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Abstract

Using Soft Linear Logic (SLL) as case study, we analyze a method for transforming a light logic into a type
assignment system for the A-calculus, inheriting the complexity properties of the logics. Namely the typing assures
the strong normalization in a number of steps polynomial in the size of the term, and moreover all polynomial
functions can be computed by A-terms that can be typed in the system. The proposed method is general enough
to be used also for other light logics.
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1 Introduction

The light logics, Light Linear Logic (LLL) [15], Soft Linear Logic (SLL) [17] and Elementary
Linear Logic (ELL) [8], were introduced as logical counterparts of some computational com-
plexity classes. Proofs of LLL and SLL characterize polynomial time computations, while
ELL characterizes elementary time computations. The characterization is based on the fact
that proofs of these logics normalize in a number of cut-elimination steps which is either
polynomial (in case of LLL and SLL) or elementary (in case of ELL) in their size, if their
depth is fixed, and moreover they can encode every function with the given complexity.
From a computer science perspective, light logics can be used for the design of program-
ming languages with a given computational bound. This could be done in a straightforward
way by a complete decoration of the logical proofs, but, due to the presence of modalities,
the resulting languages could have a very complex syntactical structure, and they cannot be
reasonably proposed for programming (an example of complete decoration of SLL is in [3]).
A different approach is to fix as starting points:
1. The use of A-calculus as an abstract paradigm of programming languages.
2. The use of types to characterize program properties.
In this line, the aim becomes the design of a type assignment system for A-calculus, where
types are formulae of a light logic, in such a way that the logical properties are inherited
by the well typed terms. Then types can be used for checking, besides the usual notion of
correctness, also the complexity properties.
Some results have already been obtained in this line. Two different proposals for a polyno-
mial A-calculus have been designed by Baillot and Terui [4] and Gaboardi and Ronchi Della
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Rocca [12], starting respectively from LAL, a simplified version of LLL defined in [1, 2],
and from SLL. A proposal for an elementary A-calculus has been given in Coppola, Dal Lago
and Ronchi Della Rocca [7].

In all cases the starting point is the Curry-Howard isomorphism, connecting proofs with
programs, formulae with types and proof normalization with B-reduction. But the modal
aspect of the light logics breaks the last connection, since the cut elimination does not
correspond naturally to S-reduction, and so a proof decoration following the standard path
gives rise to a type assignment where the subject reduction is lost, and the complexity
properties are no more preserved. In all cases cited before, the problem has been solved
not making directly a decoration of the logical proofs by A-terms, but by designing a type
assignment system in some sense “inspired” to the principles of the logics, in such a way to
obtain the same complexity bound, and moreover the complexity bound for the language
is not directly inherited from the logics, but it has been proved again, and in general these
proofs are quite involved. An exception is [5], where there is an alternative proof of the
complexity bound for the language in [4], that is derived from the bound of the logic in an
indirect way.

The aim of this paper is to deeply explore and further enhance this approach. We will use,
as case study, SLL, but we stress that the same kind of procedure can be adapted to all the
other light logics. The idea is to modify the logic, while preserving the complexity properties,
until a natural deduction version of it is reached, with the property that the standard
decoration of it by A-terms is the type assignment system with the desired properties. The
transformation is given through the following path. First of all, a deep analysis of SLL
allows us to replace the cut rule by three different rules, according to the syntactical shape
of their premises. Just one of these new cuts does not correspond correctly to a S-reduction.
Then we design a new logic, by restricting SLL in such a way that a cut with the “bad”
behavior never appears. This new logic, which we call Essential Soft Linear Logic (ESLL),
preserves the good properties of SLL with respect to the complexity bound. Then we design
a natural deduction version of ESLL, namely NESLL, enjoying the desired properties too.
A decoration of NESLL proofs by A-terms, in the standard way, gives rise to the desired
type assignment system, named STA. So we obtain for free a polynomial bound for STA,
inherited from the logic. This bound is obviously expressed in function of some measures of
the typing proof, so some further work is necessary, in order to relate it to the size of the
term.

In order to do so, some intermediate results are needed, which are interesting by them-
selves, in our opinion. First of all, the properties of SLL have been proved by Lafont using
proof-nets, which are graph representation of equivalence classes of proofs. Since we want
to obtain the type assignment through a decoration of the logic, we need in particular to
rephrase the strong normalization and its polynomial bound directly on the proofs, the tech-
nical difficulty being that in this case we need to take into account also the commutation
steps, which are not needed in the normalization of proof-nets. As far as we know, this is
the only normalization proof for a light logics not based on proof-nets. Moreover, all the
type assignment systems based on light logics use an affine version of them, being it easier
for the completeness proofs, while we use SLL in the original, not affine, version.

The completeness with respect to the polynomial computations is proved directly for
STA. The completeness we are talking about is a functional completeness, in the sense that
we prove (through a simulation of polynomial time Turing Machines) that all polynomial
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functions can be computed by terms typable in STA. For the completeness, we are not
interested in inheriting the property from the one of SLL, since we will prove a stronger
result. In fact, STA is complete for FPTIME, while Lafont proved SLL complete for PTIME
only.

A type assignment for A-calculus derived from an affine version of ESLL has been already
presented in [12] and [9]. This system has been also used in [11] and [10].

The paper is organized as follows. In Section 2, SLL is introduced, its strong normalization
in polynomial time is proved and its PTIME completeness is recalled. In Section 3, a deep
analysis is given on the mismatch between cut elimination and B-reduction for light logics,
and the methods used in the literature for solving this problem are examined. Section 4
contains ESLL and its natural deduction version, NESLL. In Section 5 the type assignment
system STA is presented, and its properties are proved.

2 Soft Linear Logic

In this section we recall the fragment of Soft Linear Logic (SLL) restricted to the connectives
—o,V and the modality !. For this fragment, we give a proof of the polynomial soundness
and we sketch the polynomial completeness.

DErFiNiTION 2.1
(i) The set of formulae of SLL is defined by the following grammar:

A,B,Ci=a|A— A|Va.A|lA

where o ranges over a countable set of variables.

(ii) SLL contexts are multisets of SLL formulae. Contexts are ranged over by I', A. FV(T)
denotes the set of free variables occurring in the formulae of I while |I'| denotes the
cardinality of I, i.e. the number of occurrences of formulae in I'. The notation !T" is a
short for {{A| AeT}.

(iii) The set of SLL rules prove judgements of the shape:

A

where T is a context and A is a formula. The rules are given in Table 1, where A"
denotes A4,...,A. As usual - A4 is a short for @+ A.
—— —

(iv) Derivations are denoted by I, X, ®, ¥, 0. [>T+ A denotes a derivation IT with conclu-
sion '+ A.

SLL is a restriction of Girard’s Linear Logic (LL) [14], obtained in two steps. First, by
replacing the rules of LL dealing with the modality !:

r=4 I BFA
riia (B I,!BFA (L)

and the structural rules of weakening and contraction:

T4 I,!B,!B- A

IIBFA IIBEA (©)
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TABLE 1. Soft Linear Logic

FFA B,AFC -4 agFV(D)
14 A rAsBarc (D TFVa.A (VE)
TFA A,AFB I AFB T, A[B/a]- C
rarp () rrAp (8 TVa AF C (VL)
A (sp) LA™~ B nzo( )
T P T 1A B m

by the three rules of multiplexor, soft promotion and digging:

F,A(")I—B( ) '~ A (sp) [IIBHA
TIAF B THA \° [BFA

(digging)

Note that the (m) rule is parametric in the number n, which is its rank. The resulting system
is equivalent to LL. The weakening rule is a particular case of multiplexor, with n=0. The
contraction rule can be obtained by (m) followed by (digging).

