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A man who is always asking “Is what I do worth while?” and “Am
I the right person to do it?” will always be ineffective himself and a
discouragement to others. He must shut his eyes a little and think
a little more of his subject and himself than they deserve. This is
not too difficult: it is harder not to make his subject and himself
ridiculous by shutting his eyes too tightly.

Godfrey Harold Hardy: “A Mathematician’s Apology”.



Abstract

Many works have shown that operational semantics is a useful framework for
the formal study of programs properties. Our investigation takes as object of
study a call-by-name variant of FPC, a functional language with higher order
functions and recursive types.
We show that by using Plotkin’s structural operational semantics it is possible to
specify formal semantics for FPC for both convergent and divergent programs.
Structural operational semantics can be specified by means of rules, therefore
it allows to use induction and coinduction principles, to define objects and to
reason about their properties.
Two approaches are well known in giving structural operational semantics for
programming languages: big-step and small-step. For a language like FPC they
can be related by showing that they capture the same meaning. Furthermore,
we show that it is possible to translate a proof in the big-step formalism in a
proof in the small-step by adding some information to rules.
Each formal theory of programming languages must analyze equality in-depth.
In an operational setting, Morris’s style contextual equivalence is the widely
accepted natural notion of equivalence for programs. Many properties of con-
textual equivalence can be proved by using simple proof principles. In particular,
we prove two interesting properties, syntactic continuity and rational complete-
ness. They can thought of as the syntactical counterparts of well-known notions
in domain theory.
Unfortunately, contextual equivalence is not straightforward to prove. Never-
theless it is coinductive in nature, for this reason it is interesting to find different
formulations which permit to coinductively reason about program equality. We
show that two classical programs equivalence notions, named experimental equiv-
alence and bisimilarity respectively, coincide with contextual equiavalence for
FPC. Finally we conclude by showing an example of how the theory developed
in this work can be used in programming practice.
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Chapter 1

Introduction

Among those philosophers who have carried out semantical analyses
and thought about suitable tools for this work, beginning with Plato
and Aristotle and, in a more technical way on the basis of modern
logic, with C. S. Peirce and Frege, a great majority accepted ab-
stract entities. This does, of course, not prove the case. After all,
semantics in the technical sense is still in the initial phases of its
development, and we must be prepared for possible fundamental
changes in methods. Let us therefore admit that the nominalistic
critics may possibly be right. But if so, they will have to offer better
arguments than they have so far. Appeal to ontological insight will
not carry much weight. The critics will have to show that it is possi-
ble to construct a semantical method which avoids all references to
abstract entities and achieves by simpler means essentially the same
results as the other methods.

Rudolf Carnap: “Empiricism, Semantics, and Ontology”.

Specifying a formal semantics for programming languages means to clarify
what does each program means; this must be the first step in any analysis of
any language. There are different approaches in defining the formal semantics
of a programming language. Historically three of them emerged: denotational,
operational, axiomatic.
Giving an operational semantics to a programming language means to specify
the meaning of the language by the description of how each construct is exe-
cuted by an abstract mathematical machine. Since in origin it was considered
a low-level reasoning, in the first years of “semantics research” it attracted
only marginally the attention of the computer theorists. Nevertheless different
people carried out studies based on this approach adding new insights. The
development of the research in this field culminates in the 80s in the works
[Plotkin, 1981] and [Kahn, 1987]. Thanks to that developments nowadays
operational approach is considered an easy and quite natural approach to give
meanings to real programming languages.
Traditionally denotational semantics was preferred to operational semantics
because it permits to deal with data structure by familiar set-theoretical
tools. The denotational approach originates from ideas of Scott and Strachey

1



CHAPTER 1. INTRODUCTION 2

[Scott and Strachey, 1971], and considers two programs to be equivalent when
they denote the same object in some abstract domain. Unfortunately, as
noted by Scott, usually this domains are too rich, in the sense that there exist
elements of the domain which are not denotation of any sequential programs.
This is well known as the full abstraction problem.
An interesting feature of operational semantics is that in order to use it
one needs only to introduce some elementary mathematics; in contrast,
denotational semantics needs a complex mathematical machinery even for
basic definitions. Hence one can hope to use only operational semantics to
reason about programs, but in order to make this possible one must show that
operational semantics achieves by simpler means essentially the same results
as denotational semantics.
This is nowaday far to be proved, nevertheless in the first years of the 90s,
the idea emerged that many basic structures of domain theory can be built
using operational tools alone: this can be considered a bottom-up approach to
the solution of full abstraction problem. Furthermore, many of the advanced
results provided by domain theory, because of their abstract nature, are far
from being used in the practice of programming; this does not mean that they
are not useful in general.
Hence, for the above reasons, we can state that operational semantics achieve
by simpler means essentially the same “basic” results of denotational semantics.

