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Clustering Large Probabilistic Graphs
George Kollios, Michalis Potamias, Evimaria Terzi.

Abstract —We study the problem of clustering probabilistic graphs. Similar to the problem of clustering standard graphs, probabilistic
graph clustering has numerous applications, such as finding complexes in probabilistic protein-protein interaction networks and
discovering groups of users in affiliation networks.
We extend the edit-distance based definition of graph clustering to probabilistic graphs. We establish a connection between our
objective function and correlation clustering to propose practical approximation algorithms for our problem. A benefit of our approach
is that our objective function is parameter-free. Therefore, the number of clusters is part of the output. We also develop methods for
testing the statistical significance of the output clustering and study the case of noisy clusterings.
Using a real protein-protein interaction network and ground-truth data, we show that our methods discover the correct number of
clusters and identify established protein relationships. Finally, we show the practicality of our techniques using a large social network
of Yahoo! users consisting of one billion edges.

✦

1 INTRODUCTION

Network data analytics lie in the core of many scientific
fields such as social, biological and mobile ad-hoc net-
works. Typically, such network data are associated with
uncertainty. This uncertainty is either due to the data-
collection process or to machine-learning methods em-
ployed at preprocessing. Uncertainty may be also added
to data for privacy-preserving reasons. We model such
uncertain networks as probabilistic graphs. Every edge in
a probabilistic graph is associated with a probability of
existence [1], [2]. As an example, consider the proba-
bilistic protein-protein interaction (PPI) networks. Edges
in PPI networks represent interactions between proteins
which result from combining error-prone measurements
and therefore entail uncertainty [3].
We focus on the problem of partitioning a probabilis-

tic graph into clusters. This is a fundamental problem
for probabilistic graphs, just as it is for deterministic
graphs. Partitioning a probabilistic graph into clusters
has many applications such as finding complexes in
protein-protein interaction networks and communities
of users in social networks. A straightforward approach
to clustering probabilistic graphs is to heuristically cast
the probability of every edge into a weight and apply
existing graph-clustering algorithms [4] on this weighted
graph. This approach is problematic; not only there is no
meaningful way to perform such a casting, but also there
is no easy way to additionally encode normal weights on
the edges.
In this paper, we present a principled approach to

probabilistic graph clustering. Motivated by the possible-
world semantics of probabilistic databases [5], [6] and
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probabilistic graphs [7], [8], we treat every probabilistic
graph G as a generative model for deterministic graphs.
Each such deterministic graph is a possible world of G and
is associated with a probability to be generated.
Consider a deterministic graph G = (V,E) and a

partitioning, C, of the nodes in V . A clustering objective
function D(G,C) quantifies the cost of the clustering C
with respect to G. The possible-world semantics dictate
that the cost of a clustering C for a probabilistic graph G
is the expected value of D(G,C), over all possible worlds
of G (i.e., D(G, C) = E [D(G,C)]). Although this gen-
eralization is natural, it raises computational concerns.
For instance, evaluating D(G, C) using the definition
of expectation requires considering all, exponentially
many, possible worlds of G. Further, the expectation of
well-established clustering objective functions (e.g., the
maximum cluster diameter), is infinite since, typically,
there exist possible worlds where parts of the graph are
disconnected. Therefore, new definitions of the cluster-
ing problem in probabilistic graphs are necessary.
We view clustering C as a cluster graph, i.e., a graph
consisting of disconnected cliques. Our optimization
function is the edit distance between G and cluster graph
C. In other words, D(G,C) is the number of edges that
we need to add and remove from G to get C. Given
a probabilistic graph G, we define PCLUSTEREDIT as
the problem of finding the cluster graph C that has the
minimum expected edit distance from G. Our problem is a
generalization of the CLUSTEREDIT problem introduced
by Shamir et al. [9] for deterministic graphs.
Our framework for clustering probabilistic graphs has

many desirable features. First, our objective function can
be computed in polynomial time. That is, we avoid its
evaluation for every possible world of G. Further, the
value of our objective function is never infinity; it is
bounded by the number of node pairs in the graph. Also,
the variance of our objective to any clustering depends
solely on the graph and not on the specific clustering.
This indicates that the edit distance is a robust objective
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for clustering probabilistic graphs. Finally, our objective
is parameter-free, hence, the number of clusters is part
of the output.

Our contributions. We give a new definition of cluster-
ing in probabilistic graphs based on graph edit distance
and we establish a connection between our problem and
correlation clustering [10]. We exploit this connection
in order to design efficient algorithms for clustering
large probabilistic graphs. Our algorithms also provide
approximation guarantees. Further, we establish a frame-
work to compute deviations of a random world from
the discovered clustering and to test the statistical sig-
nificance of the resulting clusterings. Also, we study
versions of our problem where the target clustering is
itself noisy. Our experimental evaluation on a proba-
bilistic protein-protein interaction network shows that
our algorithms discover the correct number of clusters
and identify known co-complex relationships among
proteins. We also show that they can efficiently cluster
a probabilistic social network from Yahoo! Groups with
one billion edges.

Discussion: Our framework outputs a partition of the
nodes of the probabilistic graph into groups. That is,
it does not support probabilistic membership of nodes
to clusters. Extending the proposed framework to find
probabilistic assignments to clusters or identify overlap-
ping clusters is material for future work.

Roadmap: The rest of the paper is organized as follows:
After reviewing the related work in Section 2, we present
our probabilistic-graph model in Section 3. We define the
basic version of the PCLUSTEREDIT problem in Section 4
and give algorithms for solving it in Section 5. Some
extensions to the basic PCLUSTEREDIT problem are pre-
sented in Section 6. In Section 7, we present a thorough
experimental evaluation on real datasets. We conclude
the paper in Section 8.

2 RELATED WORK

To the best of our knowledge, we are the first to de-
fine and study the problem of clustering probabilistic
graphs using the possible-worlds semantics. However,
uncertain data management and graph mining has mo-
tivated many studies in the data mining and database
community. We highlight some of this work here.

Graph and probabilistic-graph mining: Clustering and
partitioning of deterministic graphs has been an active
area of research [11], [12], [13]. For an extensive survey
on the topic see [4] and the references therein. Most
of these algorithms can be used to handle probabilistic
graphs, either by considering the edge probabilities as
weights, or by setting a threshold value to the proba-
bilities of the edges and ignoring any edge with prob-
ability below this threshold. The disadvantage of the
first approach is that once probabilities are interpreted as
weights, then no other weights can be taken into consid-
eration (unless the probabilities are multiplied with edge

weights – in which case this composite weight has no
interpretation). The disadvantage of the second approach
is that there is no principled way of deciding what the
right value of the threshold is. Although both the above
methodologies would result in an algorithm that would
output some node clustering, this algorithm, contrary to
ours, would not optimize an objective defined over all
possible worlds of the input probabilistic graph.