The second step is to erase the rule (digging). The result is that it doesn’t hold anymore the
linear correspondence:

14 —olA.

As a consequence, the modality ! can be used for counting the number of duplications of
(sub)proofs.

2.1 Polynomial time soundness

In this subsection we prove that Soft Linear Logic is correct for polynomial time computa-
tions. This result has been already proved by Lafont, in [17], using the proof-nets represen-
tation of proofs. Here we rephrase his proof using directly the sequent calculus formulation,
in order to reuse it in the construction of a related type assignment system for A-calculus.
First we need to define some measures on SLL proofs. Note that the key measure, the weight
of a proof, is different from the notion of weight used by Lafont: the change is necessary for
dealing with the new setting.

DeriNITION 2.2

e The size of a proof I, denoted by |I1], is the number of rules applications in IT.

e The rank of a proof I1, denoted by rk(IT), is the maximal rank of multiplexor rules in IT.

e The degree of a proof I1, denoted by d(IT), is the maximal nesting of applications of
the (sp) rule in I, i.e., the maximal number of applications of the (sp) rule in a path
connecting the conclusion and one axiom of IT.

e Let r be a natural number. The weight W(IT, r) of IT with respect to r is defined induc-
tively as follows:
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— If the last applied rule is (Az) then W(IT,r)=1.
— If the last applied rule is:

Y>THA (sp)
rra P

then W(IT,7)=(r+1) x (W(X,r)+1).
— In any other case (also the cut case!) W(IT, r) is the sum of the weights of the premises
with respect to r plus 1 .

The following lemma follows directly from the definition of measures.

Lemma 2.3
For every SLL proof IT:
(i) w(IT,0)=M|

(i) wW(IT, rk(I1)) <W(I1,0) x (rk(IT)+ 1) <|qjam+1

Now we will prove that the cut elimination property holds for SLL. In order to do this, we
need to define the cut elimination steps.

DEFINITION 2.4
(i) A symmetric step is a proof rewriting rule with one of the following shapes:

Case (R)-(Az), where (R) is any rule:

(Az)

S>T'HA (R) AEA
(cut

A

rewrites to X>I'HA

Case (sp)-(m):

Ielid (o) OAV.ARB
A 1A,A+B
IT,AF B (cut)
in case n=0 rewrites to:
©>AFB
rarp (™

otherwise it rewrites to:

S>IFA O>A,AMWEB
>>THA re=Y A A+B (cut)
I, Ak B ¢
IT,AF B

(cut)

m)
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where the double line denotes a number >0 of applications of the rule.

Case (sp)-(sp):

Y>I'+A O>A,AFB Y>I'FA O A,AFB
rea P arg P [.AFB (cut)
TIAFB (cut) o writes to Taarp P
Case (— R)-(— L):
>TI,A-B (—oR) O >AIFA Oy>B,AFC (—oL)
'-A—B Al,A—OB,AQFO ( t)
T, AL A C cu
rewrites to:
O>AFA ZDRAFB( )
T.AFB o ®2>£1A2FC'( )
TALAFC e
Case (VR)-(VL):
>>THA O A[C/al,AFB
'FVYa. A (VR) Voz.A,AI—B< SlL)
T AFB e
rewrites to:
Y[C/al>THA[C/a] O>A,A[C/a]- B (cut)
I.AFB el

where X[ C'/a] denotes a derivation obtained from ¥ by replacing every occurrence of «
by the formula C'.

A commutative step is a proof rewriting rule defined as follows. Let I be:

W T B
T,AFB o

)

where (R) and (R’) are rules such that at least one of them is different from (cut) and
is not building the formula A (so we will say that A is passive in it).
Let A be passive in (R), which is not (cut). Then

>I"FA ® .
“rra P Xars ERZ)
T.AFB o
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rewrites to:

(R)

Y>I"HFA AVARB
(cut)

I",A+B

e
I'AFB (%)

where, of course, ® could not occur.
Let A be passive in (R’), which is not (cut). Then

S>AARC O

r-A (R) A,A+B (R')
T,AFB (cut)
rewrites to:
'A4 X AARC (cut)
I'A'HC ® ,
(R)

I'AFB

where, of course, ® could not occur.

Let a proof be normal if it does not contain applications of the rule (cut).
The following result is the key point for obtaining the polynomial bound.

LeEmmA 2.5

Let IT rewrite to IT" in one cut elimination step, and let 7> rk(IT). Then
(i) If the step is symmetric, then W(IT,r)>wW(IT',7);

(i) If the step is commutative, then W(IT,r)=w(IT,r);

Proor.

(i) The proof is easy, by considering all the possible cases. We just show the most difficult
one, the case (sp)-(m). Let IT be:

Iplhd (o OpAWAFB
IT'HA 1A, A+B
IT.AFB (cut)

and let n>0. So IT is:

>TFA O A A"EB
>>THA ro=Y A A+B
'™ ArB
'T,A+B

(cut)

(cut)

m

clearly we have W(IL,r)=(r+1)x(W(Z,r)+1)+W(O,r)+1)+1 while wW(IT,r)=
nx (W(Z,r)+1)+wW(0,r)+|T|, so for r>rk(IT)>n since W(X,r)> || we have:

W(IT, r) >w(IT',r)
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(ii) Immediate, by the definition of commutative step. i

THEOREM 2.6
Let IT be a SLL proof. Then IT rewrites to a normal proof IT" by a number of cut elimination

steps bounded by 2 x |TT|?*(@(M+1),

Proor. The proof is by induction on the pair <W(I1,rk(IT)), (1) >, ordered by lexico-
graphic order, where h(IT) is the sum of the heights of all the subproofs of IT whose root is
an application of the (cut) rule.

Consider the case where the cut elimination step is a symmetric step. Then W(IT,rk(II)) >
W(IT, rk(IT")) by Lemma 2.5.(i). Applications of commutative steps do not change the weight
(by Lemma 2.5.(ii)). Nevertheless, by inspecting the Definition 2.4.(ii), it is easy to verify
that they decrease the measure h(IT). So the normalization procedure always stops, and the
proof can be normalized.

Now consider the number n of cut reduction steps to normal form. IT clearly normalizes
in a number n; of symmetric steps bounded by W(IT,rk(IT)). The number of commutative
steps n. is Tg<i<n,n’, where n! is the number of commutative steps performed after the i-th
symmetric step. Note that every n! is bound by the square of the maximum size of the proof
during the rewriting, which, by Lemma 2.3.(i), can be bounded by W(IT,rk(IT)). Hence we
have:

ns+n. < ns+ns x max(n’) <ny x (max(n')+1)

W(IT, rk(IT) x (max(n.)+1) <W(IT, k(1) x (W(IT, rk(IT)*+1)

2xw(I, rk(IT))*

IAIATA

and by Lemma 2.3.(ii) we can conclude:
TL§2X|H|3X(d(H)+l) l

Since every proof has a fixed depth, the bound is polynomial.

2.2 PTIME Completeness

SLL is complete for PTIME. We will not give here the details of the proof given in [17]
since the completeness proof for the type assignment we will design does not use them and
moreover we will prove a stronger result.

Here we give some hints just to give evidence of the difference between our codings and that
used by Lafont. First of all, Lafont proof uses data type defined using the connectives ®
and &. Instead we will define data type considering these connectives in their derivate form
in the implicative and exponential second order fragment of SLL.