A further step in the analysis of a programming language is to provide tech-
niques that can be used to reason about the properties of programs. Inductive
definitions and induction as a proof principle are well established techniques
in the analysis of programs properties, in particular they are useful in dealing
with finite objects. An interesting feature of some functional programming lan-
guages is that they provide also infinite and circular object, hence in order to
study this kind of objects inductive techniques need an extension. Less known
techniques are coinductive definitions and coinduction proof principle, which
are the formal duals of inductive definitions and induction respectively. They
originally emerged in the fields of concurrency, from ideas of Park [Park, 1981]
and Milner [Milner, 1989], and only in the 90s they come to be studied in the
field of functional sequential languages.
An interesting property of programming languages which must be investigated,
in order to make any useful analysis, is the equivalence of programs. In fact
every formal semantics gives origin to a natural notion of program equivalence.
Morris’s style Contextual equivalence [Morris, 1968] is the more natural notion
of equivalence for functional programs in an operational settings. It is in na-
ture coinductive but its formulation makes hard the job of proving equalities of
programs. For this reason in the last years different formulations of equivalence
which can be proved to agree with contextual equivalence for some languages
emerged. These formulations come equipped with natural coinductive proof
principle which make easy to prove equalities of programs.

1.1 This work

This work is intended to survey the different techniques which can be used
in the operational analysis of functional programming language. We introduce
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the main techniques and we show how they can be related by following three
principles.
The first principle which leads our investigations is to “be as operational as
possible”. This means that we try to prove the results only with the few instru-
ments which come associated with our definitions. For this reason, sometimes
our proofs are long and strongly based on the syntax; we usually prefer not to
make use of higher-level methods even if they are clearer. This principle is jus-
tified by the fact that this work can be considered as a first step in the analysis
of the base of operational semantics, where as an exercise we prove all what can
be proved with the limited tools at our disposal.
Another principle that we follow is “exploit induction and coinduction”. In each
inductive or coinductive definition, where it is not immediately clear, we empha-
sise how they can be inductively or coinductively formulated. This can be useful
to understand some proofs better, because associated with each (co)inductive
definition we have a (co)inductive principle which is useful to prove properties
about the objects under investigations.
Finally we follow the principle “be concrete”. We could have chosen to analyze
abstract languages which follow a structured semantics, nevertheless we chose
to take as base for our investigations a concrete language. This in the spirit of
a future abstraction which originates from a concrete example. We chose FPC1

because it possesses all the interesting features that a functional language must
possess to be a real programming language.
All the result presented in this thesis were already investigated by other au-
thors. We think that the originality of this works is based in the methods of
the investigations, in the reformulation of some interesting concepts and in the
form of presentation. We think that our work can be considered as a good
introduction to the field of operational semantics for functional programming
language. Furthermore we believe that several remarks in the work need to be
expanded in future works.
Let us now consider the structure of the thesis in more detail.

Chapter 2 We present induction and coinduction from a set-theoretic point
of view. We introduce the notions of partial orders, lattices and complete lat-
tices. We show how a set of rules induces a monotone operator on a complete
lattice. We show how we can define sets inductively and coinductively as least
fixed points and greatest fixed points respectively of monotone operators on
complete lattices. We investigate some properties of monotone operators with
consequences on inductively and coinductively defined sets.

Chapter 3 We briefly introduce FPC and its syntax.

Chapter 4 We give both static and dynamic semantics for FPC following the
principles of Plotkin’s Structural Operational Semantics. We give dynamic se-
mantics both for convergent terms and for divergent ones. We present dynamic
semantics through two different relation, one “big-step” which capture the en-
tire computations from a term possibly to a “result” and another, “small-step”,

1‘FPC’ is an acronym for ‘Fixed Point Calculus’, a language traditionally attributed to
[Plotkin, 1985], albeit the language described in those lectures was a metalanguage for the
category of predomanis and partial functions.
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which captures single steps of computation. We give an inductive characteriza-
tion of convergence and a coinductive characterization of divergence. Finally we
prove that semantics through big-step semantics is equivalent to that defined as
the transitive and reflexive closure of the small-step relation.

Chapter 5 We demonstrate a method to translate proofs through big-step
semantics in proofs through small-step semantics, which is inspired by works
of Ibraheem and Schmidt [Ibraheem and Schmidt, 2000]. To apply this method
we need to extend proofs by big-step semantics by adding some syntactical
informations. The method applies both to convergent and divergent proofs.

