
To Appear in Proc. IEEE International Conference on Image Processing (ICIP), 2015

ONLINE SUPERVISED HASHING

Fatih Cakir and Stan Sclaroff

Department of Computer Science
Boston University

{fcakir,sclaroff}@cs.bu.edu

ABSTRACT

Fast similarity search is becoming more and more critical given the
ever growing sizes of datasets. Hashing approaches provide both
fast search mechanisms and compact indexing structures to address
this critical need. In image retrieval problems where labeled train-
ing data is available, supervised hashing methods prevail over un-
supervised methods. However, most supervised hashing methods
are batch-learners; this hinders their ability to adapt to changes as a
dataset grows and diversifies. In this work, we propose an online su-
pervised hashing technique that is based on Error Correcting Output
Codes. Given an incoming stream of training data with correspond-
ing labels, our method learns and adapts its hashing functions in a
discriminative manner. Our method makes no assumption about the
number of possible class labels, and accommodates new classes as
they are presented in the incoming data stream. In experiments with
three image retrieval benchmarks, the proposed method yields state-
of-the-art retrieval performance as measured in Mean Average Pre-
cision, while also being orders-of-magnitude faster than competing
batch methods for supervised hashing.

Index Terms— Hashing, retrieval, indexing, similarity search.

1. INTRODUCTION

Similarity search lies at the heart of many applications and, as
datasets continue to grow and diversify, expediting this search is
becoming increasingly challenging and important. One promising
family of approaches is based on hashing: data is mapped to binary
vectors in Hamming space where the binary representations permit
fast search mechanisms with a very low memory footprint. Recent
applications utilizing this approach include: image annotation [1],
visual tracking [2], 3D reconstruction [3], video segmentation [4],
object detection [5], etc.

Hashing methods can be categorized broadly as data-independent
and data-dependent techniques. Locality Sensitive Hashing methods
[6, 7, 8] are prime examples of data-independent methods; they
give guarantees on the approximation to particular metrics, without
regard to the dataset to be indexed. For certain application settings,
distances are defined only on the available data set; thus, solutions
are required for learning the hashings directly from data. Such
data-dependent solutions include: methods that approximate pair-
wise distances via quantization or spectral graph analysis [9, 10, 11],
works that leverage available label information for semantic retrieval
[12, 13, 14, 15], and semi-supervised methods that utilize both the
data distribution and the available label information such as [16].

Hashing schemes constructed via data-dependent techniques
tend to yield superior retrieval performance, primarily through the

learning phase where properties like compactness and informa-
tiveness of the resulting binary codes are enforced. However, the
computational cost of learning is crucial when large-scale datasets
are considered, but most methods are batch-learners and slow. More-
over, with batch-learning it is difficult to adapt to variations in the
dataset as it grows. Many applications require that the hash map-
pings be versatile given such changes as it would be extremely costly
to do learning from scratch.

Weiss et al. [9] give two important properties a ‘good’ hash code
must have: (1) it should easily be computed for a novel data point
and (2) a small number of bits should be adequate enough in rep-
resenting the data. Given the above discussion we propose a third
important property: (3) a ‘good’ code must be amenable to the con-
tinued growth of a dataset. In this work, we propose an online super-
vised method for learning hash codes that satisfies all three proper-
ties. Our formulation is based on Error Correcting Output Codes
(ECOCs). Our online method is orders-of-magnitude faster than
batch-learning of hashing parameters and, more importantly, being
online it is adaptable to variations in the incoming data. We consider
a stochastic environment where the hash mappings are updated ac-
cording to sequentially arriving data, and the number of classes is
not known a priori.

We focus on the task of retrieving semantically similar neigh-
bors for a given query. This task has its use in many applications
including label-based image retrieval and annotation [17, 18], se-
mantic segmentation [19], image super resolution [20] etc. For this
task, supervised hashing methods tend to offer superior performance,
mainly due to leveraging label information in learning the hash func-
tions. Specifically, we deal with labels having distinct categorical
identities. During testing, the goal is then to retrieve instances that
share the same label(s) with the query.