Moreover, he introduces a programming discipline for Soft Linear Logic which consists in
representing programs by generic proofs, i.e. proofs that do not contain occurrences of (m)
rule, and data by homogeneous proofs, proofs where all the occurrences of rule (m) have the
same rank, while we do not need such a distinction.

Let the symbol = denote definitional equivalence. If N=Voa.!(e —a) —a—o« then natural
numbers are definable by homogeneous proofs deriving the sequent:

FN
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Polynomials in one variable are sufficient to our scope. For technical reasons instead of
polynomials Lafont has introduced a notion of polynomial expressions, terms built from
natural numbers and a variable X, using addition and multiplication. The following notation
will be useful in the sequel:

n-times

——

Polynomial expressions are in one to one correspondence with polynomials in Horner normal
form, i.e. of the form ag+ X (a1 +X(---(ap—1+Xa,)---). If P is a polynomial expression we
denote by 8(P) its degree. The formula representing natural numbers can be extended to
polynomial expressions, i.e. N(P)=Va.(a¢ —oa)” —oa—oa. Note that N(X)=N.

The following theorem assures that all polynomial expression can be represented in SLL.

THEOREM 2.7
If P is a polynomial expression, there is a generic proof for the sequent:

NOP) -N(P)

The above theorem corresponds to a polynomial iteration principle for Soft Linear Logic.
Booleans and boolean strings are definable in SLL by proofs of the following formulae:

B=Vo.(a&a)—a S=Va.!((¢—a)&(e—a)) —oa—«

We refer to [17] for the definition of Turing machine configurations. Here we only recall the
PTIME completeness theorem for SLL.

THEOREM 2.8
If a predicate on boolean strings is computable by a Turing machine in polynomial time
P(n) and in polynomial space Q(n), there is a generic proof for the sequent:

SO(P)I+8(Q+1) |

which corresponds to this predicate.

3 SLL and A-calculus

There is a standard way to decorate the proofs of a logic in sequent calculus style in order to
obtain a type assignment system for the A-calculus [16][20]. By applying it to SLL, we obtain
the type assignment system defined in [18] as a technical tool for studying the expressive
power of SLL. This decoration, that we name SLL;, is presented in Table 2, where, by an
abuse of notation, we use I', A to denote SLL; contexts i.e., variable assignments of the
shape x: A. Moreover, dom(I") denotes the set {x|x:AeT}.

In SLL; the subject reduction property fails. Let us show it by an example.

ExamPpLE 3.1
Consider the term M=y((Az.sz)w)((Az.sz)w) and let C=A—-oA— B,5=DB—o!A. A possi-
ble typing for M is y: C,s:5,w: BFyy((Az.sz)w)((Az.sz)w): B as proved by the following
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TaBLE 2. SLL;,

F'HpM:A A x:AFLN: B T#A

o AF A A7) T, A NM/x]: B (cut)
Ix:AFLM: B (o R) Ixg:A,...,x,: AFLM: B (m)
' pAxM:A— B Ix: 1A M[x/%0, ..., X/%X,]: B
'HLM:A x:B,AFN:C T#A yfresh( I I'LM: A (sp)
T,yv:A—B, A N[yM/x]: C ThoaA P
CHLM:A (%) Ix:A[B/alFLM: C
' M:Va. A (YE) Ix:Ya. AR M: C (VL)

I'#A iff dom(I')Ndom(A)=0 (*) « not free in T'.

(incomplete) derivation IT:

s:SkpAz.sz:S t:S,w:Blptw:!4d (cut) v:C,r:A1:Apyrl: B
Y>s:5,w:Bby (Az.sz)w:lA v:C,x!Apyxx: B
yv:C,s:S,w:Brryxx[(Az.sz)w/x]=y((Az.sz)w)((Az.sz)w): B

(m)
(cut)

Clearly we have:
v((rz.sz)w)((Az.sz)w)—>py(sw)((Az.s2)w)
hence we want to type the reduced term in the same context:
y:C,s:S,w:BFry((sw)((Az.sz)w): B

but in fact this is not a derivable judgement in SLL; .

The problem is that M contains two identical redexes (Az.sz)w, while in IT there is just one
subderivation ¥ with subject (Az.sz)w.  has a modal conclusion, but a non modal context,
so it cannot be duplicated. Hence S-reducing only one occurrence of (Az.sz)w in M would not
correspond to a correct logical proof since every cut-elimination step would instead reduce
both the redexes at the same time. This means that in SLL; a cut-elimination step does not
correspond to a B-reduction and the polynomial bound on the logic is not inherited by the
language.

Let us analyze this phenomenon in more depth. In order to do this note that we can dis-
tinguish three classes of SLL; derivations. Consider a derivation IT in SLL, with conclusion
' M: A. The formula A can be either modal or not. In the latter case we say that IT is
a linear derivation. Otherwise we can distinguish two cases. If IT can be transformed by
commutations of rules in a derivation IT" ending by a rule (sp) then we say that IT is dupli-
cable. Otherwise we say that it is shareable. Note that in other words IT is duplicable if it
corresponds to a !-box in the corresponding proof-net of SLL [17].
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In a decorated sequent calculus system, like SLL;, B-reduction is usually considered the
counterpart, in terms, of the cut rule of the logic. So consider an occurrence of a rule
(cut) as:

M-I M:A EDA,XZAI—LNZB( 0
T, AF N[M/x]: B cu

We can split it in three distinct rules, according to the class of IT.
Linear cut

Me>T'HM:A X>A,x:AFpLN:B 11 linear
I, A N[M/x]:B

(L cut)

It corresponds to a linear substitution. In case there is a subterm of N of the shape zQ,
for some @ (denoted by N=N[xQ]) and M=Ax.P, it generates exactly one B-redex and the
cut-elimination corresponds to one S-reduction.

Duplication cut

Mne!''epMm:!1C A, x:!CHN: B A=!C T'=!IT" T duplicable
T, AL N[M/x]: B

(D cut)

It corresponds to a substitution where the proof IT is copied n times, where n is the number
of occurrences of x in N. In case N=N[xQ] and M=Ax.P, it generates n B-redexes. The elimi-
nation of such a kind of cut generates n further cuts (see Definition 2.4) and the elimination
of each one of these cuts corresponds to the reduction of a B-redex.

Sharing cut

Me>r=M:1C A, x:!'CH,N:B A=!C TI shareable
I, A NM/x]: C

(S cut)

It corresponds to a substitution where the proof IT is not duplicated, but shared n times,
where n is the number of occurrences of x in N. In case N=N[xQ] and M=Ax.P, it generates
n B-redexes but a single cut-elimination step corresponds to B-reducing in parallel all of
them.

So (S cut) can break the correspondence between cut elimination and B-reduction.

The problem described above is not new, and all the type assignment systems for A-calculus

derived from Linear Logic need to deal with it. Until now the proposed solutions follow three
different paths, all based on a natural deduction definition of the type assignment.
The first one, proposed in [19], based on Intuitionistic Linear Logic, explicitly checks the
duplicability condition before performing a normalization step. So in the resulting language
(which is a fully typed A-calculus) the set of redexes is a proper subset of the set of classical
B-redexes.
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TABLE 3. Essential Soft Linear Logic.

'kt A,thgo ILA[B/altgo
—_— (Vv
AFgA (4z) ILAFgo (cut) Vo Abgo (VL)
F"E'L' A,A"EO' F,O’"EA F"EA
It—oA Argo ( ) 'po—A (= R) I'gVa. A (VR)
IN'Fgo (sp) F,r<”>|—E0 nZO( )
Trplo P T lthpo "

In [4] a type assignment for A-calculus, based on Light Affine Logic, is designed where the
modality ! is no more explicit. In fact there are two arrows, a linear and an intuitionistic
one, whose eliminations reflect the linear and the duplication cuts, respectively.