Further, various graph mining problems have been
studied recently assuming uncertain graphs [14], [15],
[16], [17], [7], [8], [18]. For example, Hintsanen and
Toivonen [15] looked at the problem of finding the
most reliable subgraph, and Zou et al. [18] considered
the problem of finding frequent subgraphs of an input
probabilistic graph. More recently, Potamias et al. [7]
proposed new robust distance functions between nodes
in probabilistic graphs that extend shortest path dis-
tances from deterministic graphs and proposed methods
to compute them efficiently. The problem of finding
shortest paths in probabilistic graphs based on trans-
portation networks has also been considered [19], [20].
The intersection between the above methods and ours
is that all of them deal with probabilistic graphs. How-
ever, the graph-clustering task under the possible-worlds
semantics has not yet been addressed by researchers in
probabilistic graph mining.

Data Mining on Uncertain Data: Data mining over
uncertain data has also received a lot of attention. Several
classical data-mining problems have been revisited in the
context of uncertainty. Examples include clustering of re-
lational data [21], [22], [23], [24], [25], [26], [27], frequent-
pattern mining [28], [29], [30], [18], and evaluating spa-
tial queries [31]. All these works are tailored to model
uncertain multi-dimensional data where uncertainty is
associated either with the location of the data points in
the space or with the actual existence of the data point
in the dataset. One could think of defining probabilistic-
graph clustering using the same ideas as those used for
clustering uncertain multi-dimensional data. After all,
the main idea there is to consider as an objective the
expectation of standard clustering optimization criteria
accross all possible worlds [22]. It may be tempting to
try and use the same definitions for probabilistic graphs,
particularly since standard clustering objectives (e.g., k-
center or k-median) can be optimized in deterministic
graphs. However, there is a fundamental difficulty with
such clustering definitions in the probabilistic-graph set-
ting: since there are many worlds where parts of the
graph are disconnected, the distance (or proximity) of
a node to any of the existing clustering centers can be
infinity. Indeed, for non-trivial probabilistic graphs, there
is always a non-zero probability of having a node with
infinite distance to all the cluster centers. In that case,
the optimization function becomes infinity. Therefore,
new definitions of the clustering problem in probabilistic
graphs are necessary. This paper addresses this chal-
lenge.
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Probabilistic Databases: Probabilistic databases is an-
other active research area, mostly focusing on the devel-
opment of methods for storing, managing, and querying
probabilistic data [32]. There exists fundamental work on
the complexity of query evaluation on such data [6], on
the computation of approximate answers to queries [33],
[34] and on efficient evaluation of top-k queries [35],
[36], [37], [38], [39]. Although we borrow the possible-
world semantics pioneered by the probabilistic-database
community, the computational problems we address
here are different and require the development of new
methodologies.

3 THE PROBABILISTIC -GRAPH MODEL

Similar to deterministic graphs, probabilistic graphs may
be undirected or directed and carry additional labels on
the edges (such as weights). We focus on undirected
probabilistic graphs. Our model assumes independence
among edges.
We represent a probabilistic graph G using tuple G =

(V, P,W ); V corresponds to the set of nodes in G, and
we assume that |V | = n. P maps every pair of nodes
to a real number in [0, 1]; Puv represents the probability
that edge {u, v} exists. For weighted graphs we also
use W : V × V → R to denote the weight associated
with every edge {u, v} ∈ V × V . In this paper we focus
on unweighted probabilistic graphs. In this case, we
represent the probabilistic graph as G = (V, P ). For a
probabilistic graph G = (V, P ), we define its complement
to be the probabilistic graph G′ = (V, 1 − P ).
One can think of a probabilistic graph as a generative

model for deterministic graphs. A deterministic graph
G = (V,EG) is generated by G by connecting two nodes
u, v via an edge with probability Puv . Deterministic
graphs are an instance of probabilistic graphs for which
Puv ∈ {0, 1}. Also, Gn,p Erdős-Rényi random graphs [40]
are an instance of probabilistic graphs where all edge
probabilities are the same and equal to p.
We write G ⊑ G to denote that G was generated by

G; the probability that G = (V,EG) is sampled from G =
(V, P ) is

Pr[G] =
∏

{u,v}∈EG

Puv

∏

{u,v}∈(V ×V )\EG

(1 − Puv). (1)

If M =
(
|V |
2

)
, then there are 2M distinct graphs that can

be generated by G. We use the term possible world to refer
to each such graph.

4 DETERMINISTIC CLUSTER GRAPHS

In this section, we formulate the problem of clustering
in probabilistic graphs as an optimization problem. First,
we define the edit distance between two graphs. Then,
we generalize this definition for probabilistic graphs and
use it to define our graph-clustering problem.
Definition 1 (EDIT DISTANCE): Given two determinis-
tic graphs G = (V,EG) and Q = (V,EQ) we define the

edit distance between G and Q, to be the number of edges
that need to be added or deleted from G in order to be
transformed into Q. In other words,

D(G,Q) = |EG \ EQ| + |EQ \ EG|.

Let G (resp. Q) denote the 0–1 adjacency matrix of G
(resp. of Q). We have

D(G,Q) =
n∑

u=1,
v<u

|G(u, v) − Q(u, v)| .

We extend this definition to the edit distance between
a probabilistic graph G = (V, P ) and a deterministic
graph Q = (V,EQ). We define this distance, denoted
by D (G, Q), to be the expected edit distance between
deterministic graphs G ⊑ G with the deterministic graph
Q. This intuition is captured in the definition below.
Definition 2: The edit distance between a probabilistic

graph G(V, P ) and a deterministic graph Q = (V,EQ),
is defined as the expected edit distance between every
G ⊑ G and Q. That is,

D (G, Q) = E
G⊑G

[D(G, Q)] =
X

G⊑G

Pr [G] D(G, Q). (2)

Using Equation (2) we can compute D (G, C) by gen-
erating all 2M possible worlds. For every world G ⊑ G,
we can compute Pr[G] using Equation (1).This is an
inefficient algorithm. However, the following holds.
Proposition 1: The expected edit distance between a

probabilistic graph G = (V, P ) and a deterministic graph
Q = (V,EQ) in polynomial time.

Proof: Let G and Q denote the adjacency matrices of
the deterministic graphs G = (V,EG) and Q = (V,EQ)
respectively. Then we have

D (G, Q) = E
G⊑G

2

6

4

n
X

u=1
v<u

|G(u, v) − Q(u, v)|

3

7

5

= E
G⊑G

2

6

4

n
X

u=1
v<u

Xuv

3

7

5

,

where Xuv denotes the random variable
|G(u, v) − Q(u, v)|. Note that Xuv takes values in
{0, 1}: if Q(u, v) = 1 (i.e., {u, v} ∈ EQ), then Xuv = 1
with probability 1 − Puv and Xuv = 0 with probability
Puv . On the other hand, if Q(u, v) = 0 (i.e., {u, v} /∈ EQ),
then Xuv = 1 with probability Puv and Xuv = 0 with
probability 1−Puv . Using this observation and linearity
of expectation we get

E
G⊑G

"

X

u<v

Xuv

#

=
X

u<v

 

E
G⊑G

Xuv

!