As in [21, 22], we consider a stochastic environment where the
hash mappings are updated according to sequentially incoming data
with the use of ECOCs. However, unlike previous work, we assume
no prior information on the label space. The arriving data can be
associated with possibly unseen labels and the hash functions are
accommodated to such variations. To our knowledge, this is the first
supervised hashing method that allows the label space to grow.

2. ONLINE SUPERVISED HASHING

We are given a set of data points {(x1,y1), . . . , (xN ,yN )} where
x ∈ X denotes an instance in the feature space X and y ⊆ Y
is a subset of the label space Y . The goal of hashing is to learn a
mapping Φ : X → HB such that similarities in the original space
X are preserved in the B−dimensional Hamming space HB . The
similarity can be induced from a particular metric or it can be derived



from label information. Following recent work, we utilize a set of
hash functions for the mapping, i.e., Φ(x) = [h1(x), . . . , hB(x)]T

where each hash function hi(·; θi) : X → {−1, 1} is responsible for
the generation of one bit and θi is its associated parameter vector.

In [22], a Boosting algorithm based on ECOCs is used for learn-
ing h1, . . . , hB achieving state-of-the-art performance. They utilize
an ECOC matrix Λ = {c1, . . . , cK}T for this purpose where each
row or codeword ci ∈ {−1, 1}B corresponds to a label and each
column embodies the bipartitioning on which hi is trained. The base
learner hi is user-specified but ought to be simple enough for good
generalization and fast training. However, the batch-learning takes
a considerable amount of time even with simple learners and Y is
assumed to be known a priori.

In contrast, we employ ECOCs in an online setting, in which the
hash functions are updated sequentially with incoming data. More-
over, we assume no prior information on the label space Y , the
incoming instances can be associated with previously observed la-
bels or not. The method has to accommodate newly arrived data
with its possibly never-seen labels. This is an essential feature given
the ever-growing sizes of datasets and the inclusions of initially un-
known classes.

Given an instance (xt,yt), we would like to update our mapping
Φ. For simplicity, assume

∣∣yt∣∣ = 1, i.e, each data point is associated
with a single label only. Let Λy denote the corresponding codeword
for yt. Λyi ∈ {−1, 1} then denotes the binary label of yt in the ith

bipartitioning. Though any type of hash functions can be used, in
this we consider hyperplanes of the following form

h(x; θ) = sgn(wTx− w0), (1)

where θ = [wT ;w0]. Our goal is to solve the following problem:

min
Θ=[θ1;...;θB ]

B∑
i=1

[Λyi 6= hi(x
t; θi)]0\1. (2)

where Θ is the concetanation of parameter vectors θi. Replacing the
0\1 loss with a convex function l such as the exponential loss and
dropping the non-differentiable sgn in Eq. 1, the objective function
becomes convex and we consider stochastic gradient descent (SGD)
to minimize it. SGD has been successfully applied to large-scale
learning problems as it provides huge memory savings and substan-
tial computational time improvements.

As we will see, it is helpful to consider independently updating
each hash function hi for minimizing Eq. 2. Specifically, hashing hi
is updated according to the following rule:

θt+1
i ← θti − ηt∇θi l(hi(x

t; θti),Λyi), (3)

where the learning rate ηt is a positive real number. Although the
choice of Λ is important, the error-correlation among individual
hashings is crucial for the retrieval performance. Even if we find
the Θ that minimizes the objective function, errors made by the
hash functions will typically be correlated; therefore, reducing this
correlation is crucial for the success of an ECOC based algorithm
[23]. In Boosting this problem is tackled by reweighting the proba-
bility distribution associated with the training data, thus enabling the
learner to focus on incorrectly mapped (i.e., misclassified) instances.
For our online setting, we handle the error-correlation in a similar
manner and take into account previous mappings when updating
each hash function. Formally, hi is updated as follows:

θt+1
i ← θti − ηt∇θi l(Hi−1 + hi(x

t; θti); Λy), (4)

input : Streaming data {(xt,yt)}Tt=1, Codebook C, η
Initialize Θ = [θ1, . . . , θB ], k = 1;

for t← 1 to T do
if yt * Y then

for each new label y ∈ yt do
Y ← { Y, y};
Λ(k, :)← random codeword c∗ from
C // denote it as Λy;
C ← C \ c∗;
k ← k + 1;

end
end
for i← 1 to B do

θt+1
i ← θti − ηt∇θl(Hi−1 + hi(x

t; θti); Λy)
end

end
Algorithm 1: Online learning for hashing

whereHi−1 =
i−1∑
k=1

Λykhk(xt; θtk). With this approach, we can han-

dle the error-correlation problem in a way that is not possible when
applying SGD on Θ directly. Eq. 4 inspired by [24], but our formu-
lation differs from [24] in that we incorporate ECOCs in learning.

