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Abstract. We consider social networks in which links are associated
with a sign; a positive (negative) sign indicates friendship (animosity) be-
tween the connected nodes. Recent work studies such large online signed
networks by applying theories that stem from the notion of social bal-
ance. Computing the social balance of a signed network requires counting
the distinct configurations of the signed edges within all possible trian-
gles that appear in the network. A naive algorithm for such counting
would require time that is cubic to the total number of nodes; such an
algorithm is infeasible for large signed networks that are generated from
online applications.
In this paper, we present an efficient spectral algorithm that computes
approximate counts of the signed-triangle configurations. The essence of
the algorithm lies in associating the eigenvalues of the adjacency matrix
of a signed network with its signed-triangle configurations. Our experi-
ments demonstrate that our algorithm introduces only a small error in
the computed quantities while, at the same time, it achieves significant
computational speedups.

1 Introduction

The interplay between positive and negative interactions between people defines
the smooth functioning of society. In a similar way, in the online world, positive
and negative relationships between users play a significant role in the function
and evolution of online social networks. For example, users on Wikipedia can vote
for or against the nomination of others as admins [4]. Users on Q&A systems
(e.g., Yahoo! answers) get promoted by other users if they answer questions
correctly; otherwise they get demoted. Users on Epinions can express trust or
distrust of others [9, 18]; participants on Slashdot can declare others to be either
friends or foes [3, 13, 14]. Even the links between blogposts of different bloggers
can be positive when the one blogger endorses the statements of the other or
negative if the users express difference in opinions.

The focus of this paper is on computational problems that arise in signed
networks. In such networks, every link is annotated with either a positive or
a negative sign. The positive links represent friendship while the negative ones
represent antagonism. A basic tool in the study of signed networks is the notion of
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social balance also referred to as structural balance [11]. The signed triangles of a
network are the very basic entities to be considered in social-balance studies. Up
to node permutation, there are four possible configurations of a signed triangle.
These configurations are shown in Fig. 1. The two triangles with an odd number
of plus edges are balanced(Fig. 1(a)): they satisfy the adages that “the enemy of
my enemy is my friend” and “the friend of my enemy is my enemy”. The two
triangles with an even number of plus edges (Fig. 1(b)) do not comply with this
logic of friendship, and are considered unbalanced. For balanced triangles, the
product of the edge signs is positive; for unbalanced triangles the same product
has a negative sign. This definition of balanced and unbalanced triangles has its
origins in social psychology studies [5, 11] and it has been used as a basis for
studying the dynamics of network formation [1] as well as the behavior of users
in online social networks [15, 16].
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(b) Unbalanced triangles

Fig. 1. Balanced and unbalanced configurations of signed triangles.

Given an undirected and signed graph G = (V, E), a very natural question,
also associated with social-balance studies, is to compute the fraction of triangles
in G that are balanced. If we denote this quantity by b̂, then, the fraction of
unbalanced triangles is û = 1 − b̂.

A naive algorithm for computing b̂ in a given graph counts all possible tri-
angles in the graph and finds the ones that are balanced. For a graph with n

nodes, such an algorithm goes over all the possible
(
n

3

)
triangles of the graph and

requires time O(n3). This cubic running time makes this algorithm impractical
for large datasets.

The contribution of this paper is to associate the quantity b̂ with the eigen-
values of the network’s adjacency matrix. This connection allows us to develop
a spectral algorithm that can efficiently approximate the fraction of balanced
triangles. Our results highlight the relationship between the structural balance
of a network and its underlying structure, as expressed in the eigenvalue decom-
position of the matrix representation of the network. Although our methodology
applies to arbitrary networks, we present our results for complete graphs first.
Then, we show how they generalize to incomplete graphs. In incomplete graphs,
apart from the existing edges that are all signed by a “+” or a “-” sign, there are
also non-existing (i.e., neutral) edges. All signed networks coming from online
social networks are incomplete; in such large datasets it is unrealistic to assume
that there is information about the positive or negative relationships between
all pairs of nodes. Our experiments show that algorithm works extremely well in
practice. As a by-product of our experimental evaluation we get a study of the
eigenvalue spectrum of the adjacency matrices of signed networks.
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The rest of the paper is organized as follows: in Section 2 we review work
related to social-balance studies and spans scientific areas ranging from sociology
and physics to computer science. We give some basic definitions and describe
some computational tools in Section 3. In Section 4 we describe our methodology
for the special case of complete graphs; we extend it for incomplete graphs in
Section 5. Our experimental evaluation is given in Section 6 and we conclude
the paper in Section 7.