=
X

{u,v}∈EQ

(1 − Puv) +
X

{u,v}/∈EQ

Puv. (3)

The last expression is computable in time O(m).
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We note that for weighted probabilistic graphs it be-
comes

∑
{u,v}∈EQ

(1−Puv)Wuv +
∑

{u,v}/∈EQ
PuvWuv . For

the remainder of this paper we focus on unweighted
graphs.

A central notion for the remainder of our analysis is
the cluster graph. A cluster graph is a special determin-
istic graph that consists of vertex-disjoint disconnected
cliques.

Definition 3 (CLUSTER GRAPH): A cluster graph C =
(V,EC) is a deterministic graph with the following prop-
erties:

1) C defines a partition of the nodes in V into k parts,
V = {V1, . . . , Vk} such that Vi ∩ Vj = ∅.

2) For every i ∈ {1, . . . , k} and for every pair of nodes
v ∈ Vi and v′ ∈ Vi we have that {v, v′} ∈ EC .

3) For every i, j ∈ {1, . . . , k} with i 6= j and every
pair of nodes v, v′ such that v ∈ Vi and v′ ∈ Vj ,
{v, v′} /∈ EC .

We can now define the following clustering problem:

Problem 1 (PCLUSTEREDIT): Given a probabilistic
graph G = (V, P ) find the cluster graph C = (V,EC)
such that D(G, C) is minimized.

Note that the number of output clusters is not part of
the input. In fact, the objective function itself dictates the
number of clusters that are appropriate for every input.

The special case of the PCLUSTEREDIT problem, where
the input graph is deterministic is called the CLUS-
TEREDIT problem. The CLUSTEREDIT problem was in-
troduced by Shamir et al. [9] who also proved that
CLUSTEREDIT is NP-hard. Therefore, PCLUSTEREDIT is
also hard as a generalization of CLUSTEREDIT.

4.1 Deviations from expectation

The PCLUSTEREDIT problem focuses on finding the clus-
ter graph C that minimizes the expected edit distance
from the input probabilistic graph. Clearly, the value of
D(G,C) for different graphs G ⊑ G may be different.
How large are the observed differences inD(G,C) across
different worlds? ’Using the Chernoff bound, we show
here that the mass of this distribution is concentrated
around its mean.

Consider a probabilistic graph G = (V, P ), a deter-
ministic graph G ⊑ G and any (not necessarily the
optimal) cluster graph C = (V,EC). Also, let G and
C be the 0–1 adjacency matrices of the graphs G and
C respectively. Finally, for u = 1 . . . n and v < u

let Xuv
△
= |G(u, v) − C(u, v)|. Then, the expected edit

distance between G and C is D(G, C) =
∑

v<u Xuv. Each
Xuv is a Bernoulli random variable: if {u, v} ∈ EC ,
then Pr [Xuv = 1] = (1 − Puv). Else, if {u, v} /∈ EC , then
Pr [Xuv = 1] = Puv . Therefore, the expected edit distance
between G and C is a sum of random variables Xuv , for
which probabilities Pr [Xuv = 1] are known. We can now
apply the Chernoff bound (see e.g., [41]) such that for a
cluster graph C, graph G ⊑ G and δ > 0,

Pr
ˆ

D (G, C) > (1 + δ)D (G, C)
˜

<
h

eδ

(1 + δ)1+δ

iD(G,C)

, (4)

and for any δ ∈ (0, 1]

Pr
ˆ

D (G, C) < (1 − δ)D (G, C)
˜

<
h

e−δ

(1 − δ)1−δ

iD(G,C)

. (5)

Inequalities (4) and (5) show that for any G ⊑ G,
the probability that D(G,C) deviates from D(G, C) is
bounded. In practice, we use Inequality (4) as follows:
Given a probabilistic graph G, we first use one of our
algorithms to obtain a cluster graph C that minimizes
our objective, say at value D. Then, for any D′ < D
(resp. D′ > D) we can bound the probability that there
exists a possible world G of G, with edit distance from
C that is smaller (resp. greater) than D′.

Variance: The variance of D(G,C) for G ⊑ G is bounded
and independent of the clustering C:

Var [D(G, C)] =
X

{u,v}∈V ×V,u<v

Puv (1 − Puv) . (6)

Proof: Using the same notation as above we have
that

Var [D(G, C)] = Var

"

X

u<v

Xuv

#

=
X

u<v

Var [Xuv] .

The second equality in the above equation holds because
the Xuv’s are independent and therefore the variance of
their sum is equal to the sum of their variances (see,
e.g., [41]). Each one of the Xuv’s is also a Bernoulli
random variable. If {u, v} ∈ EC , then Xuv has mean
(1−Puv) and variance Puv (1 − Puv). If {u, v} /∈ EC , then
Xuv has mean Puv and variance Puv (1 − Puv). Since the
variance of Xuv is independent of whether {u, v} ∈ EC ,
we have that

X

u<v

Var [Xuv] =
X

u<v

Puv (1 − Puv) .

This indicates that the variance observed in the values
of D(G,C) does not depend on the clustering, but it de-
pends only on the probabilistic graph itself. Probabilistic
graphs that are very uncertain have high variance. The
worst case is when for all pairs of nodes, Puv = 0.5
(i.e., G is a random graph where every edge exists with
probability 0.5). Then, the variance of D (G,C) is the
highest and equal to 0.25 ∗

(
n
2

)
. In the special case that G

is deterministic, the variance is equal to zero.
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5 ALGORITHMS

One could solve the PCLUSTEREDIT problem using the
following heuristic. First, decide on a threshold and
ignore all edges that exist with probabilities below this
threshold. Then, leverage an existing algorithm for clus-
tering deterministic graphs to partition the points into
clusters. Such an algorithm would have the following
disadvantages: first, the choice of threshold seems ar-
bitrary. Secongly, it will be very hard to prove that
such an algorithm is an approximation algorithm for the
PCLUSTEREDIT problem. In fact, it is not clear what is
the objective that such an algorithm optimizes neither
is it clear what the expectation of this objective over all
possible worlds is.
Our algorithms for the PCLUSTEREDIT problem ex-
ploit the connection between our problem and the prob-
lems of correlation clustering [10] and clustering aggre-
gation [42], [43]. Therefore, before describing the algo-
rithms themselves we give a brief introduction to COR-
RELATIONCLUSTERING and highlight its connection to
PCLUSTEREDIT.