When a new label is observed, we assign a new codeword to it
and proceed with the update as usual. The codeword can be gen-
erated on-the-fly, but to further reduce the computational overhead
it is helpful to construct a sufficiently large set of codewords or a
codebook, beforehand. The performance of the method also depends
on this construction, e.g., the distance between the codewords must
be large enough to ensure error-correction. In practice, randomly
constructing the binary codebook performs better than using con-
struction heuristics [25]. Therefore, in our implementation, we use
random construction for codebook generation. Our online method
for learning the hash functions is summarized in Alg. 1.

To populate the hash table after learning, we index a training
point x by using either the codeword c corresponding to its label
(if available) or the output Φ(x). If the data points to be indexed
have label information it is more convenient to use the correspond-
ing codewords as the binary codes of the points since it is shown
to compensate a number of hash function errors during retrieval and
thus provide improved performance [22]. Given a query xq during
testing, Φ(xq) is computed and the instances are retrieved via Ham-
ming ranking between the binary codes. In the next section, we give
experimental results based on this retrieval scheme.

3. EXPERIMENTS

We evaluate our approach on three widely used datasets; CIFAR-
10, SUN397 and NUSWIDE. We compare our method against Lo-
cality Sensitive Hashing (LSH) [6], Binary Reconstructive Embed-
ding (BRE) [12], Minimal Loss Hashing (MLH) [13], Supervised
Hashing with Kernels [14], Fast Hashing (FastHast) [26], Supervised
Hashing with Error Correcting Codes (ECC) [22] and Online Kernel
Hashing (OKH) [21]. These methods have shown to outperform ear-
lier hashing techniques such as [10, 9, 16]. We refer to our method
as OECC in the following sections.



3.1. Evaluation Protocol

For all experiments we follow the protocol used in [14, 16, 21]. We
consider the Hamming ranking in which instances are ranked based
on Hamming distances to the query. This retrieval scheme has linear
complexity but owing to the binary representations it is extremely
fast in modern CPUs. We consider Mean Average Precision (mAP)
scores for a set of queries evaluated at varying bit lengths. For fur-
ther analysis we also report mAP values vs. CPU time for all the
benchmarks. All experiments are repeated five times and the aver-
age is reported for all metrics. We set all algorithmic parameters of
all the methods via cross validation. We choose performance over
learning time when selecting the type of base learners in the hashing
methods. Specifically, for ECC we use the linear SVM as the base
learner for all our experiments. Similarly, we always select the best
performing learner despite the possibility of being much slower for
the FastHash technique. As for the loss function in OECC we utilize
the exponential loss and select a constant step size for ηt.

All experiments were conducted on a workstation with 2.4 GHz
Intel Xeon CPU and 512 GB RAM.

3.2. Datasets

CIFAR-10 The CIFAR-10 benchmark contains 60K samples from
10 different categories represented as 512-dimensional Gist descrip-
tors. We randomly partition the dataset into two; a training and a test
consisting of 59K and 1K samples (100 per class), respectively. 2K
instances (20 per class) are sampled from the training set to learn the
hash functions, and the remaining training data is used to populate
the hash table.
SUN397 The SUN397 dataset contains over 100K samples from 397
categories represented with 512-dimensional Gist descriptors. We
sample 10 instances from each class to construct our test set. We
sample 7.9K instances (20 instances per class) from the remaining
points to learn the hash functions while the rest of the training data
is used to populate the hash table.
NUSWIDE This datasets contains over 270K instances with 81
ground truth concepts in which each point can be associated with
multiple labels. We use the available 500-dimensional BoW de-
scriptors [27] as the representation. Similarly, we partition the data
into two parts; 269K and 1K samples for the training and test sets,
respectively. We use 1.6K points (20 instances per concept) selected
from the training set to learn the hash functions while the rest is
again used to populate the hash table. Following [16], the precision
metric is evaluated based on whether the retrieved points share at
least one label with the query. Regarding the ECC method, it re-
quires an update to a probability distribution over the data points
based on previously incorrect mappings but it is not clear how to do
so in a multilabelled dataset. For such reasons, we omit ECC in the
results for NUSWIDE.