Chapter 6 We introduce a general theory of contexts, useful to formulate a
theory of program equivalence based on the definition of contextual equivalence.
Contextual equivalence is the natural notion of program equivalence. We prove,
in a pure operational settings, different properties of FPC with respect to our
definition of contextual equivalence. In particular we conclude this chapter by
proving syntactic continuity and rational completeness properties.

Chapter 7 We analyze other programs equivalence notions, in particular we
introduce experimental equivalence and bisimilarity which were already studied
by different authors. Furthermore we show that these two formulations coincide
with the formulation of contextual equivalence given in the previous chapter;
this allows to reason coinductively about program equivalence.

Chapter 8 We show how we can use FPC to define the usual constructions
which can be defined in a functional programming language with recursive types.
In particular we define Booleans Natural numbers and Lists. We reformulate
the coinductive proof principle associated with these constructions and as an
exercise we prove a restricted version of Take Lemma [Bird and Wadler, 1988].

Chapter 9 We review the results and discuss further developments.

1.2 Related work

In the past, the main contributions in the theory of operational approach
have followed two strictly related directions: the first was oriented to develop
methods to make operational approach clear, general and powerful; the second
to study the limits of the formal theory of programs obtained by applying the
methods of the first.
The main developments in the former direction take origins in the 60s and
70s by ideas of Landin [Landin, 1964] an of the IBM Vienna Group, (see
[Jones, 2003] for a retrospective account of that period), and reached in
the 80s a good and complete formalization in the works [Plotkin, 1981] and
[Kahn, 1987].
In the latter direction the situation is not so easy to explain, the different
developments deriving from different motivations and sometimes the same
things being discovered indipendently in different fields. We now try to
summarize the main works.
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Milner in [Milner, 1977] proved a result well known as “context lemma” which
firstly stated the coincidense of contextual equivalence with what we call
experimental equivalence, for a form of PCF based on combinators 2.
Howe in [Howe, 1989] gave an important method, refined in [Howe, 1996], to
prove congruence property for a class of languages with a particular style of
operational semantics. Howe’s method can be easily extended to prove that a
specific formulation of bisimilarity coincides with contextual equivalence.
Bloom in [Bloom, 1990] and Jim and Meyer in [Jim and Meyer, 1991] studied
the relations beetween operational and denotational semantics for a class of
PCF-like languages, in particular they investigated relations beetween Milner’s
context lemma and the full abstraction problem.
Smith, in [Smith, 1991] and with Mason and Talcott in [Mason et al., 1996],
showed how it is possible to derive, for different versions of untyped lambda-
calculus with arithmetic constants, the basic notions of domain theory in an
operational settings. Mason and Talcott in [Mason and Talcott, 1991] had
already shown that operational techniques can be widely applied to complex
languages with continuations, first-class objects and a global state.
Gordon in [Gordon, 1995] used a version of Howe’s method based on CCS-style
labelled transition system to prove that usual CCS-style bisimilarity, for a
version of FPC with ground types, coincides with contextual equivalence.
Furthermore in the same work he studied various refinements of bisimilarity.
Pitts in [Pitts, 1994] made a survey of operational techniques and showed how
they can be related to the denotational ones; in [Pitts, 1995] he showed how to
reason coinductively about program equivalence. In [Pitts and Stark, 1998] it
is shown how to extend operational techniques to a functional language with
local state and, in [Pitts, 2002], how operational semantics can be used to
reason about program equivalence for a fragment of ML.
Birkedal and Harper in [Birkedal and Harper, 1999] applied operational tech-
niques to prove relational properties of semantics for a language with recursive
types. Sands in [Sands, 1997] and in elsewhere studies in an operational setting
an improvement version of induction.
Operational semantics was already studied in the field of process algebra, see
[Aceto et al., 1999] for a complete survey, and from a categorical point of view,
see [Turi, 1996], [Turi and Plotkin, 1997] and [Power, 2003].
Finally, many interesting works about higher order operational tech-
niques in semantics were collected in [Gordon and Pitts, 1998],
[Gordon et al., 1998],[Gordon and Pitts, 1999] and [Jeffrey, 2000].

2PCF( = Programming language for Computable Functions ) is a simply typed λ-calculus
with arithmetic constants and recursion introduced by Plotkin as the term language of Scott’s
Logic for Computable Functions, and may be seen as the core of the functional programming
language ML.



