

al
 E

rr
or

Number of clusters

Currency xchange data set
non−clustered
D_P
D_E
IterClustSegm
SamplSegm

(b)

Figure 3: Experiments with real time-series data.

Apparently, the clustered segmentation model reduces by far
the induced error. SamplSegm, IterClustSegm and clus-
tering using DE are all giving the same level of error, with
clustering using DP performing almost equally well, and in
all cases better than the non-clustered segmentation.

Analogous results are obtained for the spot exrates data
set as illustrated in Figure 3(b). This data set contains the
spot prices (foreign currency in dollars) and the returns for
daily exchange rates of the 12 different currencies relative to
the US dollar. There are 2567 (work-)daily spot prices, and
so 2566 daily returns for each of these 12 currencies, over
a period of about 10 years (10/9/86 to 8/9/96). Again, we
considered the case of k-segmentations. For the clustered
segmentation we used number of segments k = 10 and num-
ber of clusters c = 2, 3, and 4, while for the non-clustered
segmentation we used k = 12, 12 and 13, respectively.

4.4 Experiments on mobile-sensor data
Finally, we tested the behavior of the proposed methods
on the benchmark dataset for context recognition described
in [19].2 The data were recorded using microphones and a
sensor box, attached to a mobile phone. The combination
was carried by the users during the experiments and the data
were logged by a laptop carried by the users. The signals
collected were transformed into 29 variables the values of
which have been recorded for some periods of time.

The dataset basically contains 5 scenarios each one repeated
for a certain number of times. The 29 variables recorded,
that correspond to the 29 dimensions, are related to device
position, device stability, device placement, light, tempera-
ture, humidity, sound level and user movement.

The results of the clustered segmentations algorithms for
scenario 1 and 2 are shown in Figures 4 and 5. For the rest of
the scenarios the results are similar and thus omitted. Since
some dimensions in the different scenarios are all constant
we have decided to ignore them. Therefore from a total of
29 dimensions we have considered 20 for scenario 1, 19 for
scenario 2, 16 for scenario 3, 14 for scenario 4 and 15 for
scenario 5.

For the case of clustered segmentation we considered k = 5
and c = 2, 3, 4, 5 for all the scenarios, while the correspond-
ing values of k for the non-clustered segmentation that could
guarantee fairness of comparison of the results was evalu-
ated to be k = 6, 7 depending on the value of c and the
number of dimensions in the scenario. The error levels us-
ing the different methods proposed here, as well as the non-
clustered segmentation algorithm are shown in Figures 4 and
5. In all cases the clustered segmentation model found by
any of our four methods has much lower error level than
the corresponding non-clustered one. Some indicative clus-
terings of the dimensions of scenario 1 using the proposed
methods are shown in Figure 6. Notice that the cluster-
ing shown in Figure 6 reflects an expected clustering of di-
mensions. The first cluster contains only dimensions related
to the “Position”, the “Stability” and the “Placement” of
the device. The second cluster puts together all time series
related to the “Humidity” of the environment. The third
cluster consists of dimensions related to the “Light” and the
“Sound Pressure” of the environment as well as the user
movement. Finally the last cluster contains all the dimen-
sions related to the “Temperature” of the environment as
well as the dimensions that corresponds to the “Running”
dimensions that characterizes the user movement. Although
this last results raises some suspicious, since running is the
only user action related dimension that is clustered sepa-
rately from the other two, it can be quite easily explained
if we observe Figure 8. It is obvious that segmentation-wise
dimensions “UserAction:Movement:Walking” and “‘UserAc-
tion:Movement:WalkingFast” are much closer to each other
than they are with “UserAction:Movement:Running”, while
the latter one can be easily segmented using segmentation
boundaries of dimensions “Environment:Temperature:Warm”
and “Environment:Temperature:Cool”. Similar observations
can be made also for the rest of the clusterings obtained us-
ing the other three proposed methods. Indicatively we show

2The dataset is available at
http://www.cis.hut.fi/jhimberg/contextdata/index.shtml

2 3 4

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

T
ot

al
 E

rr
or

Number of clusters

Scenario 1
non−clustered
D_P
D_E
IterClustSegm
SamplSegm

Figure 4: Experiments with scenario 1.

2 3 4
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75
x 10

4

T
ot

al
 E

rr
or

Number of clusters

Scenario 2
non−clustered
D_P
D_E
IterClustSegm
SamplSegm

Figure 5: Experiments with scenario 2.

in Figure 7 the clustering obtained using k-means algorithm
for the same number of clusters and using L1 as the dis-
tance metric between the different dimensions. There is not
an obvious correspondence between the clustering found in
that case and the expected clustering with respect to the
general categories each dimension belongs to.