The CORRELATIONCLUSTERING problem: In the COR-
RELATIONCLUSTERING problem [10] there are n objects
in V and between any two pair of objects u, v there is a
(+) or a (−) relation. We use E+ (resp. E−) to denote
the set of pairs u 6= v which are (+)-related (resp. (−)-
related). The goal is to find a partition P = {P1, . . . , Pm}
covering V and minimizing the number of disagreement
pairs, i.e., (+) pairs that are in different clusters and
(−) pairs that are in the same cluster. In the weighted
CORRELATIONCLUSTERING instance, each pair {u, v} is
assigned two weights: W+

uv ≥ 0 and W−
uv ≥ 0. The

cost of a clustering in this case is the sum of W+
uv over

all u, v that are in different clusters, plus the sum of
W−

uv over all u, v pairs that are in the same cluster.
If W+

uv ∈ [0, 1] and W−
uv ∈ [0, 1] and for every pair

u, v, W+
uv + W−

uv = 1, then we say that the correlation
clustering weights satisfy the probability constraint. Since
W+

uv = 1 − W−
uv , the objective function of the weighted

CORRELATIONCLUSTERING with probability constraints
can be expressed as follows:

CC (P) =
X

(u,v)
P(u)=P(v)

W
−
uv +

X

(u,v)
P(u) 6=P(v)

`

1 − W
−
uv

´

. (7)

Observe the similarity between the objective func-
tion of CORRELATIONCLUSTERING with probability con-
straints given in Equation (7) and the objective of the
PCLUSTEREDIT problem as expressed in Equation (3).
The two equations look identical except for the fact
that we need to substitute (1 − Puv) with W−

uv and Puv

with (1 − W−
uv). This observation hints that if there is a

good approximation algorithm for the CORRELATION-
CLUSTERING problem, then the same algorithm will be
a good approximation algorithm for the PCLUSTEREDIT
problem as well.

The pKwikCluster algorithm: Ailon et. al. [42] pro-
posed the KwikCluster algorithm for the weighted
CORRELATIONCLUSTERING problem. We adopt their al-
gorithm for the PCLUSTEREDIT problem and we call it
the pKwikCluster algorithm. The algorithm starts with
a random node u and creates a cluster with all neighbors
of u that are connected with u with probability higher
than 1/2. If no such node exists, u defines a singleton
cluster. Having u and its cluster neighbors removed, the
algorithm proceeds with the rest of the graph.

Given that pKwikCluster is a randomized expected
5-approximation algorithm for the CORRELATIONCLUS-
TERING problem with probability constraints [42], we
have the following result.

Lemma 1: The pKwikCluster algorithm is a random-
ized expected 5-approximation algorithm for the PCLUS-
TEREDIT problem.

Running time: The worst-case time complexity of the
pKwikCluster is O(m). Thus, pKwikCluster is linear
to the size of the input.

In fact, pKwikCluster is a randomized expected 5-
approximation algorithm for the CLUSTEREDIT problem
as well; this settles the approximability question of the
CLUSTEREDIT problem posed by Shamir et. al. [9].

The Furthest algorithm: The Furthest algorithm
uses the notion of centers to partition the probabilistic
graph G in a top-down fashion. The algorithm starts by
placing all nodes into a single cluster. Then, it finds the
pair of nodes that have the smallest probability of having
an edge between them. These two nodes become the
centers of the two new clusters. The remaining nodes are
assigned to the center with which it is more probable to
share an edge.

This procedure is repeated iteratively. At each step
we select as center the node that is not a center and
has the maximum distance (i.e., minimum probability)
to the current centers. The distance of a node from the
current centers is defined as the maximum among the
probabilities of having an edge with the current centers.
The nodes are then assigned to the center to which they
are connected with maximum probability. At the end of
iteration i, the cluster graph Ci is formed which has cost
D (G, Ci). If D (G, Ci) < D (G, Ci−1), then the algorithm
continues to iteration (i + 1). Otherwise, it stops and
outputs Ci−1.

Running time: The Furthest algorithm needs to
compute the distance between every node with the se-
lected cluster centers. If k clusters are formed in the end,
the worst-case running time of the Furthest algorithm
is O(nk2).

The Agglomerative algorithm: The Agglomerative
algorithm for PCLUSTEREDIT is a bottom-up procedure
for the clustering problem. It starts by placing every
node of the probabilistic graph G = (V, P ) into a single-
ton cluster. At every iteration i, it constructs the cluster
graph Ci that merges the pair of clusters that appeared
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in Ci−1 that have the largest average edge probability.
1

If the average probability of the closest pair of clusters is
more than 1/2, then the two clusters are merged into a
single cluster. Otherwise the algorithm stops and outputs
the current clustering.
Running time: A naive implementation of the

Agglomerative algorithm requires O(kn2) time, where
k is the number of clusters in the output. However, using
a heap for retrieving the closest pair of clusters reduces
the time complexity of the algorithm to O(kn log n).

5.1 Significance of clusterings

Application of the above algorithms on any probabilistic
graph G will always output some cluster graph C. A
question, very important to the practitioner, is whether
this clustering reveals any significant cluster structure.
Answering this question provides the practitioner with
a measure of confidence (or lack thereof) on the output
cluster graph C. We devise a randomization test that
helps us decide whether the input probabilistic graph G
is well-represented by the output cluster graph C.
Assume a probabilistic graph G = (V, P ) and a cluster

graph C = (V,EC). Consider a randomization method R,
that given G and C, constructs a cluster graph R(C) =
C ′ = (V,EC) by permuting the labels of the nodes in V .
In this way, the clusters in C ′ have the same cardinality
as the clusters in C, but the actual nodes that participate
in each cluster are randomized.
Now, for the random clusterings C ′ constructed us-

ing the above random process R, we are interested in
computing the following quantity:

E-VAL (G, C, R) = Pr
ˆ

D(G, C) ≤ D(G, R(C))
˜

. (8)

We can compute the value of E-VAL (G, C,R) by cre-
ating random instances of C ′ = R(C) and counting the
fraction of instances in which the cost of the original
cluster graph C is less than the cost of its randomized
versions. The E-VAL of a clustering takes values in [0, 1];
the closer this value is to 1 the larger the confidence that
clustering C is statistically significant.

5.2 Alternative clustering definitions

We briefly discuss some alternative clustering optimiza-
tion functions.

CLUSTEREDIT for the most-probable world: This prob-
lem can be mapped to an unweighted instance of the
CORRELATIONCLUSTERING. In particular, the most prob-
able world G∗ can be easily constructed by including all
edges that have probability greater than 0.5. Therefore,
our problem maps to CLUSTEREDIT on G∗. Thus, it can
be solved by KwikCluster, which is a randomized
expected 3-approximation algorithm. Note that even
though the output of the approximation algorithm is the

1. The average edge probability between two clusters Vi and Vj is
defined as 1

|Vi||Vj |

P

u∈Vi,v∈Vj
Puv.

same as the output of pKwikCluster on G, the optimal
solutions of these problems may be different.