For the online methods OKH and OECC, LSH is used for initial-
ization of the hashing parameters. The sets of samples used to learn
the hash functions are selected randomly without any class consid-
eration. Additionally, when reporting the mAP vs CPU time, the
online learning is continued until 59K, 100K and 100K points are
observed for the CIFAR-10, SUN397 and NUSWIDE datasets, re-
spectively. For all datasets, we mean-center the data and do unit
normalization. As stated, the training data used for populating the
hash tables have associated label information; thus, in populating
the hash tables for the CIFAR-10 and SUN 397 datasets we index
each training point with the codeword corresponding to its label. For
NUSWIDE, since multiple labels can correspond to a training point
we simply use Φ as the index for initially populating the hash table.

4. RESULTS

Table 1 shows mAP values for CIFAR-10. We observe that ECC
performs best for all length codes while our OECC technique is a
close runner-up. More importantly, our method achieves these re-
sults with substantial time improvements. For example, it takes only
2.9 seconds to learn the hash function parameters compared to 355
seconds of ECC, while attaining comparable results. Another sig-
nificant improvement is the memory footprint of the binary codes.
Even with 4 bits, our method achieves comparable performance to
state-of-the-art-techniques with 64-bits (excluding ECC). Similarly,
Table 2 shows results for the SUN397 dataset. Here we observe that
our OECC method either is the best performing method or the clos-
est runner-up for all length codes. Again our method achieves these
results orders of magnitude faster compared to other solutions. Ta-
ble 3 shows results for the NUSWIDE dataset in which our technique
achieves state-of-the-art performance when # of bits is> 12 with the
fastest learning time excluding the baseline LSH.

For all benchmarks we observe state-of-the-art performance
with substantial time and memory savings. Our OECC method ei-
ther achieves top performance or is a close runner-up, while being
orders-of-magnitude faster than competing methods and using more
compact codes. Being online OKH also has the similar advantages
with respect to computational efficiency, but only performs slightly
better than LSH in terms of retrieval accuracy.

The graphs in Fig. 1 give a more detailed comparison between
our method and the recent online hashing technique, OKH. We re-
port the mAP value vs. CPU time for both algorithms. The test sets
of datasets CIFAR-10 and SUN397 contain points sampled from all
classes; therefore, for evaluation purposes, we do indexing after all
possible codewords have been observed. This occurs early in the
online process. Regarding the results, the performance of OECC
surpasses nearly all other techniques in all three benchmarks within
a fraction of their learning time. For OKH, although we observe a
consistent minor improvement in performance at the early stages, it
yields inferior results as the learning process continues. Compared
to OKH the performance of OECC either improves as more train-
ing examples are observed or oscillates around a particular value.
Oscillation may be due to the constant step size selection in Eq. 4.
The selection of η is mostly application-specific and related to the
knowledge of whether the instances are sampled from a stationary
or non-stationary distribution, e.g, if the data points are believed to
be sampled from a non-stationary distribution, a diminishing step
size will not allow the hash functions to adapt to such a variation.

5. CONCLUSION

We proposed an online supervised hashing technique that is adapt-
able to continuing growth and diversification of datasets. Our OECC
method does not assume any prior knowledge on the label space of
the data. OECC achieves state-of-the-art performance in three im-
age retrieval benchmarks and it is orders-of-magnitude faster than
batch methods. Our method attains mean average precision (mAP)
that is comparable to state-of-the-art, but using more compact codes.
Our method significantly outperforms the previous online supervised
hashing approach, while also being faster in its computation.

We believe the topic of designing hashing methods amenable to
variations that occur in growing datasets will be a fruitful research
area, giving direct benefit to many applications. One limitation of
our current study is fixing the length of the binary codes. In addition,
a theoretical analysis of our online framework is lacking. In future
work we plan to analyze and investigate these issues.