4.5 Discussion
The experimental evaluation performed on both synthetic
and real data indicates that the clustered segmentation model
is a more precise alternative for describing the data at hand,
and all the proposed methods find models that show much
smaller error than the error of the equivalent non-clustered
segmentation model, in all the considered cases. Overall, in
the case of synthetic data the true underlying model, used
for the data generation, is always found. For the real data,
the true model is unknown and thus we base our conclusions
on the errors induced by the two alternative models when
the same number of parameters is used.

The proposed algorithms are intuitive and they perform well
in practice. For most of the cases they give equivalent re-
sults and they find almost the same models. Noticeably,
SamplSegm appears to be competitive in terms of quality of

Device:Position:DisplayDown,
Device:Position:AntennaUp,
Device:Stability:Stable,
Device:Stability:Unstable,
Device:Placement:AtHand
Environment:Humidity:Humid,
Environment:Humidity:Normal,
Environment:Humidity:Dry
Environment:Light:EU,
Environment:Light:Bright,
Environment:Light:Normal,
Environment:Light:Dark,
Environment:Light:Natural,
Environment:SoundPressure:Silent,
Environment:SoundPressure:Modest,
UserAction:Movement:Walking,
UserAction:Movement:WalkingFast
Environment:Temperature:Warm,
Environment:Temperature:Cool,
UserAction:Movement:Running

Figure 6: Clustering of the dimensions of Scenario 1

into 4 clusters using IterClustSegm algorithm.

Environment:Humidity:Dry
Environment:Light:Bright,
Environment:Light:Natural,
UserAction:Movement:WalkingFast
Device:Position:AntennaUp,
Device:Stability:Unstable,
Environment:Light:EU,
Environment:Light:Normal,
Environment:Temperature:Warm,
Environment:Humidity:Humid,
Environment:SoundPressure:Silent,
’UserAction:Movement:Walking
Device:Position:DisplayDown,
Device:Stability:Stable,
Device:Placement:AtHand,
Environment:Light:Dark,
Environment:Temperature:Cool,
Environment:Humidity:Normal,
Environment:SoundPressure:Modest,
UserAction:Movement:Running’

Figure 7: Clustering of the dimensions of Scenario 1

into 4 clusters using L1 distance k-means.

0

0.5

1

Environment:Temperature:Warm

0

0.5

1

Environment:Temperature:Cool

0

0.5

1

UserAction:Movement:Running

0

0.5

1

UserAction:Movement:Walking

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

UserAction:Movement:WalkingFast

Figure 8: Subset of dimensions of Scenario 1 dataset

that explain clustering in Figure 6.

results even for small sample sizes. However, it can become
slow as the sample size increases since we need to examine
all possible partitions of the sample and select the one that
implies the best model. On the other hand, the other three
alternatives scale smoothly and appears to perform well in
practical settings.

5. CONCLUSIONS
We have introduced the clustered segmentation problem where
the task is to cluster the dimensions of a multidimensional
sequence into c clusters so that the dimensions grouped in
the same cluster share the same segmentation points. The
problem when considered for real-valued sequences and cost
function the variance function is NP-hard. We described
simple algorithms for solving the problem. All proposed
methods perform well for both synthetic and real data sets
consisting of time-series data. In all the cases we exper-
imented with, the clustered segmentation model seems to
describe the datasets better than the corresponding non-
clustered segmentation model with the same number of pa-
rameters.

6. REFERENCES
[1] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.

Fast similarity search in the presence of noise, scaling,
and translation in time-series databases. In
Proceedings of the 21st International Conference on
Very Large Data Bases, pages 490–501, Zurich,
Switzerland, 1995.

[2] R. K. Azad, J. S. Rao, W. Li, and R. Ramaswamy.
Simplifying the mosaic description of DNA sequences.
Physical Review E, 66, article 031913, 2002.

[3] R. Bellman. On the approximation of curves by line
segments using dynamic programming.
Communications of the ACM, 4(6), 1961.

[4] B. Bollobas, G. Das, D. Gunopulos, and H. Mannila.
Time-series similarity problems and well-separated

geometric sets. In Proceedings of the ACM Symposium
on Computational Geometry, pages 454–456, 1997.

[5] M. Charikar, L. O’Callaghan, and R. Panigrahy.
Better streaming algorithms for clustering problems.
In Proceedings of the ACM Symposium on Theory of
Computing, pages 30–39, 2003.

[6] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson,
and E. S. Lander. High-resolution haplotype structure
in the human genome. Nature Genetics, 29:229–232,
2001.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time series databases.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 419–429,
1994.

[8] A. Gionis and H. Mannila. Finding recurrent sources
in sequences. In Proceedings of the 7th Annual
International Conference on Research in
Computational Molecular Biology, pages 115–122,
Berlin, Germany, 2003.

[9] D. Gusfield. Haplotyping as perfect phylogeny:
conceptual framework and efficient solutions. In
International Conference on Research in
Computational Molecular Biology, pages 166–175,
2002.