Most probable cluster graph: Notice that each cluster
graph is a possible world. As such it has a probability
of being generated by G. A possible clustering definition
i therefore to find the cluster graph with the maximum
probability. This remains an open problem.

6 NOISY CLUSTER GRAPHS

In this section, we extend the PCLUSTEREDIT problem to
allow noisy cluster graph outputs. We also show how we
can exploit the machinery we developed in the previous
sections to solve this problem.

So far, we have assumed that the output cluster
graph is a deterministic graph consisting of disconnected
cliques. A natural variant of this cluster graph is its noisy
version, where some intracluster edges may be missing,
and some intercluster edges may be present. We refer to
such cluster graphs as noisy cluster graphs.

Accordingly, we define the (α, β)-cluster graph, de-
noted as C(α,β) = (V , P (α,β)). C(α,β) defines a partition
of the nodes in V into k parts V1, . . . , Vk such that for

any two nodes v, v′ ∈ Vi, P
(α,β)
vv′ = α; also for v ∈ Vi and

v′ ∈ Vj (with i 6= j) P
(α,β)
vv′ = β. A special case of (α, β)-

cluster graph is the α-cluster graph (also denoted by Cα)
defined for β = 1 − α. For further intuition, consider α-
cluster graphs with two clusters. If α = 1 the 1-cluster
graph consists of two disconnected cliques; if α = 0 the
0-cluster graph is a fully connected bipartite graph.

Noisy cluster graphs are probabilistic graphs. There-
fore, we define the edit distance between two probabilis-
tic graphs.

Definition 4: The edit distance between two probabilis-
tic graphs G(V, P ) and G′ = (V, P ′) defined over the same
set of nodes, is the expected edit distance between every
G ⊑ G and G′ ⊑ G′. That is,

D
`

G,G′´ = E
G⊑G,G′⊑G′

ˆ

D(G, G
′)
˜

=
X

G⊑G,G′⊑G′

Pr [G] Pr
ˆ

G
′˜

D(G, G
′). (9)

Using observations similar to the ones we used in the
proof of Proposition 1, we can show that the edit distance
between two probabilistic graphs G = (V, P ) and G′ =
(V, P ′) can be computed efficiently. The analytical form
of this computation is:

D
`

G,G′´ =
X

{u,v}∈V ×V
u<v

`

Puv

`

1 − P
′
uv

´

+ (1 − Puv) P
′
uv

´

.

(10)
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6.1 P2CLUSTEREDIT with α-cluster graphs

We can now generalize PCLUSTEREDIT to the following
problem.
Problem 2 (P2CLUSTEREDIT): Given a probabilistic

graph G = (V, P ) and α ∈ [0, 1], find the α-cluster graph
Cα = (V, Pα) such that D(G, Cα) is minimized.
This problem is NP-hard as a generalization of PCLUS-

TEREDIT. Nevertheless, the P2CLUSTEREDIT problem
can be approximated at least as well as the PCLUS-
TEREDIT problem. In particular, we show that for any
instance IP2C of the P2CLUSTEREDIT problem we can
construct an instance IPC of the PCLUSTEREDIT problem
such that the optimal solution of IPC can be directly trans-
lated into the optimal solution of IP2C. The following
lemma formalizes the idea.
Lemma 2: If there is a γ-approximation algorithm for

the PCLUSTEREDIT problem, then the same algorithm
is a γ-approximation algorithm for the P2CLUSTEREDIT
problem.

Proof: Let input probabilistic graph G = (V, P ) and
an α-cluster graph Cα = (V, Pα). Assume also that the α-
cluster graph consists of a partitioning of the nodes into
k parts V1, . . . , Vk. Let Ci be the set of pairs of nodes
that belong in partition Vi. That is, Ci = {{u, v} | u ∈
Vi and v ∈ Vi}. Finally, let C = ∪k

i=1Ci and Ĉ = {{u, v} |
u ∈ Vi, v ∈ Vj and i 6= j}. We compute the expected edit
distance between G and Cα using Equation (10). That is,

D (G, Cα) =
X

{u,v}∈C

((1 − α)Puv + α (1 − Puv))

+
X

{u,v}∈ bC

αPuv + (1 − α) (1 − Puv)

=
X

{u,v}∈C

(α + Puv − 2αPuv)

+
X

{u,v}∈ bC

(1 − (α + Puv − 2αPuv)) .

If we define

Yuv(α)
△
= (α + Puv − 2αPuv) , (11)

then we have that

D (G, Cα) =
X

{u,v}∈C

Yuv(α) +
X

{u,v}∈ bC

(1 − Yuv(α)) . (12)

Equation (12) suggests that finding the optimal α-
cluster graph for G is equivalent to finding the optimal
(deterministic) cluster graph for the probabilistic graph
G′ = (V, Yuv(α)).
The consequences of Lemma 2 are apparent. Any

of the algorithms proposed in Section 5 for solving
the PCLUSTEREDIT problem, can also be used to solve
P2CLUSTEREDIT. The only difference is that the al-
gorithms will be applied to the probabilistic graph
G′ = (V, Yuv(α)). Therefore ,the pKwikCluster is
a randomized expected 5-approximation algorithm for
P2CLUSTEREDIT.

Observe that the optimal 0-cluster graph of G = (V, P )
is the optimal deterministic cluster graph for the com-
plement of G, i.e., for the graph G′ = (V, 1 − P ).

Deviations from expectation. Same as with determin-
istic cluster graphs, we can again use the Chernoff
bound [41] to bound the deviation of D(G, Cα) for any
G ⊑ G, from the expected edit distance D(G, Cα). The
expected edit distance D(G, Cα) is again a summation
of independent Bernoulli variables. Therefore, bounds
similar to those given by Equations (4) and (5) can be
derived. The process is identical to the one we used
in Section 4 and therefore we omit the details here.
Similarly, we can use the analysis in Section 4 to com-
pute the variance of the edit distance across possible
worlds G ⊑ G. Using simple substitution, we have that
Var [G, Cα] =

∑
u<v Yuv(α) (1 − Yuv(α)) . In this case, the

variance of the edit distance values does not depend
only on the input probabilistic graph G, but also on the
parameter α.

6.2 Finding the value of parameter α

Until now, we assumed that the value of α is part of the
input. What is the optimal value of the parameter α?

Problem 3 (MINA): Given a probabilistic graph
G(V, P ) find the value of α so that there exists an
α-cluster graph Cα = (V, Pα) for which D (G, Cα) is
minimized.

We have the following:

Lemma 3: The solution to the MINA problem is either
α = 0 or α = 1.

The proof of this lemma is based on the linearity of
the objective function D(G, Cα) with respect to α – see
Equation (12). Clearly, the objective takes its minimum
when α is set to its extreme values, i.e., 0 or 1.