Chapter 2

Induction and Coinduction

The turkey found that, on his first morning at the turkey farm, that
he was fed at 9 a.m. Being a good inductivist turkey he did not
jump to conclusions. He waited until he collected a large number of
observations that he was fed at 9 a.m. and made these observations
under a wide range of circumstances, on Wednesdays, on Thursdays,
on cold days, on warm days. Each day he added another observation
statement to his list. Finally he was satisfied that he had collected
a number of observation statements to inductively infer that “I am
always fed at 9 a.m.”. However on the morning of Christmas eve he
was not fed but instead had his throat cut.

A version of the famous original Bertrand Russell’s tale

Inductive Definitions and the Induction proof principle are well known and ex-
tensively studied techniques in Logic, Mathematics and Theoretical Computer
Science. Recent researche has shown the need to extend these techniques, espe-
cially in the study of infinite and circular objects.
The appropriate way of formulating such extensions emerged originally in the
field of concurrent programming languages from ideas of Park in [Park, 1981]
and Milner in his Calculus of Communicating Systems, see [Milner, 1989]. These
ideas converged into techniques now well known as Coinductive definitions and
the Coinduction proof principle which are the formal duals of inductive defini-
tions and induction respectively.
We are interested in (co)inductive definitions and (co)induction for the central
role they play in the semantics of functional programming languages. Neverthe-
less, we try to introduce them in as simple framework as possible. In the sequel
we only assume the knowledge of very basic notions of set theory.

2.1 Ordered structures

We consider a set of “everything in the world” and call this the universal set
U . We need some kind of structure on our universal set.

Definition 2.1.1. A partial order on a set P ⊆ U is a binary relation ≤P⊆
P × P with the following properties:

6
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reflexive ∀ X ∈ P : (X ≤P X)

transitive ∀ X,Y, Z ∈ P : (X ≤P Y & Y ≤P Z =⇒ X ≤P Z)

antisymmetric ∀ X,Y ∈ P : (X ≤P Y & Y ≤P X =⇒ X = Y )

Definition 2.1.2. A partially ordered set is a set P ⊆ U with a partial order
≤P⊆ P × P .

We usually write ≤P as ≤ when it is clear the set where it is defined, we
usually use the shorthand poset for partially ordered set.
An interesting example of poset, which will be central in the sequel, is the
powerset P(X) for any X ⊆ U with ⊆ as partial order. We write 〈P(X),⊆〉
when we want to stress that we consider this poset structure.
An interesting class of partial orders is the following.

Definition 2.1.3. Let P ⊆ U be a poset with partial order ≤P⊆ P × P .
An ascending ω-chain is a subset C = {c0, c1, . . . , cm, . . .} of P such that:

c0 ≤P c1 ≤P · · · ≤P cm ≤P · · ·
A descending ω-chain is a subset C = {c0, c1, . . . , cm, . . .} of P such that:

· · · ≤P cm ≤P · · · ≤P c1 ≤P c0

We are interested in relations beetween partially ordered sets. An interesting
class of relations beetween posets is the class of maps which preserve the order
structure.

Definition 2.1.4. A map φ : P → Q where P,Q ⊆ U are posets is monotone
if and only if for all x, y ∈ P if x ≤P y then φ(x) ≤Q φ(y).

When we define a poset P we have for free the dual poset PD.

Definition 2.1.5. Given a poset P we can define its dual poset PD by defining
x ≤ y to hold in PD if and only if y ≤ x holds in P

Some special elements for partially ordered sets are the following.

Definition 2.1.6. An element x is an upper bound for a subset S ⊆ P where
P is a poset if and only if for all s ∈ S : (s ≤ x).

Definition 2.1.7. An element x is the least upper bound for a subset S ⊆ P
where P is a poset if and only if

(i) ∀s ∈ S : (s ≤ x)

(ii) ∀ p ∈ P : (∀ s ∈ S : (s ≤ p) =⇒ (x ≤ p))

It is easy to verify that if such element exists it is unique. We usually write
the least upper bound of two elements x, y as x ∨ y and the least upper bound
of a set S as

∨
S. Sometimes we use lub as shorthand for least upper bound,

other used shorthands are sup or join.

Definition 2.1.8. An element x is a lower bound for a subset S ⊆ P where
P is a poset if and only if ∀s ∈ S : (x ≤ s).
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Definition 2.1.9. An element x is the greatest lower bound for a subset
S ⊆ P where P is a poset if and only if

(i) ∀s ∈ S : (x ≤ s)

(ii) ∀p ∈ P : (∀s ∈ S : (p ≤ s) =⇒ p ≤ x)

It is easy to verify that if greatest lower bound exists then it is unique. We
usually write the greatest lower bound of two elements x, y as x ∧ y and the
greatest lower bound of a set S as

∧
S. Sometimes we use glb as shorthand for

gratest lower bound, other used shorthands are inf and meet.
It is clear that lower bound is the dual notion of upper bound and hence glb is
the dual notion of lub.
More interesting ordered structures than posets are lattices and complete lat-
tices.