2 Related Work

The principles underlying structural balance are based on theories in social
psychology, and they date back to the work of Heider in the 1940s [11, 12].
Cartwright and Harary [5, 6, 10] generalized these principles and expressed them
in terms of graphs in the 1950s. All these studies focus on building psychological
and sociological models for social balance and, naturally, they do not consider
the computational aspects of these models.

More recent work focuses on mathematical models, that attempt to capture
how the structural balance of a network can evolve from dynamic changes to
the links’ signs over time [1, 17]. This line of work mostly focuses on questions
related to the evolution of friendships and antagonisms between the nodes and
does not consider the algorithmic problems related to structural balance.

Analysis of online signed social networks, through the lenses of structural-
balance theories, has only appeared recently in the work of Leskovec et. al. [15,
16]. More specifically, Leskovec et. al. have analyzed theories of balance and
status in the context of social-media sites, investigating the extent to which
each theory helped explain the linking behavior of users to these sites [16]. In
a more recent work, the same authors developed methods for predicting the
sign of the edge between users in signed online social networks [15]. Our work is
complementary to this; we provide algorithmic tools for computing basic quanti-
ties associated with social balance. Such computations will allow the techniques
developed in the past to become more efficient.

The idea of associating the triangles of a network with the eigenvalues of its
adjacency matrix is not new: it has recently appeared in the work of Tsourakakis
et. al. [19, 20]. However, Tsourakakis et. al. focus on unsigned networks and on
the computation of the total number of distinct (unsigned) triangles in them. On
the other hand, we consider signed networks and signed-triangle configurations,
and our goal is to count the proportion of balanced and unbalanced triangles in
such networks. In that respect, our task is more complicated and the techniques
developed by Trourakakis et. al. do not directly apply to our setting.

3 Basics

For the rest of the paper we assume a social network G = (V, E) consisting of a
set of n nodes, i.e., |V | = n. The edges of the network are undirected and signed.
Each existing edge {i, j} ∈ E is labeled with either a plus or a minus sign. A plus
sign corresponds to feelings of friendship, while a minus sign indicates animosity
between nodes i and j. Not all edges need to be present; a non-existing edge
between two nodes corresponds to “neutral” feelings.
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Given a graph G = (V, E), we use A to represent the n×n adjacency matrix
of G. If edge {i, j} is signed with a “plus” (“minus”), then Aij = 1 (Aij = −1).
If edge {i, j} does not exist, then Aij = 0. Since the graph G is undirected,
matrix A is symmetric. In addition to the adjacency matrix A, we also define
the connectivity matrix of G, which we denote by G. Matrix G is also symmetric
and Gij = 1 if nodes i and j are connected by an edge (irrespective of the sign);
otherwise Gij = 0.

Following traditional linear-algebra notation, we use trace (A) (trace (G)) to
denote the sum of the diagonal elements of A (G). That is, trace (A) =

∑n

i=1
Aii

and trace (G) =
∑n

i=1
Gii.

As shown in Fig. 1, there are four possible configurations of signed triangles
(up to node permutation). In the theory of social balance, the triangle configu-
rations with even number of minus signs are considered as balanced (Fig. 1(a)).
On the other hand, the two configurations with odd number of minus signs cor-
respond to unbalanced triangles (Fig. 1(b)). Notice that the product of the edge
signs is positive for a balanced triangle and negative for an unbalanced one. If
b and u denote the number of balanced and unbalanced triangles in G, we are
interested in computing the following two quantities: (1) the fraction of balanced

triangles in G, denoted by b̂ and (2) the fraction of unbalanced triangles in G,

denoted by û. Since b̂ + û = 1, computing b̂ suffices to achieve our goal.

Given a signed graph G = (V, E) with adjacency matrix A and connectivity
matrix G we know the following:

Proposition 1 ([19, 20]). The number of distinct triangles that node i partic-
ipates in is δi = 1

2
G3

ii.

Furthermore, we can associate the diagonal elements of A3 with the balanced
and unbalanced triangles a single node participates in. The following proposition
summarizes this relationship.

Proposition 2. For a node i, let bi be the number of balanced and ui the number
of unbalanced triangles i participates in. Then, 1

2
A3

ii = (bi − ui).