In [7], a type assignment for the A-calculus, based on Elementary Affine Logic, is designed.
There the authors use the call-by-value A-calculus, where the restricted definition of reduc-
tion implies that subterms of the shape (Ax.M)N, when generated by an (S cut), are not
call-by-value B-redexes.

All the approaches need a careful control of the context, which technically has been realized
by splitting it in different parts, collecting respectively the linear and modal assumptions
(in case of [7] a further context is needed).

Here we want to explore a different approach starting from the following considerations.
Let IT be a SLL; derivation with subject M. If either IT or some proof in which IT rewrites
during the cut-elimination procedure contains some (S cut) rule, the number of g-reductions
in the normalization of M can be greater than the number of cut-elimination steps in the
normalization of Il. So the typing does not induce any property on the complexity of M.
Conversely, if neither IT nor any proof in which IT rewrites during the cut-elimination pro-
cedure does contain (S cut), then the number of cut-elimination steps in the normalization
of IT is greater or equal to the number of B-reductions in the normalization of M and then
the polynomial bound for M follows.

So we restrict SLL in such a way that S-cuts are forbidden and the polynomial properties are
preserved. Just erasing the rule (S cut) is not enough, since the cut elimination procedure
could create new (S cut) rules. So we need to restrict both the rules and the formulae.

4 Essential Soft Linear Logic

In this section we will present a light logic, ESLL, whose set of proofs is a proper subset of
proofs of SLL, and a natural deduction version of it. Both preserve the polytime correctness
and completeness. The key point is that every ESLL proof does not contain (S cut), and
moreover (S cuts) cannot be created during the normalization precedure. In order to obtain
this property, we need to restrict the syntax of types not allowing modal types both in the
right of a — and under a V, and restricting axioms to introduce only non modal types.
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DErFiNiTION 4.1
(i) The set EF of essential soft formulae is defined as follows:

Ai=a|o—A|Va.A (Linear Formulae)
o:=Allo

where « (8) ranges over a countable set of variables. Linear formulae are ranged over by
A, B, C, and formulae by o,7,¢. The symbol = denotes the syntactical equality (modulo
renaming of bound variables).

(ii) A context is a multiset of formulae. By an abuse of notation, contexts are ranged over
by T', A. The notation !T" is a short for {lo|oceT}.

(iii) ESLL proves sequents of the shape 'po where I' is a context and o is an essential
soft formula. The rules are given in Table 3, where, as usual, the rule (VR) has the side
condition that o must not be free in I'. The notation ko is a short for Jgo.

(iv) Derivations are denoted by IT, X, ®,W¥,®. I>T'Fgo denotes a derivation IT with con-
clusion ' 0.

Essential Soft Linear Logic is a subsystem of Soft Linear Logic.

LemmaA 4.2
The set of proofs of ESLL is a proper subset of proofs of SLL.

Proor. Trivial. [ |
As corollary, we have the following theorem.

THEOREM 4.3
ESLL enjoys cut-elimination. In particular every ESLL proof normalizes in at most 2x
[TT|2(@M+1) cut elimination steps.

Proor. The cut-elimination procedure for SLL can be applied, with the same bound, since
Lemma 4.2. |

The absence of (S cut) in ESLL proof is assured by the following property.

PrOPERTY 4.4
IT1>TFglo implies all premises in I' are modal.

Proor. By induction on IT. In the case IT ends by (sp) the conclusion follows directly. In
the case IT ends either by (m) or (cut) rule, the conclusion follows by induction hypothesis.
The other cases are not allowed since the syntactical conditions on the formation rules. W

4.1 ESLL in (quasi) Natural Deduction

A type assignment system for A-calculus is in general defined in natural deduction style,
since in this way terms are built inductively by the rules of the system, and proofs can be
easily carried out by induction on the size of terms. In order to design a type assignment
system with such property, we tranform ESLL in a style similar to natural deduction, in
the sense that all rules are in natural deduction, but rules (m) and (sp), which are non
local. But, as we will show in the sequel, in the term decoration of the new system the
application of each one of these two rules does not change the size of the subject, so it will
be possible to reason about the type assignment system by induction on the size of terms,
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TaBLE 4. ESLL in (quasi) natural deduction style

TnA ag¢ FTV(D)
A (A7) Ty VoA ()
F,O’l_NA F"NU%A Al_NO' F#A
Frvo o4 (1) T, AFyA (= B)
It"Wkyo n>0 (m) IFyo (sp) 'y Va.B vE)
Ttk yo Trylo P TryBl4/a]

and this is sufficient for our aims. In fact, a true natural deduction version of ESLL would
be quite involved, since the modality !. The (quasi) natural deduction version of ESLL is
a system named NESLL, and we will prove that it preserves the good properties of ESLL,
with respect to the complexity of the normalization procedure. The system NESLL proves
judgements of the shape I'yo, where T' is a context and o is an essential soft formula,
according to Definition 4.1. The rules of the system are given in Table 4. We extend to
NESLL all notations of Definition 4.1.

We now prove some important properties of NESLL, which will be useful in the sequel.
First, let us observe that an analogous of Property 4.4 holds:

ProperrY 4.5
(i) I>Tkylo implies that all premises in I' are modal.
(ii) IM>THylo implies that IT is composed by a proof I1":!Abylo ending with an (sp) rule,
followed by some applications of (m) rule.

Proor. Both points can be easily proved by induction on IT. |
NESLL enjoys the substitution property.

LemMA 4.6 (Substitution)
Let I>T,tyo and > Aty 1. Then there is S(Z,I1)>T, Alyo.

Proor. The proof is given by induction on IT. In case IT is an axiom, S(%,I1)= . The cases
where IT ends by an application of the rules (—1I),(— E),(VI),(VE) S(X,I1) is defined by
induction. Let the last rule of IT be (m). In case the active formula is different from 7, then
the proof follows by induction. Otherwise, let IT end by:

IT;:T, r{n) Fno

I'tknyo m)

If = has been introduced by a multiplexor of rank 0 then S(X,I1) is S(Z,I1;) followed by
some applications of (m) rule in order to recover the context A which is modal by Property
4.5.(i). Otherwise, by Property 4.5.(ii) ¥ is composed by a subderivation ending with the
rule

E,DAll_N‘L’l (8)
Abnr VP
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followed by a sequence § of (m) rules recovering Aty t. By induction we can build S(¥',IT),
S(¥,8(x,1)),..., S(X,S(¥,(5(¥,...,8(¥',11))))), the last proving ', Ay, ..., A;Fxo. Then
——

n

(X,T1) can be obtained from T, Al; ..., A1Fxo by applying a sequence of (m) rules, in order
——

to obtain I,!A; Fyo, followed by 8. The case IT ends by rule (sp) is similar. [ |

The normalization steps for NESLL are defined in the following.

DEFINITION 4.7
e (—o)-normalization step.
A (—o)-redex in I is a subproof of the shape:

UpT,oby A
il L LAl LA
Fl_NG—OA ( )

ILAFNA

P> AbNo

(—E)

and its reduct is S(®, V), defined in the Substitution Lemma.
e (V)-normalization step.
A (V)-redex in IT is a subproof of the shape:

U>Thy A
TFy VoA (\(f\g)
Ty A[B/a]

and its reduct is the proof W, where all free occurrences of o has been replaced by B.