Let us now illustrate how Lemma 3 can prove useful
in practice. First, observe that a 0-cluster graph is a graph
with no intracluster edges and with all the intercluster
edges. Therefore, a 0-cluster graph is a good model for
probabilistic graphs where non-edges define better clus-
ters than edges (e.g., the two sides of a bipartite graph).
A 1-cluster graph is a graph with no intercluster edges
and all intracluster edges. The 1-cluster graph represents
the mainstream definition of clusters in graphs: i.e., a
cluster is a dense subgraph that is disconnected from
the rest of the graph.

We can use the above intuition as follows: given a
probabilistic graph G, use any of the algorithms de-
scribed above to solve the P2CLUSTEREDIT problem for
α = 1. Let C1 be the output 1-cluster graph, with cost
D(G) = D(G, C1). Then, use the same algorithm to solve
the P2CLUSTEREDIT problem for α = 0. Let C0 be the
output 0-cluster graph with cost D(G) = D(G, C0). If
D(G) < D(G), then there is evidence of dense discon-
nected clusters in G. Otherwise, the complement of G,
namely G′, has greater cluster structure than G.
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6.3 Extension to (α, β)-cluster graphs

We extend the PCLUSTEREDIT problem to (α, β)-cluster
graphs.

Problem 4 (P3CLUSTEREDIT): Given a probabilistic
graph G = (V, P ) and α, β ∈ [0, 1], find the (α, β)-cluster
graph C(α,β) = (V, P (α,β)) such that D(G, C(α,β)) is
minimized.
Now assume a probabilistic graph G = (V, P ) and an

(α, β)-cluster graph C(α,β) = (V, P (α,β)) that partitions V
into V1, . . . , Vk. Similar to the proof of Lemma 2, we have
that

D
`

G, C(α,β)

´

=
X

{u,v}∈C

((1 − α)Puv + α (1 − Puv)) (13)

+
X

{u,v}∈ bC

(1 − β)Puv + β (1 − Puv) ,

where C corresponds to the pairs of nodes where both
the nodes of the pair belong in the same cluster; Ĉ is
used to denote the pairs of nodes where the two nodes
of the pair belong in different clusters.

This equation suggests that solving Problem 4 for
fixed α and β, boils down to finding a partitioning
of the nodes in V so that Equation (13) is minimized.
Unfortunately, for this version of the problem there is
no direct transformation to PCLUSTEREDIT; i.e., there is
no analogue of Lemma 2. Therefore, the approximability
of Problem 4 remains an open problem.

Finding and interpreting the values of α and β. The
analogue of the MINA problem for (α, β)-cluster graphs
is to find the values of α ∈ [0, 1] and β ∈ [0, 1] such
that, for input G, there exists an (α, β)-cluster graph
C(α,β) for which D(G, C(α,β)) is minimized. Observe that
D(G, C(α,β)) (see Equation (13)) is a linear function with
respect to α and β. Therefore, its minimum is one of the
extreme values of (α, β) pairs, namely, (0, 0), (1, 0), (0, 1)
and (1, 1).

Intuitively, (0, 0)-cluster graphs are good models for
probabilistic graphs where there is very low probability
to see any edge. Let S be the all-singleton cluster graph.
Observe that S is among the optimal (0, 0)-cluster graphs
for any G. The edit distance of G = (V, P ) from S is equal
to DS(G) = D(G, S) =

∑
u<v Puv .

Similarly, let Q be the cluster graph that puts all nodes
in one cluster (i.e., clique). Q is among the optimal (1, 1)-
cluster graphs for any G and the edit distance of G from
Q is DQ(G) = D(G, Q) =

∑
u<v(1 − Puv).

The optimal (1, 0)- and (0, 1)-cluster graphs are the
C1 and C0 cluster graphs mentioned in the previous
subsection with cost D(G) and D(G) respectively.

Given a probabilistic graph G, we call the four values
D(G), D(G), DS(G) and DQ(G) the landmark distances
of G. The landmark distances give good intuition about
the structure of G. For example, if D(G) is close to
DQ(G) (resp. DS(G)), then G does not have any other
cluster structure than one large cluster (resp. n singleton
clusters).

7 EXPERIMENTS

In this section, we present an experimental evaluation
of our methodology. Our experiments verify that our
algorithms output clusterings that are meaningful and
statistically significant. We also demonstrate that our ap-
proximation algorithm pKwikCluster scales well and
can handle real-world social networks with more than
one billion edges. Finally, we show that pKwikCluster
scales linearly in synthetic scale-free graphs. We ran all
experiments on a Linux server with eight AMD Opteron
processors with 64GB memory. All methods have been
implemented in C++.

7.1 Protein-protein Interaction Network

The CORE dataset. For this experiment, we used the core
interaction network provided by Krogan et al. ([3], Sup-
plementary Table 7). The network consists of 2708 nodes
that correspond to proteins. There are 7123 protein inter-
actions that correspond to the network edges. The edge
probabilities encode the confidence of the interaction
between nodes. We refer to this network as CORE and
we denote the underlying probabilistic graph as Gcore.
There is no edge in the network with probability less
than 0.27. Also, about 20% of the edges have probability
greater than 0.98. The edge probabilities are uniformly
spread in the remaining range [0.27, 0.98]. The dataset
exhibits power-law degree distribution, short paths, and
high clustering coefficient.

Quantitative performance of algorithms. The goal
of this experiment is to compare the performance of
our algorithms (pKwikCluster, Agglomerative and
Furthest) with respect to the quality of the solutions
they produce as well as their running times. The quality
of a solution is measured in terms of our objective
function, i.e., the expected edit distance of the output
cluster graphs from the input probabilistic graph.
Apart from our algorithms, we also report results

for three other methods: pCast, Balls and MCL. The
pCast algorithm is a straightforward adaptation of the
Cast heuristic [44] for probabilistic graphs. The Balls
algorithm is a variant of pKwikCluster, proposed by
Gionis et al. [43] for solving the clustering-aggregation
problem. Finally, the MCL procedure is a two-parameter
heuristic clustering technique based on random walks
and matrix multiplications. Krogan et al. [3] report that
they have manually tuned the two parameters of MCL
to optimize the utility of the algorithm’s results. We
use this optimized output provided by Krogan et al ([3]
Supplementary Table 10). We refer to this clustering as
Reference.
We implemented pKwikCluster and pCast. For

Agglomerative, Furthest, Balls we used the code
provided by Gionis et al. [43], which is available online2.
Both pCast and Balls require the setting of one pa-
rameter. For pCast we set the value of the parameter to

2. http://www.cs.helsinki.fi/hiit bru/software/clustering
aggregation/
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TABLE 1
CORE dataset: Summary of results in terms of edit distance and

wallclock time of all algorithms.