Definition 2.1.10. A poset P is a lattice if and only if for all x, y ∈ P x ∨ y
and x ∧ y exist.

Definition 2.1.11. A poset P is a complete lattice if and only if for all
S ⊆ P

∨
S and

∧
S exist.

We have seen that for all X ⊆ U , 〈P(X),⊆〉 is a poset. Moreover it is also
a complete lattice if we define glb and lub as:

∨
{Xi ∈ P(X) | i ∈ I} =

⋃
i∈I

Xi

∧
{Xi ∈ P(X) | i ∈ I} =

⋂
i∈I

Xi

We write 〈P(X),⊆,⋃,⋂〉 to stress that we consider P(X) with complete lattice
structure.
In a complete lattice P the elements

∨
P and

∧
P are respectively the greatest

and the least elements of P . We sometimes call them respectively top and
bottom.
It is easy to prove the following lemmas.

Lemma 2.1.12. Let P be a complete lattice then also its dual PD is a complete
lattice.

Lemma 2.1.13. Let P be a finite lattice then P is complete.

Lemma 2.1.14. Let P be a poset, then
∨
S exists for all S ⊆ P if and only if∧

S exists for all S ⊆ P . Hence a poset P is a complete lattice if and only if
for all S ⊆ P ,

∨
S exists.

Proof. For all S ⊆ P we have that its glb can be expressed as a lub and dually
its lub can be expressed as a glb, as follow :

∧
S =

∨
{p ∈ P |∀s ∈ S (p ≤ s)}

∨
S =

∧
{p ∈ P |∀s ∈ S (s ≤ p)}

hence the existence of the glb for all sets imply the existence of lub and vice
versa.
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An interesting property of maps on complete lattices is continuity.

Definition 2.1.15. A map φ : P → Q where P,Q ⊆ U are complete lattice is
continuous if and only if for each ascending ω-chain S ⊆ P :

φ(
∨
S) =

∨
φ(S)

Definition 2.1.16. A map φ : P → Q where P,Q ⊆ U are complete lattice is
cocontinuous if and only if for each descending ω-chain S ⊆ P :

φ(
∧
S) =

∧
φ(S)

2.2 Fixed points

We call operator any map φ from a poset S into itself. Operators on poset
are interesting because them permit to isolate subsets of the poset which posses
very useful properties.

Definition 2.2.1. Given a poset P and an operator φ : P → P , the set of
prefixed points of φ is defined as:

Prefixφ
def= {p ∈ P |φ(p) ≤ p}

if x ∈ Prefixφ is such that ∀p ∈ Prefixφ(x ≤ p) then x is the least prefixed
point.

Definition 2.2.2. Given a poset P and an operator φ : P → P , the set of
postfixed point of φ is defined as:

Postfixφ
def= {p ∈ P |p ≤ φ(p)}

if x ∈ Postfixφ is such that ∀p ∈ Postfixφ(p ≤ x) then x is the greatest post-
fixed point.

Definition 2.2.3. Given a poset P and an operator φ : P → P , the set of fixed
point of φ is defined as:

Fixφ
def= {p ∈ P |p = φ(p)}

if x ∈ Fixφ is such that ∀p ∈ Fixφ(p ≤ x) then x is the greatest fixed point.
Dually, if x ∈ Fixφ is such that ∀p ∈ Fixφ(p ≤ x) then x is the least fixed
point.

From these definitions it is clear that Fix = Prefix ∩ Postfix .
Fixed points have central roles in computer science. The next theorem states
the existence of fixed points for monotone operators on complete lattices. This
is an interesting version of the original theorem due to Knaster and Tarski
[Tarski, 1955].

Theorem 2.2.4 (Knaster-Tarski). Let P be a complete lattice and φ : P → P
a monotone operator then Fixφ is a complete lattice.
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Proof. For any F ⊆ Fixφ define:

HF = {p ∈ P | ∀x ∈ F (x ≤ p) & φ(p) ≤ p}
H ′

F = {p ∈ P | ∀x ∈ F (p ≤ x) & p ≤ φ(p)}

since P is a complete lattice
∧
HF and

∨
H ′

F exists. We prove that:

(i)
∨
F =

∧
HF

(ii)
∧
F =

∨
H ′

F

and then for the conclusion we only need to show that
∧
HF and

∨
HF are

fixed points.