In order to prove that NESLL and ESLL have the same derivability power, we start by
proving the implication from ESLL to NESLL.

THEOREM 4.8

I'Hg A implies 'y A

Proor. By induction on the derivation IT proving I'g A. The base case is trivial. The cases
where IT end by (— R),(m),(sp) and (VR) follow directly by induction hypothesis. The case

IT ends by the (cut) rule follows directly by induction hypothesis and Lemma 4.6. Consider
the case IT ends as:

F"ET A,A"EU
(L)
F,'C—OA,Al_EU

By induction hypothesis we have a derivation with conclusion I'Fy 7 hence we can construct
a derivation ending as:

T—oAbNT—oA (Az)
F,T‘OAl_NA

Fl_N'L'

(—E)

and since by induction hypothesis we also have A, Alyo, by applying Lemma 4.6 the con-
clusion follows.
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Consider the case IT ends by the rule:

[LA[B/albgo
IVa.Algpo (VL)

By induction hypothesis we have a derivation with conclusion I', A[B/a]txo and since we
also have a derivation ending as:

Va. Ay V. A (?\g)
Va. Ay A[B/ o]
by applying Lemma 4.6 the conclusion follows. |

We now need to prove that NESLL implies ESLL. Since there is a one to many correspon-
dence between NESLL proofs and ESLL proofs, we will show a translation preserving the
good properties of ESLL with respect to the normalization time. So we prove at the same
time the equivalence between the two systems and the polynomial soundness of NESLL.
In order to do this, we will use the notions of size, rank and degree of a proof, defined in
Definition 2.2, which can be extended to NESLL in the obvious way.

Lemmva 4.9

There is a translation T, from NESLL proofs to ESLL proofs, such that, if [1>>I'Fy o, then
T(M)>T'tgo, and moreover T preserves the measures, i.e., rk(IT)=rk(T(I1)), ()=
a(T(I)) and | T(I)] <3x (|]).

Proor. T is defined by induction on IT. In the (Az) case, T is the identity. Otherwise, let
IT be

n'ecI'tyo
F/|_NO'/

(R)

If Ris (m) or (sp), then T(IT) is T(IT") followed by (R). If R is (—I) or (VI), then T(IT)
is T(IT) followed by (— R) or (VR). If IT ends by the rule:

21I>A|_N‘L'H3A oIyt (
IAFVA

—OE)

then T'(IT) is
T(2)>Thpr AFpA (Az)
T(S)>Abpt—oA Ft—oArpA
(cut)
AR A

(—

If IT ends by the rule:

Y>THyVa. A

Ty A[B/a] (VE)
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then T'(II) is

A
A[BJalt 1 A[B/a] Ev Z))
T(2)>ThHgVaA  Va.Abg A[B/al
T A[B/a] (cut)

Now for each IT it is easy to verify that rk(IT)=rk(7T(IT)), d(I1)=4d(T(I1)). Moreover the
size of T(IT) is equal to the sum of the size of |II| and two times the number of (— F) and
(VE) in I1. So in particular | T(IT)| <3 x |(IT)].

The following lemma shows the key property, that allows to extend to NESLL the complexity
results obtained for ESLL.

Lemma 4.10

Let IT be a NESLL proof, which reduces to IT" in n normalization steps. Then T'(IT) reduces
to T(IT') in m>n cut-elimination steps.

Proor. It is sufficient to prove the lemma for n=1. If the normalization step reduces a
(V)-redex, then the proof can be carried out easily by induction on the proof which is the
premise of the (VI) rule. Consider the case of a (—o)-redex, so let IT contain a subproof of
the shape:

YpToby A ( I)
I'yo—A O>AbNo

ARy A (

—oE)

and IT’" is obtained by replacing this subproof by S(®,W¥). Then T(II) contain a subproof:

T(®)>Abpo AFpA (Az)

A,t—oAlgpo

T(\IJ)DF,O'}_EA
o (R
Fl_EO’—OA

AR A

(cut)

Let R and R’ be respectively the last applied rule of T'(W) and T(®). Note that:

1. neither R nor R’ can be a left introduction rule (by definition of T), and in particular
R cannot be (sp) (by definition of essential soft formulae).

By two cut elimination steps we obtain:

T(‘D)DA}_EU T(‘I’)DF,UFEA
AR A

(cut)

and we need to prove that this reduces to S(®,¥), so T(IT) reduces to T(IT"). The proof
is carried out by induction on W. All possible cases follow by induction, but the case of
(sp)—(m) cut. In this case the redex is:

O >AFgt

Oy, 1M A
NI m)
T(®)>!A'Fg!T

(P) O sTcred t
IA Thp A (cut)
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where o =!t and A=!A’. Note that, by definition of T, there are two NESLL proofs ¥ and
@’ such that @, =T (') and O, = T (V).
Eliminating this cut we obtain:
T(®)>A'tpr T(V)>T,7WkpA
T(®)>A'bpt A=Y Ty A
A0 ThHp A
IN THg A

(cut)

(cut)

(m

By induction the elimination of all these cuts generates S(T'(®'), S(T(®),...,S(T(®"), T(V')).

This, followed by the sequence of applications of (m) rules, is, by definition, S(7(®), T(¥)).
So, replacing it to the redex in IT, we obtain T(IT'). | |

We can now prove the following.

THEOREM 4.11
Let IT be a NESLL proof. Then IT is strongly normalizing and the number of normalization

steps to normal form is O(]IT[>*(@M+1),

Proor. By Lemma 4.10 and Theorem 4.3. |

5 The Soft Type Assignment System

Finally a type assignment system for A-calculus can be obtained, just decorating, in a stan-
dard way, NESLL proofs by A-terms. We will prove that such system inherits from NESLL
all the desired properties.

DEFmNITION 5.1
i) Terms of A-calculus are defined by the following grammar:

M,N,Q::=x|MM|Ax.M

where x ranges over a countable set of variables.
ii) The reduction relation —4 is the contextual closure of the following rule:

(Ax.M)N— g M[N/x]

where, as usual, M[N/x] is the capture free substitution of N to all the free occurrences
of x in M. —% is the reflexive and transitive closure of — .

iii) A context is a set of assumptions of the shape x:o, where x is a variable and o is an
essential soft type. Variables in a context are all distinct. By abuse of notation, contexts
are ranged over by I', A, ®.

iv) The Soft Type Assignment System (STA) proves statements of the shape:

I'M:o

where I" is a context, M is a term of A-calculus, and o is an essential soft type. The rules
are given in Table 5.
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TaBLE 5. The Soft Type Assignment system STA

x:AFx:A (4z)
Ix:oFM: A (—o1) 'FM:o—-A AFN:o F#A( E)
'FAxM:o—A IAFMN: A

Ixy:0,...,x,:0F-M: (m) 'M:o (sp)
Ix:lo-Mx/xq,,%/%,] 14 'EM:lo P

FFM:A a¢FTV(T)

I'EM:VYa.B
I'EM:Va. A (VE)

(vI) T'FM: B[A/a]

5.1 Polynomial Time Soundness

STA is sound for polynomial time. In particular in STA a —o-normalization step corresponds
to a B-reduction, so the polynomial soundness of NESLL implies directly the polynomial
soundness of STA. Nevertheless the bound is expressed with respect to the size of the typing
proof, while we are interested in giving it with respect to the size of the term. In order to
do this we will introduce two new measures, the A-rank rk and the A-weight W counting the
number of effectively contracted variables and the number of —o-reduction steps respectively.