Algorithm Edit Distance Wallclock Time (sec)

Reference 12230 n/a
pKwikCluster 4194 0.005

pCast 4502 100
Agglomerative 3420 10

Furthest 4612 150
Balls 4960 8

0.7 after experimentally observing that it minimizes the
expected edit distance. We set the parameter of Balls
to its default value 0.17.

Table 1 summarizes the performance of all algorithms
with respect to the expected edit distance of the solutions
they produce from the input probabilistic graph Gcore.
The running time of these algorithms for our imple-
mentations are also reported. Since pKwikCluster is
a randomized algorithm, we ran it for 100 times and
we report the best value of our objective achieved over
these runs. In terms of edit distance, pKwikCluster and
Agglomerative outperform the rest of the algorithms
yielding solutions with edit distance 4194 and 3420
respectively. In terms of efficiency pKwikCluster is
the fastest of all methods – its running time is linear
to the number of edges in Gcore. In this small dataset,
pKwikCluster takes just 5ms for a single run. Even
though Agglomerative produces the highest quality
clustering in CORE, its running time is 10s. Overall,
the worst-case running time of Agglomerative is
O(kn log n) and therefore, it cannot scale to more than
a few thousands nodes. For the Reference clustering
we do not report the running time since we utilize the
reported results of MCL directly [3], without running
the algorithm ourselves. However, MCL involves matrix
multiplications so its complexity is at least quadratic to
the number of nodes.

Qualitative performance of algorithms. In this exper-
iment, we validate the output of our methods with re-
spect to a known ground truth. Our results indicate that
our techniques not only produce meaningful clusterings
but also discover the correct number of clusters.

We use the MIPS database of protein complexes as
ground truth [45]. MIPS complexes define co-complex
relationships among proteins; a co-complex relationship
is a pair of proteins that both belong to the same
complex. Among the co-complex relationships present in
MIPS, we only keep the ones that occur in Gcore. Thus, we
end up with a ground truth of 5380 pairs of proteins. We
emphasize that the complexes from MIPS correspond to
overlapping sets of proteins; i.e., proteins may belong to
more than one complexes. On the other hand, the output
clusterings of the methods reported here are partitions,
i.e., every protein participates in exactly one cluster.

Table 2 summarizes our results. The second col-
umn of this table reports the number of non-

TABLE 2
CORE dataset: Summary of clustering results of all algorithms.

Algorithm #clusters TP FP FN

Reference 547 1791 11635 3589
pKwikCluster 491 838 2003 4542

pCast 1189 633 1338 4747
Agglomerative 543 946 1357 4434

Furthest 619 894 2322 4486
Balls 757 1120 1743 4260

singleton clusters discovered by our techniques. Observe
that our parameter-free techniques pKwikCluster,
Agglomerative and Furthest discover between 490
and 619 non-singleton clusters, which is close to 547
discovered by Reference.
The rest of the columns of Table 2 summarize the

confusion matrix constructed using the output of each al-
gorithm. In particular, the third, fourth and fifth columns
report respectively the number of True Positives (TP),
False Positives (FP), and False Negatives (FN) attained
by the different algorithms. All these calculations are
done considering the MIPS database as the ground truth.
The results indicate that our methods settle for a differ-
ent trade-off than Reference. For instance, the number
of TPs are 838 for pKwikCluster, while Reference
discovers twice as many. On the other hand, the FPs
of pKwikCluster are six times less than the ones of
Reference.
To sum up, our techniques produce different cluster-

ings compared to Reference. Yet, in terms of quality
the results are comparable even though each clustering
achieves different trade-offs. Besides, our algorithms op-
timize the edit distance between the probabilistic graph
and the clustering without looking at the test set. On the
other hand, Reference clustering has been produced
by optimizing the parameters of MCL for the particular
test-set [3].

Performance of pKwikCluster. Both previous experi-
ments indicate that pKwikCluster, which is a provably
approximation algorithm, performs very well in practice.
The quality of the solutions it produces in terms of
both their edit distance and their structural characteris-
tics compare favorably to the other algorithms. Further,
pKwikCluster scales well and is thus appropriate for
large datasets. Therefore, we focus on pKwikCluster
for the remainder of this paper.

Deviations from expectation. The goal of this experi-
ment is to illustrate that in practice, the probability of
sampling a random world with edit distance signifi-
cantly larger than the expected edit distance optimized
by pKwikCluster is negligible. Let Ccore be the de-
terministic cluster graph output by the pKwikCluster
algorithm for the CORE network. We now need to com-
pute the probability that any random world G ⊑ Gcore
has edit distanceD(G,Ccore) that is significantly different
from D(Gcore, Ccore). Instead of computing this probabil-
ity exactly, we use Inequalities (4) and (5) to compute its
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Fig. 1. CORE dataset: Probability bound for the distance
between any random world and the output of pKwikCluster;
x-axis: edit distance, y-axis: probability value.

bound. For the CORE dataset, we have D(Gcore, Ccore) =
4194. Figure 1 shows that there is at most 0.1 probability
to sample a world with distance less than 4055 or more
than 4334. This exponential-tail bound illustrates that in
practice a randomly sampled world will have a distance
very close to the expected edit distance optimized by our
objective.
In Section 4.1, we proved that the variance of the

distance of a random world to any clustering is indepen-
dent from the clustering. This variance can be computed
analytically using Equation (6). The variance of CORE is
1096, which yields a standard deviation of 33.11.

Statistical Significance. We test the statistical signifi-
cance of the clustering reported by pKwikCluster for
the CORE network. We perform the randomization test
R described in Section 5.1. If Ccore is the cluster graph
output by pKwikCluster for input Gcore, then we create
randomized versions of Ccore by maintaining the cluster
sizes and permuting the labels of the nodes of Gcore. For
500 randomized instances of Ccore created as above, we
report that the value of E-VAL(Gcore, Ccore, R) is equal
to 1. That is, the reported clustering Ccore is statistically
significant.
Figure 2 shows the value of D(Gcore, Ccore) and a

histogram of the values of D(Gcore, R(Ccore)) for the
randomized versions of Ccore. The sample mean of
D(Gcore, R(Ccore)) is 7672 with a standard deviation as
low as 3.4; this explains why the distribution resembles a
spike. A simple calculation reveals that the original clus-
tering is more than a thousand standard deviations away
from the mean of the randomized clusterings. In practice,
even if we were given the number of clusters and their
cardinalities it would be impossible to find a clustering
at least as good as the output of pKwikCluster by
randomly permuting the node labels.

7.2 Affiliation Network

In this section, we focus on the application of
pKwikCluster on clustering a large probabilistic social
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Fig. 2. CORE dataset: Distribution of the expected edit distance
between the CORE network and the randomized versions of
the output of pKwikCluster; x-axis: edit distance, y-axis: fre-
quency. At 4194 we mark the distance of the original clustering.

network with 1 billion edges. Our results demonstrate
the scalability of pKwikCluster. We note that the rest
of our methods cannot handle datasets as large as the
one we consider in this part.