Proof. Consider the expansion of the diagonal elements of A3

A3
ii =

n∑

j=1

n∑

k=1

AijAjkAki. (1)

For balanced triangles, the product of the edge signs is positive, whereas for
unbalanced ones it is negative. For the case that any of the edges is missing
(and therefore the triangle does not exist), the product yields zero. Therefore,
the sum over all possible configurations, i.e., the value of A3

ii, is increased by
one if the triangle of a path i → j → k is balanced. It is decreased by one, if
it is unbalanced. However, since the graph is undirected, each unique triangle is
counted twice in A3

ii; again, triangle {i, j, k} is counted both as i → j → k and
as i → k → j. Consequently we have to divide by two.
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Propositions 1 and 2 will become useful in proving the main theorems of the
paper in Sections 4 and 5. We will also use the following results related to the
eigenvalue decomposition of any real symmetric matrix X1. First, recall that
every real, symmetric n×n graph has n real eigenvalues λ1, λ2, . . . , λn. We also
know the following:

Proposition 3 ([8]). For any n×n matrix X, the sum of the diagonal elements
of X is equal to the sum of its eigenvalues. That is, if λ1, λ2, . . . , λn are the
eigenvalues of X, then we have that trace (X) =

∑n

i=1
λi.

Proposition 4 ([8]). Let X be a real, n× n and symmetric matrix with eigen-
value decomposition X = UΛUT and diag (Λ) = (λ1, . . . , λn) . Then, for integer
k, the eigenvalue decomposition of matrix Xk is Xk = UΛkUT . Where Λk is a
diagonal matrix with diag(Λ) = (λk

1 , . . . , λk
n).

4 Balanced triangles in complete networks

In this section, we show how the fraction of balanced triangles b̂ of a fully con-
nected signed network can be expressed as a function of the eigenvalues of the
network’s adjacency matrix. We express this relationship formally in Theorem 1.

Theorem 1. Let G = (V, E) be a fully connected signed network with adjacency
matrix A. If λ1, λ2, . . . , λn are the eigenvalues of A, then the fraction of balanced
triangles b̂ of G can be computed as follows:

b̂ =
1

2
+

1

4n(n− 1)(n − 2)

n∑

i=1

λ3
i . (2)

Before getting into the details of the proof, observe that in a fully-connected
signed graph all nodes participate in the same number of signed triangles. That
is, we have the following fact.

Fact 1 Every node i ∈ V participates in the same number of distinct triangles.
That is, if we denote this number by δi, we have that δ1 = δ2 = . . . = δn = δ

and δ =
(
n−1

2

)
.

This is simply because every node participates in triangles formed by all combi-
nations of pairs of the remaining n − 1 nodes (excluding the node itself).

For every node i, the δ triangles it participates in can be partitioned into bi

balanced ones and ui unbalanced ones. That is,

δ = bi + ui , ∀i ∈ {1, 2, ..., n} . (3)

Due to Proposition 2, we have that

A3
ii

2
= bi − ui (4)

1 Recall that both the adjacency and the connectivity matrices A and G are real and
symmetric
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By (3) and (4), we obtain that

bi =
1

2
δ +

1

4
A3

ii and ui =
1

2
δ −

1

4
A3

ii.

Therefore, the total number of balanced and unbalanced triangles, denoted
by b and u, will be

b =
1

3

n∑

i=1

bi =
1

3

[
1

2
nδ +

1

4
trace

(
A3
)]

and u =
1

3

n∑

i=1

ui =
1

3

[
1

2
nδ −

1

4
trace

(
A3
)]

.

We divide both quantities by 3 because every triangle has three participating
nodes, and thus, is triple-counted. Consequently, the fraction of balanced trian-
gles in the network, b̂, is

b̂ =
b

b + u
=

1

4nδ
trace

(
A3
)

+
1

2
=

1

4n(n − 1)(n − 2)
trace

(
A3
)

+
1

2
.

The last derivation is due to the fact that δ =
(
n−1

2

)
. Using Propositions 3 and

4, we get the desired result.