(i) By definition of HF we have ∀x ∈ F, (x ≤ p) where p ∈ HF . Hence all
x ∈ F are lower bounds ofHF and by definition of glb ∀x ∈ F (x ≤ ∧

HF ).
By definition of HF we have that any y ∈ Fixφ such that ∀x ∈ F (x ≤ y)
is in HF . Since

∧
HF is a lower bound of HF we have

∧
HF ≤ y.

(ii) By definition of H ′
F we have that ∀x ∈ F, (p ≤ x) where p ∈ H ′

F . Hence all
x ∈ F are upper bounds of H ′

F and by definition of lub ∀x ∈ F (
∨
H ′

F ≤
x). By definition of H ′

F we have that any y ∈ Fixφ such that ∀x ∈ F (y ≤
x) is in H ′

F . Since
∨
H ′

F is an upper bound of H ′
F we have y ≤ ∨

H ′
F .

We now prove that
∧
HF is a fixed point. Since φ is monotone and by definition

of glb, ∀p ∈ HF we have φ(
∧
HF ) ≤ φ(p) ≤ p and by transitivity φ(

∧
HF ) ≤

p. Hence φ(
∧
HF ) is a lower bound of HF but then φ(

∧
HF ) ≤ ∧

HF by
definition of glb. Moreover ∀x ∈ F (x ≤ ∧

HF ), since φ is monotone we have
∀x ∈ F (φ(x) ≤ φ(

∧
HF )) and by fixed point property of each x ∈ F we have

∀x ∈ F (x ≤ φ(
∧
HF )), but we have already shown that for any such element∧

HF ≤ φ(
∧
HF ) hence the conclusion.

Finally we need to prove that
∨
H ′

F is a fixed point. Since φ is monotone and by
definition of lub, ∀p ∈ H ′

F we have p ≤ φ(p) ≤ φ(
∨
H ′

F ) and by transitivity p ≤
φ(

∨
H ′

F ). Hence φ(
∨
H ′

F ) is an upper bound of H ′
F but then

∨
H ′

F ≤ φ(
∨
H ′

F )
by definition of lub. Moreover ∀x ∈ F (

∨
H ′

F ≤ x), since φ is monotone we have
∀x ∈ F (φ(

∨
H ′

F ) ≤ φ(x)) and by fixed point property of each x ∈ F we have
∀x ∈ F (φ(

∨
H ′

F ) ≤ x), but we have already shown that for any such element
φ(

∨
H ′

F ) ≤ ∨
H ′

F hence the conclusion.

An immediate consequence of Knaster-Tarski theorem is the following corol-
lary.

Corollary 2.2.5. Let P be a complete lattice, φ : P → P a monotone operator
on P and L its complete lattice of fixed point. Then µ(φ) and ν(φ) defined as:

µ(φ) def=
∧

Prefixφ

ν(φ) def=
∨

Postfixφ

are respectively the least (pre)fixed point and the greatest (post)fixed point.
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Proof. By Knaster-Tarski theorem and by lemma 2.1.14 it is easy to verify:

µ(φ) def=
∧

Prefixφ =
∧

{x ∈ P |φ(x) ≤ x} =
∧
P

H∅ =
∨
L

∅ =
∧
P

L

ν(φ) def=
∨

Postfixφ =
∨

{x ∈ P |x ≤ φ(x)} =
∨
P

H∅ =
∧
L

∅ =
∨
P

L

The proof of the Knaster-Tarski theorem is not constructive but the last
corollary give us two foundamental elements of the complete lattice of fixed
points of a monotone operator over a complete lattice. The importance of these
element will become clear in the study of the complete lattice 〈P(X),⊆,⋃,⋂〉
for each X ⊆ U .

2.3 Inductive and coinductive definitions by set
of rules

An inductively generated subset of the universe can be described abstractly
by means of rules.

Definition 2.3.1. A set of rules on X ⊆ U is a subset R ⊆ P(X) ×X:

R = {(S, x)|S ⊆ X,x ∈ X}
For each rule r = (S, x) ∈ R, the set S is called the set of premisses of r and
x is called the conclusion of the rule r. A set of rules R is finitary if for all
(S, x) ∈ R, S is finite. A set of rules R is deterministic if for all r, s ∈ R
such that, r = (S, x), s = (S′, x) then S = S′.

We sometimes write a rule r = (S, x) as r = ({x1, . . . , xn, . . .}, x) if S =
{x1, . . . , xn, . . .}. If r = ({x1, . . . , xn}, x) is a rule of a finitary set of rules we
usually write it as

x1 · · · xn

x

Definition 2.3.2. Given a set of rules R on X ⊆ U the operator induced by
R, φR : P(X) → P(X) is defined as:

φR(S) = {x ∈ X | ∃S′ ⊆ S such that (S′, x) ∈ R}
It is easy to verify that for each set of rules R the operator φR induced

by R is monotone if we consider it as an operator on the complete lattice
〈P(X),⊆,⋃,⋂〉.
In particular we have the following.