[10] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmäki,
and H. Toivonen. Time series segmentation for context
recognition in mobile devices. In Proceedings of the
IEEE International Conference on Data Mining, pages
203–210, 2001.

[11] P. Indyk. Sublinear time algorithms for metric space
problems. In Proceedings of the ACM Symposium on
Theory of Computing, pages 428–434, 1999.

[12] P. Indyk. A sublinear time approximation scheme for
clustering in metric spaces. In Proceedings of the
Symposium on Foundations of Computer Science,
pages 154–159, 1999.

[13] K. Kalpakis, D. Gada, and V. Puttagunta. Distance
measures for effective clustering of arima time-series.
In Proceedings of the IEEE International Conference
on Data Mining, pages 273–280, 2001.

[14] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online
algorithm for segmenting time series. In Proceedings of
the IEEE International Conference on Data Mining,
pages 289–296, 2001.

[15] E. Keogh and T. Folias. The UCR time series data
mining archive, 2002.

[16] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Segmentation problems. In Proceedings of the ACM
Symposium on Theory of Computing, pages 473–482,
1998.

[17] M. Koivisto, M. Perola, T. Varilo, et al. An MDL
method for finding haplotype blocks and for
estimating the strength of haplotype block
boundaries. In Pacific Symposium on Biocomputing,
pages 502–513, 2003.

[18] J.-H. Lin and J. S. Vitter. ε-approximations with
minimum packing constraint violation. In Proceedings
of the ACM Symposium on Theory of Computing,
pages 771–782, 1992.

[19] J. Mantyjarvi, J. Himberg, P. Kangas, U. Tuomela,
and P. Huuskonen. Sensor signal data set for exploring
context recognition of mobile devices. In In Workshop
Benchmarks and a database for context recognition in
conjuction with the 2nd Int. Conf. on Pervasive
Computing (PERVASIVE 2004), 2004.

[20] N. Patil, A. J. Berno, D. A. Hinds, et al. Blocks of
limited haplotype diversity revealed by high-resolution
scanning of human chromosome 21. Science,
294:1669–70, 2001.

[21] J. Rissanen. Modeling by shortest data description.
Automatica, 14:465–471, 1978.

[22] M. Salmenkivi, J. Kere, and H. Mannila. Genome
segmentation using piecewise constant intensity
models and reversible jump MCMC. In Proceedings of
the European Conference on Computational Biology,
pages 211–218, 2002.

[23] R. Schwartz, B. V. Halldorsson, V. Bafna, A. G.
Clark, and S. Istrail. Robustness of inference of
haplotype block structure. Journal of Computational
Biology, 10(1):13–9, 2003.

[24] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A
wavelet-based anytime algorithm for k-means
clustering of time series, 2003.

[25] J. D. Wall and J. K. Pritchard. Assessing the
performance of the haplotype block model of linkage
disequilibrium. American Journal of Human Genetics,
73:502–515, 2003.

Appendix

Theorem 1. Clustered segmentation, as defined in Prob-
lem 1, with real-valued sequences, and cost function f the
variance function, is NP-hard.

Proof. We give only an outline of the proof idea. The
problem from which we obtain the reduction is the set

cover, a well-known NP-hard problem. An instance of the
set cover specifies a ground set U of n elements, a collec-
tion C of m subsets of U , and a number c. The question is
whether there are c sets in the collection C whose union is
the ground set U .

Given an instance of the set cover, we create an instance of
the clustered k-segmentation as follows: We form a sequence
with n dimensions. In each dimension there are 2m + 1
“runs” of values and each run has an equal number of values.
There are two types of runs: High and Low, and these two
types are alternating across the sequence. All High runs have
all their values equal to 1. The Low runs are indexed from 1
to m and they in turn can be of two types: Z and E. Z-Low
runs have all their values equal to 0. E-Low runs are split
in two pieces, so that the f function on such a run incurs

. . .

High

. . .

Z-Low E-Low

m. . .

High

E-Low

1 2

Z-LowE-LowE-Low

i dimension:

i + 1 dimension:

.

.

.

.

.

.

Figure 9: The construction used in the proof of The-

orem 1.

cost exactly ε. The construction can be seen schematically
in Figure 9.

The instance of the set cover is encoded in the Low runs.
If the j-th set of C contains the i-th element of U , then the
j-th Low run of the i-th dimension is set to type E, otherwise
it is set to type Z. Assume that in total there are L Low

runs of type E. We would ask for a k-segmentation with
k = 2m + 2 segments. By setting ε to be very small, the
2m + 1 segments would be separating the High from the
Low runs, and there would be the freedom to segment one
more E-Low-type run in order to save an additional cost of
ε. The question to ask is if there is a clustered segmentation
with c clusters that has cost at most (L − n)ε. One can
show that is possible if and only if there is a solution to the
original set cover problem. Furthermore, ε needs only to
be polynomial in 1/n and 1/m, so the transformation can
be computed in polynomial time.