Algorithmic implications: Equation (2) implies that we can compute the
fraction of balanced triangles by simply computing the eigenvalues of A and
take their third power (this is due to Proposition 4). However, computing all
the n eigenvalues of A still requires time O(n3). Fortunately, if one is content

with approximations of b̂, Theorem 1 can lead to an algorithm with significantly
smaller running time. Assume the permutation of the eigenvalues of A (i.e.,
λ1, . . . , λn) in decreasing order of their magnitude. Then, instead of using all

the n eigenvalues in the computation of b̂, we can compute b̂k by only using
the top-k eigenvalues with the largest magnitude. Therefore, computing these
eigenvalues requires time only O(n2k) – this is because the standard algorithms
for computing eigenvalue decomposition output the eigenvalues sequentially and
in decreasing order of their magnitude [8]. For small values of k, the savings
in terms of running time can be significant. Our algorithm can further leverage
the efficient approximation algorithms for computing eigenvalues of large ma-
trices [7]. Our experiments demonstrate that very small values of k (compared
to n) suffice to give significant computational gains with insignificant accuracy
loses. This is because, as our experiments demonstrate, the effective rank of A
is small.

5 Balanced triangles in arbitrary networks

Here we show that even when the signed graph is not a clique, we can express the
fraction of balanced triangles as a function of the eigenvalues of the adjacency
matrix A and the connectivity matrix G.

Theorem 2. Let G = (V, E) be a symmetric signed network (not necessarily
fully connected) with adjacency matrix A and connectivity matrix G. Also let
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λ1, λ2, . . . , λn be the eigenvalues of A and µ1, µ2, . . . , µn the eigenvalues of G.
Then, the fraction of balanced triangles in G can be expressed as follows:

b̂ =
1

2

(
1 +

∑n

i=1
λ3

i∑n

i=1
µ3

i

)
. (5)

The main idea of the proof of Theorem 2 is similar to that of Theorem 1. The
only difference is that now, the number of triangles δi that a node i participates
in is different for every node i and can be computed using Proposition 1. If
bi and ui denote the number of balanced and unbalanced triangle that node i

participates in, then we have that

δi = bi + ui. (6)

Every balanced triangle contributes a (+1) (all three edges positive or two edges
negative and one positive). Thus, the diagonal entries of A3 are numbers of the
form

A3
ii

2
= bi − ui. (7)

Using Proposition 1 and Equations (6) and (7), we get

bi =
1

4

(
G3

ii + A3
ii

)
and ui =

1

4

(
G3

ii − A3
ii

)
.

The total numbers of balanced and unbalanced triangles of the graph, denoted
by b and u respectively, are then given by

b =
1

3

n∑

i=1

bi =
1

12

[
trace

(
G3
)

+ trace
(
A3
)]

u =
1

3

n∑

i=1

ui =
1

12

[
trace

(
G3
)
− trace

(
A3
)]

.

As before, the division by 3 is due to the fact, that the summation goes over
all nodes in the network, what results in a triple-counting. It follows that the
fraction of balanced triangles in the network, is

b̂ =
b

b + u
=

1

2

(
1 +

trace
(
A3
)

trace (G3)

)
.

Using Propositions 3 and 4, we can replace the quantities trace
(
A3
)

and

trace
(
G3
)

by
∑n

i=1
λ3

i and
∑n

i=1
µ3

i respectively, and get the desired result.

Algorithmic implications: Equation (2) implies that we can compute the frac-
tion of balanced triangles by computing the eigenvalues of A and take their third
power (this is due to Proposition 4). However, computing all the n eigenvalues of
A still requires time O(n3). Fortunately, if one is content with approximations
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of b̂, Theorem 2 can lead to an algorithm with significantly smaller running time.
Instead of computing all the n eigenvalues of A and G, we can evaluate Equa-
tion (5) using only the k largest-magnitude eigenvalues of matrices A and G.
We call the algorithm that uses Theorem 2 and the first k eigenvalues of G and
A for computing b̂, the Spectral(k) algorithm. For small values of k, the run-
ning time of Spectral(k) is very small. Further computational improvements
can be achieved by leveraging more efficient approximation algorithms for eigen-
value computations [7]. Our experiments demonstrate that the values of k that

give satisfactory approximations of b̂ are very small because, as our experiments
show, the effective ranks of A and G are both small and similar.

6 Experiments

Our experiments both with real and synthetic datasets demonstrate that a very
small number of eigenvalues of the adjacency and the connectivity matrix suffices
to provide accurate approximations of b̂.

Datasets: For our experiments we use two real signed-graph datasets: Epin-
ions and Slashdot. We have downloaded both datasets from http://snap.

stanford.edu/data/2. Since both datasets were directed, we obtained their
undirected versions as follows: For every directed edge e(i → j) such that
e(j → i) does not exist, we create an undirected edge that retains the same
sign as the original directed edge. If both e(i → j) and e(j → i) exist and have
the same sign, we again, created undirected edge between i and j with the same
sign. If edges e(i → j) and e(j → i) have contradicting signs, we leave nodes
i and j to be disconnected. The resulting Epinions dataset has n = 131, 828
nodes and |E| = 711, 210 undirected edges; 83% of these edges are positive. The
resulting Slashdot dataset contains n = 77, 357 nodes and |E| = 468, 554 edges;
76% of these edges are signed positive.