Lemma 2.3.3. Given 〈P(X),⊆,⋃,⋂〉 and φR : P(X) → P(X) the operator
induced by a set of rules R on X ⊆ U . If R is finitary then φR is continuous.

Proof. We need to prove that for all {Y1, . . . , Yn, . . .} ⊆ P(X) such that Y1 ⊆
Y2 ⊆ · · · ⊆ Yn ⊆ · · · , we have:

φR(
⋃
i∈N

Yi) =
⋃
i∈N

φR(Yi)
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Given an ascending ω-chain

Y1 ⊆ Y2 ⊆ · · · ⊆ Yn ⊆ · · ·
since φR is monotone we have:

φR(Y1) ⊆ φR(Y2) ⊆ · · · ⊆ φR(Yn) ⊆ · · ·
but for all Yi we have φR(Yi) ⊆ φR(

⋃
i∈N

Yi) and then
⋃

i∈N
φR(Yi) ⊆

φR(
⋃

i∈N
Yi).

For each (S, x) ∈ R we know that S is finite and so if S ∈ ⋃
i∈N

Yi then exists
finite Yj such that S ⊆ Yj and Yj ⊆ ⋃

i∈N
Yi. But hence x ∈ φR(Yj) and so

x ∈ ⋃
i∈N

φR(Yi) from which follows φR(
⋃

i∈N
Yi) ⊆

⋃
i∈N

φR(Yi).

Lemma 2.3.4. Given 〈P(X),⊆,⋃,⋂〉 and φR : P(X) → P(X) the operator
induced by a set of rules R on X ⊆ U . If R is deterministic then φR is
cocontinuous.

Proof. We need to prove that for all {Y1, . . . , Yn, . . .} ⊆ P(X) such that · · · ⊆
Yn ⊆ · · · ⊆ Y2 ⊆ Y1, we have:

φR(
⋂
i∈N

Yi) =
⋂
i∈N

φR(Yi)

Given a descending ω-chain

· · · ⊆ Yn ⊆ · · · ⊆ Y2 ⊆ Y1

since φR is monotone we have:

· · · ⊆ φR(Yn) ⊆ · · · ⊆ φR(Y2) ⊆ φR(Y1)

but for all Yi we have φR(
⋂

i∈N
Yi) ⊆ φR(Yi) and then φR(

⋂
i∈N

Yi) ⊆⋂
i∈N

φR(Yi).
If x ∈ ⋂

i∈N
φR(Yi) then for all n ∈ N we have x ∈ φR(Yn) and since R is deter-

ministic ∀n S ⊆ Yn. So we have S ∈ ⋂
i∈N

Yi and then x ∈ φR(
⋂

i∈N
(Yi)).

Another important observation, which is easy to verify, is that any monotone
operator φ : P(X) → P(X) can be written in the form φR for some rule set R
on X .
We now restate some useful notions of the previous section in this framework.

Definition 2.3.5. A set Y ⊆ X is:

• φR-closed if and only if φR(Y ) ⊆ Y

• φR-dense if and only if Y ⊆ φR(Y )

where φR : P(X) → P(X) is the operator induced by the set of rules R on
X ⊆ U .

Since the order relation of 〈P(X),⊆,⋃,⋂〉 is ⊆ and remembering the defi-
nitions of prefixed and postfixed points we have the following lemma.

Lemma 2.3.6. Given 〈P(X),⊆,⋃,⋂〉 and φR : P(X) → P(X) the operator
induced by the set of rules R on X ⊆ U , a set Y ⊆ X is:
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• φR-closed if and only if Y ∈ PrefixφR

• φR-dense if and only if Y ∈ PostfixφR

From the Knaster-Tarski theorem it follows that we can give the next defi-
nitions.

Definition 2.3.7. Given 〈P(X),⊆,⋃,⋂〉 and φR : P(X) → P(X) the operator
induced by the set of rules R on X ⊆ U . The sets µX.φR(X) and νX.φR(X)
defined as:

µX.φR(X) def=
⋂

{Y ⊆ X | φR(Y ) ⊆ Y }
νX.φR(X) def=

⋃
{Y ⊆ X | Y ⊆ φR(Y )}

are the set inductively defined by φR and the set coinductively defined by
φR, respectively.

Hence a corollary of Knaster-Tarski theorem applied to 〈P(X),⊆,⋃,⋂〉 is
the following.