DEFINITION 5.2
e The size |M| of a term M is defined as |x|=1, |Ax.M|=|M|+1, |MN|=|M|+|N|+1.
e The A-rank of a rule (m):

I'xy:7,...,x,:THM:0 (m)
Ix:lr-Mx/%x1,...x/%,] 0

is the number k<n of variables x; such that x;eFV(M). Let r be the the maximum

A-rank of a rule (m) in I1. The A-rank rk(I) of IT is the maximum between 1 and r.
o The A-weight W(IT, ) of IT with respect to r is defined inductively as follows.

— If the last applied rule is (Az) then W(IT,r)=1.

— If the last applied rule is (—o I') with premise a derivation ¥, then W(I1, r)=W(X, r)+1.

— If the last applied rule is (sp) with premise a derivation X, then W(I1,r)=rW(Z,r).

— If the last applied rule is (—o E) with premises £ and @ then W(IT,r)=W(X,r)+

W(P,r)+1.
— In every other case W(I1,7)=W(X,r) where X is the unique premise derivation.

The previously introduced measures are related each other as shown explicitly by the fol-
lowing lemma:

LemMma 5.3
Let IT>I'HM:o. Then:

1. rk(I) <|M| < ||
2. W(IT, ) <811, 1)
3. W(I,1) =M.
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Proor. Easy. |
The following is the weighted version of Lemma 4.6

Lemma 5.4 (Weighted Substitution)
Let I>T,x:t+M:0 and ¥>AFN:t. Then ®>T, AFM[N/x]:0 and W(D,r) <W(I1)+W(X).

Proor. It follows easily by an inspection of how the A-weight changes in the proof of
Lemma 4.6.

From the weighted substitution it follows that the weight decreases when a —o-normalization
step is performed.

LEmMA 5.5
Let ITI>T'HM:o and IT rewrites to I[1'>"'+M": 0 by a —-normalization step. Then, for every
r>1k(I):

W(IT', r) <W(I1,r)

Proor. Easy. |

So the desired results can be obtained.

THEOREM 5.6 (Strong Polystep Soundness)
Let TI>T'FM:0, and M B-reduces to M in m steps. Then:

1. m< |M|d(l'[)+1
2. |M/| < |M|d(l'l)+1

Proor.

1. By Lemma 5.3.2, Lemma 5.3.3 and by repeatedly using Lemma 5.5, since |M| > rk(IT).
2. By repeatedly using Lemma 5.5 there is a derivation Lt>T'FM :0 such that W(Z,r) <
W(IT,r). By Lemma 5.3.3 |M|=W(X,1). Since clearly W(Z,1) <W(Z,r) we have [M|<
W(IT, r) and by Lemma 5.3.2 the conclusion follows. a

THEOREM 5.7 (Polytime Soundness)
Let IT>T'+M:0, then M can be evaluated to normal form on a Turing machine in time
0(|M|3(d(n)+1)).

Proor. Clearly, as pointed in [21], a B reduction step N—4N' can be simulated in time
O(|N|2) on a Turing machine. Let M=My—gM; —4--- =M, be a reduction of M to normal
form M,. By Theorem 5.6.2 [M;| < [M|%™+! for 0 <i<n, hence each step in the reduction takes
time O(|M[>@M+1)), Furthermore since by Theorem 5.6.1 n is O(|M|3™M+1) the conclusion
follows.

Theorem 5.7 holds for every strategy. In fact analogously to [22] it could have been for-
mulated as a strong polytime soundness, considering Turing machine with an oracle for
strategies. We refer to [22] for further details.
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5.2 Polynomial Time Completeness

In order to prove polynomial time completeness for STA we need to encode Turing machines
(TM) configurations, transitions between such configurations and iterators. We encode input
data, TM configurations and transitions following the lines of [18] and iterators as usual by
Church numerals. In fact, in [18] the authors have shown that the multiplicative fragment of
SLL is complete for PTIME. We here adapt their proof to show that it is also complete for
FPTIME. Moreover, we exploit the fact that to a term can be assigned an infinite number
of types, by introducing the notion of indexed types for typing the polynomial, and this
allows us to skip the Lafont’s programming discipline, i.e. the distinction between programs
as terms typable by generic proofs and data as terms typable by homogeneous proofs.
Nevertheless, in order to make the bound in Theorem 5.6 polynomial, we show that each
input data can be typed through derivations with fixed degree. In particular we show that
they are typable with derivation with degree equal to 0.

5.2.1 Definability
We generalize the usual notion of lambda definability, given in [6], to different kinds of input
data.
DeriNITION 5.8
Let f:I; x---xI, - O be a total function and let elements 0€© and 3;€l;, for 0<j<n, be
encoded by terms o and i; such that AFo0:0 and Aj1;:1; where A=A,,...,A,. Then, f
is definable if, there exists a term fe A such that Al—ii__lmﬁ: O and:

fZlZn=0 <:>££ﬂ=ﬁo

In what follows the symbol = denotes the definitional equivalence. Moreover, as usual M"(N)
denotes the term inductively defined as M°(N) =N and M""!(N) =M(M"(N)) for every neN.

5.2.2 Composition
The composition of two terms M and N, denoted MoN is definable as Az.M(Nz). In particular
for composition we can derive the following rule:

F'EFM:A—B AFN:o—A T#A
I' AFMoN:o— B

(comp)

Composition can be generalized to the n-ary case, denoted M; oMyo---0M,, definable by the
term Az.M; (My(---(M,2))).

5.2.3 Multiplicative Unit

The multiplicative unit is definable by second order quantifier as:
1=Vo.o—o«
The constructors and destructors for this data type are definable as:

I=Ax.X let z be I in M=zM
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The following are derived rules:

I'EN:1 AFM:o
FI:1 IAFlet Nbe I in M:o

5.2.4 Restricted Weakening

STA is not an affine system, but we can introduce a restricted form of weakening. For
doing so we adapt some results, presented in [18]. The following is a slight modification of
Definition 1 in [18].

DEeFINITION 5.9
A type A is Iy if V-types occur only positively in it. A type A is ell; if it contains positive
occurrences of V-types or negative occurrences of inhabited V-types.

The following analogous of Theorem 1 of [18] will be used in the sequel. We refer to [18] for
its proof.

THEOREM 5.10
For any closed ell; type A, there is a term Wy typable as FW,: A —1.

5.2.5 Tensor product

Tensor product is definable by second order quantifier as
0®T=Va.(c —oT—a) o«
The constructors and destructors for this data type are definable as:
(M, N) = Ax.xMN let z be x,y in N=z(Ax.Ay.N)

The following are derived rules:

I'EM:0 AFEN:t T'#A 'EN:o®t A,x:0y:THM:p THA
LAFMN) :o®T I'Alet N be x,y in M: p

We can use Theorem 5.10 to define projection functions. Let o1 ® 03 be a closed ell; type and
W, and W,, be the terms obtained applying Theorem 5.10. Then, we can define projection

functions as follows:
2
43

2
7T2 =

ax.let x be y1,vo in (let W,,v2 be I in yy)
Ax.let x be yi,y2 in (let Wy, y1 be I in ys)

n-ary tensor product can be easily defined through the binary one as follows:

01Q--Qo, = (01®®0,_1)®0,
(My,...,Mpi1) = Ax.x{M,...,M,)M,
let z be x;,xinM = z(At.Ax;.let t be X in M)

In what follows o™ denotes 0 ®---Qo n-times. Let n>j>2 and 01 ®---®Q0, be a closed ell;
type, then we can define projections using the binary one as follows:

n___2 n_ _n—1 2
T, =T, JTJ—JTJ. o7y
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5.2.6 Church numerals

To encode natural numbers we will use Church numerals:
n=is.rz.s"(z)
Church numerals are typable by the usual SLL type for natural numbers
N=Va.!l(a¢—oa)—oa—oa

nevertheless we prefer, for reasons that will be explained later, to introduce the following
more general notion of indexed type.