We also generate synthetic scale-free (SF) graphs using the generative model
proposed by Barabási and Albert [2]. We convert the generated unsigned graphs
into signed graphs by randomly assigning a “+’ (or a “-”) sign to every edge of
the graph with probability equal to p+. The value of p+ is a parameter that we
vary for our experimental evaluation.

6.1 Evaluating Spectral on real-world signed networks

Recall, that Theorems 1 and 2 indicate that, in order to compute b̂, it suffices to
know the sum of the cubed eigenvalues of the adjacency (A) and the connectivity
(G) matrices. Since our objective is to approximate these sums by considering
only some of the eigenvalues, we need to show that the first eigenvalues con-
tribute the major part to the total sum. Therefore, as a first experiment, we
examine the distributions of the cubed eigenvalues of A and G for the Epin-
ions and Slashdot datasets. Figures 2(a) and 2(b) show the result for the first
cubed eigenvalues of the Epinions and Slashdot graphs, ordered by magnitude.
There are two crucial features, which justify the approximation of the sum over
all eigenvalues by the ones with the largest magnitudes. First, the distribution

2 We used the file soc-sign-Slashdot081106.txt.gz for Slashdot
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(b) Slashdot dataset

Fig. 2. Distribution of the cubed eigenvalues λ3
i and µ3

i of the adjacency matrix A

and the connectivity matrix G for the Epinions and the Slashdot graph, ordered by
magnitude in decreasing order.

of the magnitude versus the rank is highly skewed and therefore the early sum-
mands contribute the most. Notice that the skew is identical for the eigenvalues
of A3 and G3 matrices, meaning that both matrices have the same effective
rank. Second, the signs of the eigenvalues switch between positive and negative.
Therefore, many of the eigenvalues in the tail cancel each other out.
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(b) Slashdot dataset

Fig. 3. Relative error for the approximation of bb obtained by Spectral for the Epin-

ions and the Slashdot datasets, when considering only the i eigenvalues with the
largest magnitude.

To quantify how well the actual result of b̂ can be approximated, we evaluate
the relative error

Re

(
b̂, i
)

=
|̂bi − b̂|

b̂
. (8)

The term b̂i is the result of Spectral that considers the first i eigenvalues of
A and G. The exact result b̂ is obtained by counting all the existing triangles
using the exact cubic algorithm that we call Naive.
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The relative error of the output of Spectral, as a function of the number
of considered eigenvalues, i, for the Epinions and the Slashdot datasets, are
shown in Figures 3(a) and 3(b) respectively. For the Epinions data, taking into
account 10, out of a total of 131, 828 eigenvalues, gives an approximation with
relative error less than 2%. Similarly, for the Slashdot data, taking into account
≈ 25 eigenvalues, out of the 77, 357 total eigenvalues, leads to an approximation
that has less than 2% relative error.
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(b) Slashdot dataset

Fig. 4. Running time (in seconds) of Spectral as a function of the number of consid-
ered eigenvalues.

Figures 4(a) and 4(b) show the running time (in seconds) of the Spectral

algorithm on Epinions and Slashdot data, as a function of the number of
considered eigenvalues of G and A. One can see, that the running time of the
algorithm scales almost linearly to the number of eigenvalues. In numbers: for
the Epinions dataset, Naive needs 753 seconds for exact computation, while
Spectral gives an estimate with relative error less than 0.9% in 7 seconds.
For the Slashdot dataset, Spectral with only 10 eigenvalues runs in just 3
seconds and provides a solution with relative error less than 0.7%. Compare this
to the running time of Naive that is 262 seconds for the same dataset. Note
that although the error is not necessarily dropping as the number of consid-
ered eigenvalues increases, it never exceeds 1%. Since more eigenvalues increase
the running time of Spectral, using the top-10 magnitude eigenvalues is a
reasonable rule of thumb. 3 Neither of our implementations were optimized for
run-time experiments, however, the times we report here are indicative of the
computational savings achieved by the Spectral algorithm.