Method Mean Average Precision (Random 0.1) Training time
(seconds)

4 bits 8 bits 12 bits 24 bits 32 bits 64 bits 24 bits
LSH [6] 0.11 0.12 0.12 0.13 0.13 0.14 0.1

BRE [12] 0.15 0.16 0.15 0.15 0.15 0.16 295.4
MLH [13] 0.14 0.16 0.16 0.15 0.16 0.15 280
SHK [14] 0.21 0.24 0.26 0.29 0.30 0.32 149.8

FastHash [26] 0.21 0.26 0.28 0.31 0.32 0.34 899
ECC [22] 0.33 0.39 0.44 0.53 0.55 0.58 355.3
OKH [21] 0.13 0.13 0.13 0.14 0.15 0.15 6.5

OECC 0.32 0.38 0.41 0.48 0.48 0.52 2.9

Table 1: Mean Average Precision for the CIFAR-10 dataset. For all methods, 2K points are used in learning the hash functions.Bold denotes
the best performing method while red represents the best online technique. The training time includes time for learning and populating the
hash table.

Method Mean Average Precision ×10−1 (Random 0.02) Training time
(seconds)

4 bits 8 bits 12 bits 24 bits 32 bits 64 bits 24 bits
LSH [6] 0.031 0.033 0.038 0.044 0.047 0.056 0.2

BRE [12] 0.046 0.051 0.056 0.058 0.061 0.077 146.4
MLH [13] 0.041 0.046 0.050 0.057 0.060 0.073 149.5
SHK [14] 0.050 0.059 0.064 0.068 0.068 0.065 2400

FastHash [26] 0.034 0.043 0.045 0.050 0.054 0.060 4424.6
ECC [22] 0.061 0.098 0.103 0.144 0.145 0.198 22741
OKH [21] 0.034 0.035 0.039 0.045 0.050 0.059 7.2

OECC 0.061 0.094 0.110 0.135 0.141 0.201 2.9

Table 2: Mean Average Precision for the SUN397 dataset. For all methods, 7.9K points are used in learning the hash functions. Bold denotes
the best performing method while red represents the best online technique. The training time includes time for learning and populating the
hash table.

Method Mean Average Precision (Random ∼ 0.10) Training time
(seconds)

4 bits 8 bits 12 bits 24 bits 32 bits 64 bits 24 bits
LSH [6] 0.111 0.112 0.113 0.116 0.115 0.122 0.5

BRE [12] 0.130 0.126 0.118 0.125 0.125 0.135 296
MLH [13] 0.119 0.125 0.123 0.126 0.131 0.126 304.1
SHK [14] 0.114 0.121 0.117 0.118 0.118 0.122 43.9

FastHash [26] 0.116 0.122 0.121 0.130 0.129 0.127 199.6
OKH [21] 0.111 0.113 0.114 0.118 0.118 0.120 8

OECC 0.119 0.122 0.127 0.134 0.131 0.136 6.6

Table 3: Mean Average Precision for the NUSWIDE dataset. For all methods, 1.6K points are used in learning the hash functions. Bold
denotes the best performing method while red represents the best online technique. The training time includes time for learning and populating
the hash table.

Fig. 1: Mean Average Precision with respect to CPU time for CIFAR-10 (left), SUN397 (middle) and NUSWIDE (right) datasets in which
for OKH and OECC the online learning is continued for 59K, 100K and 100K points, respectively. For all other methods the dots represents
the training time with 2K, 7.9K and 1.6K samples.



6. REFERENCES

[1] Qifan Wang, Bin Shen, Shumiao Wang, Liang Li, and Luo Si,
“Binary codes embedding for fast image tagging with incom-
plete labels,” in Proc. European Conf. on Computer Vision
(ECCV), 2014.

[2] Xi Li, Chunhua Shen, A. Dick, and A. van den Hengel, “Learn-
ing compact binary codes for visual tracking,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2013.

[3] Jian Cheng, Cong Leng, Jiaxiang Wu, Hainan Cui, and Han-
qing Lu, “Fast and accurate image matching with cascade
hashing for 3d reconstruction,” in Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2014.

[4] Xiao Liu, Dacheng Tao, Mingli Song, Ying Ruan, Chun Chen,
and Jiajun Bu, “Weakly supervised multiclass video segmen-
tation,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2014.