DeriNiTION 5.11
The indexed type N; for each i€N is defined as:

N, =Va.!' (@ —a) —a—oa

where !* stands for !...!.
—
Clearly N; =N. The following lemma holds.

LeEMmA 5.12
For each Church numerals n and for each i>0€N:

Proor. By induction on n. [ |

5.2.7 Iteration

As usual Church numerals behave as iterators. In fact we can define the iteration N times
of the term S (representing the step function) over the term B (representing the base func-
tion) as:

Iter(N,S,B)=NSB
Clearly for every Church numeral n:

Iter(n,S,B) —3S"B
moreover it is easy to verify that the following is a derived rule:

'EN:N AFB:A Ay-S:A—A
[,A ! AgkTter(N,S,B): A

It is worth noting that the step function is iterable only if it is definable through a term
typable with type A— A for some linear type A. This in contrast with what happens in
linear logic, where in general step functions proving !4 — A are allowed.
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5.2.8 Polynomials

Successor, addition and multiplication are definable through the usual terms [6].

LeEmmA 5.13

The terms succ=Ap.As.Az.s(psz), add=Ap.Ag.As.Az.ps(gsz) and mul =Ap.Aq.As.p(gs)
define respectively the successor, addition and multiplication functions. They are typable in
STA for 4,7>0€N as:

Fxsuce :N;— N,
Fxadd  :N; —Nj— Niax(ij)+1
I—Nmul NJ—OUNl—ONH,]

Proor. Easy. |

Note that the terms succ,add and mul cannot be typed by the usual types N—o N (for the
first) and N—N—oN (for the last two). As consequence they cannot be iterated through
Church numerals iteration, but they can be composed to obtain all the polynomials.

ExampLE 5.14
If we want to multiply two natural numbers we can use mul typed as:

I—Nmul:Nw!NﬂNg

If we want to multiply three natural numbers, we can use the term Ax.Ay.Az.mul(mul xy)z.
Such term is typable by the following derivation:

z:Nkyz:N
M>x:N,y:!!NFymul (mul xy):!IN—N3  z:!!INkyz:!IN
x:N,y:IN,z:INFymul (mul xy)z:Nj
x:N,y:INFyAz.mul (mul xy)z:!!N—Nj
x:NFyAy.Azmul (mul xy)z:!IN—!!IN—Nj
FyAxAy.Azmul(mul xy)z:N—o!N—o!IN—oNj

where IT is the following derivation:

Fxmul:N—!N—N; x:NFkyx:N vy:Nbkyy:N
x:NFkymul x:!N— Ny v:INkyy:IN
Fymul:Ny—o!!N—Nj3 X:N,y:!NI—N(lexy):Nz
x:N,y:INFymul(mul xy) :!'/N— N3

So in particular the two occurrences of mul need to be typed by different types. In the
derivation we have assigned the type N—o!N—Ns to the innermost and Ny —!!N—Nj3 to
the outermost one.

It is important to stress that the change of type as in the Example 5.14, in particular on
the number of modalities, does not depend on the values of data.
We can finally show that STA is complete for polynomials.
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THEOREM 5.15 (Polynomial Completeness)
Let P be a polynomial in the variable X and deg(P) be its degree. Then there is a term P
defining P, typable as :

%1 PIN g Pt Nogeg(p) 41

Proor. Consider P in Horner normal form, i.e., P=ay+X(a;+X(---(ap_1+ Xa,)--+). By
induction on deg(P) we show something stronger, i.e., for >0, it is derivable:

x0:Ni, %1 1Ny, L x, 1@PD-DN, FN Pt Nideg(P*))+deg(P*)+1
where P*=ay+ Xo(a1+ X1 (- (ap—1+ Xna,)---) so the conclusion follows using the (m) rule
and taking 1=1.
Base case is trivial, so consider P*=ag+ Xy(P’). By induction hypothesis:

x1 NG, 3, V9PN B N ey (P) 4 deg(P) 41
Take P*=add(ay,mul(xg,P’)), clearly we have:
%01 NG 31 NG, e, 3¢, 9D DRI b B N e (P 1) deg (P 141

Since deg(P*)=deg(P")+1: it follows

%01 N 31 NG, 36, 9P TONG B NG eg(Po)) 4 deg(PF) 41

Now by taking i=1 and repeatedly applying (m) rule we conclude

x9Ny =P [x/x1, -+, %/%0] : Nadeg(p) 1 5

5.2.9 Booleans

Let us encode booleans, as in [18], by:
0=AxX.Ay.(X,V) 1=Ax.Ay.{y,x)

By convention we use 0 and 1 for true and false respectively. They can be typed in STA by
the following ell; type:

B=Voa.a—oa—(a®uw)

It is easy to verify that the following are derived rules:

Fos B g BF)

From the fact that B is a ell; type we have the terms:

Or = Ab;.Aby.7i(b;0by)
And = Ab;.Aby.n?(bibol)
Not = MAbj.Ax.Ay.biyx
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defining the boolean disjunction, conjunction and negation respectively, which are typable as:
Fand:B—-B—-B For:B—oB—B FNot:B—B

Moreover, we have terms acting as weakening and contraction on booleans:

Wp
Cp

Az.let zIT be %,y in (let v be I in x)
rz.73(2(0,0)(1,1))

which are respectively typable as:
Fwg:B—1 FCg:B—-B®B

The above functions are useful to prove the following lemma.

LEMMA 5.16
Each boolean total function f:B"— B™, where n,m>1, can be defined by a term £ typable
in STA as H£:B"—B™.

Proor. Easy. |
In the sequel it will be usefull the following analogous of Lemma 1 of [18]:

LeEmmA 5.17
Let A be a (not necessarily closed) eIl type. Then the following is a derived rule:

I'xM:B FyL:A HyR:A
'y if M then L else R:A

(BE)

5.2.10 Strings

Strings of booleans can be encoded as:
[1=AcAz.z oo, b1, ..., byl =Arc.Az.cby(-+-(cb,z) )
where b; € {0,1}. Boolean strings are typable in STA by the indexed type:
S;=Va.!'(B—oa—oa)—o(a—oa)

In particular for each n,i>0€N the following is a derived rule:

By B....b, BF[by.....5,1:5, o)

In the sequel we will use the following.

LEmMA 5.18
The term len=2Xc.As.c(Ax.Ay.let Wpx be I in sy) defines the function returning the length
of an input string. It is typable in STA with typing:

l_lel'l:SZ'—ONZ'

Proor. Easy. |
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5.2.11 Turing Machine

We define Turing machine configurations by terms of the shape

)\c.(cbéo~--ocb,l

n?

cbjo---ocb; ,Q)

where cblo---ocb! and cbjo---ocb’ represent respectively the left and the right part of
the tape, while Q=(by,--,b,) is a n-ary tensor product of boolean values representing the
current state.

We assume, without loss of generality, that by convention the left part of the tape is repre-
sented in a reversed order, that the alphabet is composed by the two symbols 0 and 1, that
the scanned symbol is the first symbol in the right part and that final states are divided in
accepting and rejecting.

DEFINITION 5.19
The indezed type TMii for each i, k€N is defined as:

TMF =Va.!'(B—oa—oa) —o (¢ —oa)*@BF)

The above indexed type is useful to type Turing machine configurations.