Dataset. We took the Yahoo! Groups user-group mem-
bership graph version 1.0 which is part of the Yahoo!
Research Webscope datasets. The dataset corresponds to
a small completely anonymized version of a bipartite
graph showing membership patterns in Yahoo! Groups
dating from early 2005. The dataset consists of 999,744
nodes, 638,124 groups, and 15,205,016 group member-
ships. The group sizes and user memberships exhibit
power-law characteristics.

Starting from the information of users’ memberships
to groups, we construct the probabilistic Y!GROUPS
network as follows: First we assign to every group gi

probability qi. This probability encodes the probability of
group gi to induce a friendship link among any two of its
members. Then, for any pair of users that co-participate
in groups g1, . . . , gk we compute the probability of the
edge between them as 1−(1−q1)(1−q2) . . . (1−qk). This
is the probability that they are friends due to at least one
of their common groups. This process uniquely defines a
probabilistic graph. Using the recently proposed model
by Lattanzi and Sivakumar [46] we set qi = |gi|

−a, for
a = 0.5, noting that the value of a does not significantly
change our results. Using this data-generation process
we build the Y!GROUPS network that has a few more
than 1B edges. We refer to this probabilistic graph as
GY . The edge probabilities in GY cover the whole [0, 1]-
range, most of them are close to 0. Indicatively, out of
1B edges, only about 15.5M of them have probability
greater than 0.5.

Results for pKwikCluster. We ran pKwikCluster
on the Y!GROUPS network 100 times. The best clustering
CY reported by pKwikCluster has 110698 clusters and
expected edit distance D(GY , CY ) = 12.59 × 106. Each
iteration of the algorithm on the Y!GROUPS dataset takes
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TABLE 3
Landmark distances of the CORE and the Y!GROUPS networks

Landmark distances of Gcore Landmark distances of GY

DQ(Gcore) = 3665 · 103
DQ(GY ) = 499.74 × 109

DS(Gcore) = 4839 DS(GY ) = 75.5 × 106

D(Gcore) = 4194 D(GY ) = 12.59 × 10
6

D(Gcore) = 4839 D(GY ) = 499.22 × 109

180 seconds.

Deviations from expectation and statistical signifi-
cance. Our findings in this experiment are similar to
the ones for the CORE network. The variance of the
Y!GROUPS network is equal to 4.2 × 106, which yields
a standard deviation around 2050. Therefore, the vari-
ance of random variable D(G,CY ) for any G ⊑ GY is
minuscule compared to the mean value (12.59 × 106).
Running the randomization test R as before, we get
E-VAL(GY , CY , R) = 1. The average value of the ex-
pected edit distance obtained for the randomized clus-
terings is 15.1466 × 106, while the standard deviation
of these values is as small as 160. The original output
of pKwikCluster is thousands of standard deviations
away from the sample mean distance of the randomized
clusterings.

7.3 Scalability experiment on power-law graphs

Since most of the real-world graphs are scale-free, we test
the scalability of our algorithm (pKwikCluster) using
synthetically generated scale-free graphs.
We generate synthetic graphs using the Barabási-

Albert (BA) model [47]. The BA graph-generation pro-
cess adds nodes to the graph one at a time. Each new
node is connected to k existing nodes with a probability
that is proportional to the number of links that the
existing nodes already have. We make these graphs
probabilistic by generating a probability value uniformly
at random in [0,1] for each edge. We call these graphs
Probabilistic BA graphs.
Figure 3 shows the execution time of pKwikCluster

in seconds as a function of the number of edges of
the generated graph. For each data point shown in
Figure 3, we create 20 probabilistic graphs and we run
pKwikCluster 20 times on each graph. Thus, each
point is the average of 400 executions. The execution
time of pKwikCluster in seconds is shown on the
y-axis. All graphs have 50000 nodes and the x-axis
is the total number of edges in the graph. We vary
the number of edges by choosing parameter k from
{1, 2, · · · , 10}. Figure 3 confirms that the running time of
pKwikCluster scales linearly to the number of edges.

7.4 Noisy cluster graphs

(α, β)-clusters of CORE. The goal of this experiment is to
gain further intuition on the cluster structure of the input
graph Gcore using the results of Section 6. We report the
landmark distances of Gcore in the first column of Table 3.
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Fig. 3. Probabilistic BA graphs: Wallclock performance
of pKwikCluster; x-axis: number of edges, y-axis: wallclock
time in seconds.

Observe that D(Gcore) has the minimum value among all
four landmark distances. This is an indication that Gcore
has an inherent cluster structure and that (1, 0)-cluster
graphs are good models for describing the clusters of
the CORE network. We also evaluate the significance of
the difference between D(Gcore) and its closest landmark
DS(Gcore). In particular, we compute the probability that
a random world G ⊑ Gcore is closer in terms of edit
distance to the all-singleton clustering than it is to the
discovered (1, 0)-cluster graph. Using Inequality (4), we
bound the probability of such an event (see Section 4.1
for details). The calculation yields a probability value
less than 5.6 × 10−6. In other words, for all except a
negligible fraction of worlds, the obtained (1, 0)-cluster
graph is the optimal model choice.

(α, β) clusters of Y!GROUPS. We consider the land-
mark distances of GY (see Table 3). Same as with CORE,
D(GY ) has the minimum value among all four landmark
distances. This indicates that GY has dense clusters and
that (1, 0)-cluster graphs are better suited for describing
the Y!GROUPS network. For a random choice of a world
G ⊑ GY , the probability that the edit distance between
G and the (1, 0)-cluster graph is smaller than the edit
distance between G and the all-singleton clustering is
less than 10−9. Therefore, (1, 0)-cluster graphs are the
best models for the Y!GROUPS network.

8 CONCLUSION

In this paper, we presented a thorough study of cluster-
ing probabilistic graphs using the edit distance metric.
We focused on the problem of finding the cluster graph
that minimizes the expected edit distance from the in-
put probabilistic graph. Our formulation adheres to the
possible-worlds semantics. Also, our objective function
does not require the number of clusters as input; the op-
timal number of clusters is determined algorithmically.
We showed that our problem can be efficiently ap-

proximated, by establishing a connection with correla-
tion clustering. In addition, we proposed various intu-
itive heuristics to address it. Further, we established a
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framework to compute deviations of a random world
to the proposed clustering and to test the significance
of the resulting clusterings to randomized ones. Also,
we addressed versions of our problem where the output
clustering is itself noisy.
We tested our algorithms on a real probabilistic

protein-protein interaction network and on a probabilis-
tic social network that we created from Yahoo! Groups.
Our experimental evaluation demonstrated that our al-
gorithms not only produce meaningful clusterings with
respect to established ground truth, but they also dis-
cover the correct number of clusters. Finally, we demon-
strated that they scale to graphs with billions of nodes
and that they produce statistically significant results.
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