6.2 Evaluating Spectral on synthetic signed networks
Here, we further investigate the accuracy of Spectral for signed networks
that have different underlying topologies. For that, we generate SF graphs with
n = 3000 nodes and |E| = 30, 000 edges. We also examine the impact of the pa-
rameter p+ on the overall performance of the algorithm. Figure 5(a) shows the
relative error obtained by Spectral, as a function of the number of considered

3 We implemented Spectral using Mathematica and Naive using Java. The running
times of Naive reported here are generous, since we rearrange the input so that it
allows Naive to do efficient in-memory computations.
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Fig. 5. Experiments with Scale-free graphs.

eigenvalues. Every point is an average over four different network realizations
with the same set of generation parameters. As we can see, p+ hardly affects the
accuracy of the approximation. Consideration of approximately 100 eigenvalues
(out of the total of 3, 000) leads to an error of less than 2%. In Figure 5(b), we
observe that the eigenvalues of a SF graph with p+ = 80% exhibit the same two
crucial properties that were pointed out in real graphs. That is, the magnitude of
the eigenvalues are highly skewed. This skew is almost identical for both G and
A matrices and similar both for eigenvalues with positive and negative signs. It
turns out that, for SF graphs, the shape of these distributions is independent of
the value of p+.

7 Conclusions

Given a signed undirected network, we have presented a spectral algorithm for
computing the fraction of balanced triangles in the network. The basis of our
algorithm lies in the dependency between the the fraction of balanced triangles of
the network and the eigenvalues of the adjacency and the connectivity matrices
that describe the signed network. After establishing the form of this connection
theoretically, we have exploited it in order to device Spectral, a fast algorithm
that approximates the fraction of the balanced triangles in the network. In an
extensive experimental evaluation, both on real and generated signed networks,
we have demonstrated that the fraction of balanced and unbalanced triangles
can be approximated very efficiently using our algorithm. In addition to that,
our experiments also revealed certain interesting properties of the eigenvalues of
the adjacency and the connectivity matrices of signed networks. We view our
methodology as a useful computational tool for the studies of structural balance
in large online signed social networks.
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networking. In Human Factors in Computing Systems (CHI), 2008.

4. M. Burke and R. Kraut. Mopping up: modeling wikipedia promotion decisions. In
ACM conference on Computer supported cooperative work (CSCW), pages 27–36.
ACM, 2008.

5. D. Cartwright and F. Harary. Structure balance: A generalization of heider’s the-
ory. Psychological Review, 63(5):277–293, 1956.

6. J. A. Davis. Structural balance, mechanical solidarity, and interpersonal relations.
American Journal of Sociology, 68:444–462, 1963.

7. P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for
matrices ii: Computing a low-rank approximation to a matrix. SIAM J. Comput.,
36(1):158–183, 2006.

8. G. Golub and C. V. Loan. Matrix Computations. Johns Hopkins Press, 1989.
9. R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and

distrust. In International Conferece on World Wide Web (WWW), pages 403–412,
2004.

10. F. Harary. On the notion of balance of a signed graph. Michigan Math. Journal,
2(2):143–146, 1953.

11. F. Heider. Social perception and phenomenal causality. Psychological Rev.,
51(6):358–374, 1944.

12. F. Heider. Attitudes and cognitive organization. Journal of Psychology, 21:107–
112, 1946.

13. J. Kunegis, A. Lommatzsch, and C. Bauckhage. The slashdot zoo: Mining a social
network with negative edges. In International Conference on World Wide Web
(WWW), pages 741–750, 2009.

14. C. Lampe, E. Johnston, and P. Resnick. Follow the reader: filtering comments on
slashdot. In Human Factors in Computing Systems (CHI), 2007.

15. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative
links in online social networks. In International CIonference on World Wide Web
(WWW), pages 641–650, 2010.

16. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media.
In Human Factors in Computing Systems (CHI), pages 1361–1370, 2010.

17. S. Marvel, J. Kleinberg, and S. Strogatz. The energy landscape of social balance.
Physical Review Letters, 103(19), 2009.

18. P. Massa and P. Avesani. Controversial users demand local trust metrics: an ex-
perimental study on epinions.com community. In National Conference on Artificial
Intelligence (AAAI), pages 121–126, 2005.

19. C. E. Tsourakakis. Fast counting of triangles in large real networks without count-
ing: Algorithms and laws. In International Conference on Data Mining (ICDM),
pages 608–617, 2008.

20. C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos. Spectral
counting of triangles in power-law networks via element-wise sparsification. In
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 66–71, 2009.

12