Lemma 5.20
Let keN. Every term Ac.(cbf)o-~~ocbl cbjo---ocb] ,(do,...,qdr)) defines a Turing machine

n’

configuration. For every >0 such terms are typable in STA as:
Fic.(cblo---ocb!, cbio---ock’, (qp,...,qr)) : TMF

The initial configuration of a Turing machine is represented by a tape of fixed length filled
by 0 with the head at the begin of the tape and in the initial state @),. The following lemma
shows how the initial configuration of a Turing machine can be obtained starting from a
numeral representing the length of the tape.

LemmA 5.21

The term Init=At.Ac.(Az.z,Az.t(c0)z,Qo) defines the function that, taking as input a
Church numeral n, gives as output a Turing machine with tape of length n filled by 0's
in the initial state Qy=(qy,...,qr) and with the head at the beginning of the tape. For each
1€N it is typable in STA as:

FInit: N, —TM!

Proor. Easy. |

Following [18], in order to show that Turing machine transitions are definable we consider
two distinct phases. In the first one the TM configuration is decomposed to extract the first
symbol of each part of the tape. In the second phase the symbols obtained in the previous
one are combined, depending on the transition function, to reconstruct the tape after the
transition step. In order to type the decomposition of a TM configuration we will use the
type ID? defined as:

IDF=Va.!'(B—oa—oa) —o((@—a)’®(B—oa—oa)®BR(B—oa—a)BRB")

The decomposition phase is described in the following lemma.
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LEMMA 5.22
The term:

Dec=As.rc.let s(F[c]) be 1,r,gin let 1(I,Ax.Jet Wgx be I in I,0)be tl,cl,bf) in
let r(I,Ax.let Wpx be I in I,0) be t,,c,,bj in (tl,t7.,cl,bé,cr,b6,q)

where F[c]=Ab.Az.let z be g,h,1i in (hiog,c,b) is typable as:
FDec: TM} —ID*

Its behavior is to decompose a configuration as:

Dec(Ac.(cbjo---ocb!,cbjo---ocb; ,Q)) =%

Ac.(cblo--och! cblo---och!  c,bl, c,by,Q)
Proor. To verify that Dec has the above typing and the intended behavior is boring but
easy. ||
Analogously for the combining phase we have the following lemma.

LemMma 5.23
The term:

Com=As.Ac.let sc be 1,r,c;,b;,c,,b,,q in
let §(b,,q) be b',¢,min (1f m then R else L)b'q’(1,r,c;,b;,¢p)

where

=
|

Ab'.Ad .Aslet s be 1,r,c;,b;, ¢, in (¢, b oc;bjol,r,q)
L = Mb.ad.Aslet s bel,r,c;,b,c,in (1,c;bjoc,bor,d)

is typable as:
x Com: ID¥ —TM*

Its behavior is, depending on the § transition function, to combine the symbols returning a
configuration as:

Com (Ac.(cblo---ocb! cblo---ocbl, c,b(l), c, by, Q)
—%Ac.(cb'ocbfocbo---och],cbio---0chy,,Q) if 8(bf,Q)=(b',Q’, Right)
or

—>j§kc.(cbiomocbil,cbéocb/ocb{oMocbfn,Q’) if 8(by,Q) = (1, Q’, Left)
Proor. To verify that Com has the above typing and the intended behavior is boring but
easy. ||
By combining the above terms we obtain an entire Turing machine transition step.

LeEmmA 5.24
The term Tr=ComoDec defines a Turing machine transition step and is typable as:

Fx Tr: TMY — TM?
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Proor. Easy, by Lemma 5.22 and Lemma 5.23. |
We need a term that initializes a Turing machine with an input string.

LemMmA 5.25
The term

In=J\s.Am.s(Ab.(Tb)oDec)m
where
T=Ab.As.Ac.let sc be 1,r,c;,b;,c,,b,,q in let Wgb, be I in Rbg(l,r,c; b, c,)
and R=Ab'.Aq .As.let s be 1,r,c;,b;, ¢, in (¢, b oc;b;ol,r,d), defines the function that,
when supplied by a boolean string and a Turing machine, writes the input string on the
tape of the Turing machine. Such a term is typable as
FxIn:S—TM! —TM?
Finally we need a term that returns the acceptance or not of a final configuration.

LemMmA 5.26
Let f be a function deciding if a state is accepting or rejecting. Then the term:

Ext=2\s.let s(Ab.Ac.let Wgb be I in c) be 1,r,gin (lor)(£fq)

defines the function that given a Turing machine configuration returns 0 if it is accepting,
1 otherwise. It is typable in STA as:

FxExt: TM! —B

Proor. Easy. Note that the existence of the term £ is assured by Lemma 5.16. |
Now we can show that STA is complete for PTIME.

THEOREM 5.27 (PTIME Completeness)

Let a decision problem P be decided in polynomial time P, where deg(P)=m, and in poly-
nomial space @), where deg(Q)=1, by a Turing machine M. Then it is definable by a term
M typable in STA as:

s:melbm g M: B

Proor. By Theorem 5.15: s,:!"SkyP[lens,/x]: Ny, and sq:!lSI—NQ[lensq/x]:Nng. Fur-
thermore, by composition:

5:8,q:Noi1,0:Noyy1 Fv Ext(pTr(Ins(Init(q)))) : B

so by substitution and by some applications of (m) rule the conclusion follows. |
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Without loss of generality we can assume that a Turing machine stops in a final configuration
with the head at the beginning of the tape. This means that the final configuration is
represented by terms of the shape:

Ac.(rz.z,cbjo---ocb; ,Q)

The following lemma shows that the function extracting the output string from the final
configuration is easily definable.

LEMMA 5.28
The term:

Extp=As.Aclet sc be 1,r,qin let Wgrg be I in lor

defines the function that given an accepting Turing machine configuration extracts the result
from the tape. It is typable in STA as:

Fx Extp: TMY — S,

Proor. Easy. |
So we can conclude that STA is also complete for FPTIME.

TueorEM 5.29 (FPTIME Completeness)

Let a function F be computed in polynomial time P, where deg(P)=m, and in polynomial
space (), where deg(Q)=1, by a Turing machine M. Then it is definable by a term M typable
in STA as:

'maz(l,m,l)—b—l S |_N M: SQl+1

Proor. Similar to the proof of Theorem 5.27 but using Exty. By Theorem 5.15: s,:!"Sky
P[lens,/x]:Ny,,+1 and sq:!lS FxQllens,/x]: Ny 1. By composition:

s:8,q:Nyj1,0: Nop1 Fy Extp(pTr(Ins(Init(q)))) : Soi1

so by substitution and some applications of (m) rule the conclusion follows. |

6 Conclusion and future work

We have shown a type assignment system for A-calculus, which is correct and complete for
polynomial time, i.e., each term that can be typed can be reduced to normal form in time
polynomial with respect to its size, and all polynomial functions can be computed by a
well typed term. The next step is to consider the problem of type inference. We conjecture
because of the presence of the second order quantifier that this problem is undecidable. It
would be possible to follow the same method as in [23] for System F.

In an incoming paper [13], we proved that, if we restrict ourselves to consider just the
propositional fragment, the type inference problem for STA is decidable in polynomial time
in the length of the input term. Moreover, for the whole system, we showed an algorithm
generating all the constraints that need to be satisfied in order to type a given term. This
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algorithm can be used for checking the typability in some particular cases. We leave for
future investigations the checking of our conjecture and, in case this will be proved true,
the design of an “approximate” typability algorithm, checking for typability with respect to
given constraints on the shape of the possible typings.
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