[5] Thomas Dean, Mark A. Ruzon, Mark Segal, Jonathon Shlens,
Sudheendra Vijayanarasimhan, and Jay Yagnik, “Fast, accurate
detection of 100,000 object classes on a single machine,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2013.

[6] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.
Mirrokni, “Locality-sensitive hashing scheme based on p-
stable distributions,” in Proc. of Symposium on Computational
Geometry (SCG), 2004.

[7] Aristides Gionis, Piotr Indyk, and Rajeev Motwani, “Similarity
search in high dimensions via hashing,” in Proc. International
Conf. on Very Large Data Bases (VLDB), 1999.

[8] Brian Kulis and Kristen Grauman, “Kernelized locality-
sensitive hashing for scalable image search,” in Proc. IEEE
International Conf. on Computer Vision (ICCV), 2009.

[9] Yair Weiss, Antonio Torralba, and Robert Fergus, “Spectral
hashing,” in Proc. Advances in Neural Information Processing
Systems (NIPS), 2008.

[10] Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu, “Self-taught
hashing for fast similarity search,” in Proc. ACM SIGIR Conf.
on Research & Development in Information Retrieval (SIGIR),
2010.

[11] Yunchao Gong and S. Lazebnik, “Iterative quantization: A
procrustean approach to learning binary codes,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2011.

[12] Brian Kulis and Trevor Darrell, “Learning to hash with binary
reconstructive embeddings,” in Proc. Advances in Neural In-
formation Processing Systems (NIPS), 2009.

[13] Mohammad Norouzi and David J. Fleet, “Minimal loss hash-
ing for compact binary codes.,” in Proc. International Conf. on
Machine Learning (ICML), 2011.

[14] Jun Wang Liu, Wei and, Rongrong Ji, Yu-Gang Jiang, and
Shih-Fu Chang, “Supervised hashing with kernels.,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2012.

[15] G. Lin, C. Shen, D. Suter, and A. van den Hengel, “A general
two-step approach to learning-based hashing,” in Proc. IEEE
International Conf. on Computer Vision (ICCV), 2013.

[16] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, “Semi-
supervised hashing for large-scale search.,” IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI), 2012.

[17] Gustavo Carneiro, Antoni B. Chan, Pedro J. Moreno, and Nuno
Vasconcelos, “Supervised learning of semantic classes for im-
age annotation and retrieval,” IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI), 2007.

[18] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and
Cordelia Schmid, “Tagprop: Discriminative metric learning in
nearest neighbor models for image auto-annotation,” in Proc.
IEEE International Conf. on Computer Vision (ICCV), 2009.

[19] Ce Liu, J. Yuen, and A. Torralba, “Nonparametric scene pars-
ing via label transfer,” IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 2011.

[20] Huanjing Yue, Xiaoyan Sun, Jingyu Yang, and Feng Wu,
“Landmark image super-resolution by retrieving web images,”
IEEE Trans. on Image Processing, 2013.

[21] Long-Kai Huang, Qiang Yang 0010, and Wei-Shi Zheng, “On-
line hashing,” in Proc. International Joint Conf. on Artificial
Intelligence (IJCAI), 2013.

[22] Fatih Cakir and Stan Sclaroff, “Supervised hashing with error
correcting codes,” in Proc. ACM Conf. on Multimedia, 2014.

[23] Venkatesan Guruswami and Amit Sahai, “Multiclass learning,
boosting, and error-correcting codes,” in COLT, 1999.

[24] B. Babenko, Ming-Hsuan Yang, and S. Belongie, “A family of
online boosting algorithms,” in IEEE International Conf. on
Computer Vision Workshops (ICCV Workshops), 2009.

[25] Ling Li, “Multiclass boosting with repartitioning,” in Proc.
International Conf. on Machine Learning (ICML), 2006.

[26] Guosheng Lin, Chunhua Shen, Qinfeng Shi, A. van den Hen-
gel, and D. Suter, “Fast supervised hashing with decision trees
for high-dimensional data,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2014.

[27] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-
ing Luo, and Yan-Tao. Zheng, “Nus-wide: A real-world web
image database from national university of singapore,” in In
Proc. of ACM Conf. on Image and Video Retrieval (CIVR’09),
2009.