Corollary 2.3.8. For each φR on 〈P(X),⊆,⋃,⋂〉:
• µX.φR(X) is the least fixed point of φR

• νX.φR(X) is the gratest fixed point of φR

furthermore them are respectively the least φR-closed and the greatest φR-
dense sets.

By definition of set (co)inductively defined follows that associated with
µX.φR(X) and νX.φR(X) we have two dual foundamental proof principles.

Corollary 2.3.9.

Induction µX.φR(X) ⊆ X if φR(X) ⊆ X

Coinduction X ⊆ νX.φR(X) if X ⊆ φR(X)

Since the set of natural number N can be easily defined inductively we have
that the well known mathematical induction is its associated proof principle.

Example of an inductively defined set A simple but interesting example
of inductive definition is the definition of syntax of simple untyped λ-calculus.
Given a countable infinite set of variables V ar = {x, y, . . .} ranged over by x, y
and three special characters λ, ( ,) we define:

λ∗ def= {x, y, . . . , λ, (, )}∗

as the set of all ordered sequences of symbols of the set V ar ∪ {λ, (, )}. We use
M,N to range over λ∗. Given R, the set of rule rules generated by the following
rule schemata.

x ∈ V ar

x ∈ X

M ∈ X

(λx.M) ∈ X

M ∈ X N ∈ X

(MN) ∈ X
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we have that R induces a monotone operator φR : P(λ∗) → P(λ∗) such that
for each X ∈ P(λ∗):

φR(X) = {M ∈ λ∗| ∃ S ⊆ X such that
S

x
∈ R}

which can be written as:

φR(X) = {x| x ∈ V ar} ∪ {(λx.M)| x ∈ V ar & M ∈ X} ∪ {(MN)| M,N ∈ X}

We have that the set inductively defined by φR:

Λ def= µX.φR(X) =
⋂

{X ∈ λ∗| φR(X) ⊆ X}

is the set of term of simple untyped λ-calculus, usually called λ-terms. We
will see in the next section that Λ as some other inductively defined set can be
defined through an alternative costructive method.
Associated with the definition of the syntax of this language we have a proof
principle.

∀ X ∈ λ∗ (φR(X) ⊆ X =⇒ Λ ⊆ X)

If we interpret each set X as the set of element of λ∗ which satisfy a predicate
P on λ∗, we can read the induction principle as:

To show that all λ-term satisfy the predicate P it suffices to show
that the property P is preserved under application of the rules of R.

A predicate which satisfy induction principle is usually referred to as inductive
predicate.
It is possible to generalize our example to all recursively enumerable sets. The
proof principle associated with the inductive definition of syntax of a language
is usually referred in literature as structural induction. The term structural
emphasizes that to prove properties about the language you must prove that
the properties are preserved by the structure of syntax of the language.
It is well known that a language like λ-calculus can be defined as the grammar
defined by a production in Backus-Naur form (BFN). For our example we have
that Λ is the set of terms defined by the following grammar:

M ::= x | (λx.M) | (MN)

This means that grammars defined via BNF have inductive nature. In the
next section we use BNF as another kind of definition without explicitate their
inductive nature, but we think that it will be clear when we use inductive
definitions.

Example of a set coinductively defined An example of a coinductively
defined set is the set of all binary streams. We define formally the set of all real
streams Rω as:

Rω def= {σ | σ : {0, 1, 2, . . .} → R}
On Rω we can define two useful functions. The function head, hd : Rω → R
defined as:

hd(σ) def= σ(0)
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and the function tail, tl : Rω → Rω defined as:

tl(σ) def= σ′

where for all n the function σ′ is defined as σ′(n) = σ(n+ 1).
We call observations the functions head and tail. We can now define the set
{0, 1}ω of binary streams through the set of rules R generated by the following
schemata.

hd(σ) = 0 tl(σ) ∈ X

σ ∈ X

hd(σ) = 1 tl(σ) ∈ X

σ ∈ X

we have that R induce a monotone operator φR : P(Rω) → P(Rω) such that
for each X ∈ P(Rω):

φR(X) = {σ| hd(σ) = 0 & tl(σ) ∈ X} ∪ {σ| hd(σ) = 1 & tl(σ) ∈ X}
The set coinductively defined by φR is the following

{0, 1}ω def= νX.φR(X) =
⋃

{X ∈ Rω| X ⊆ φR(X)}

We will see in the next section that {0, 1}ω as some other coinductively defined
set can be defined through an alternative construction method.
Associated with {0, 1}ω we have a proof principle.

∀ X ∈ Rω (X ⊆ φR(X) =⇒ X ⊆ {0, 1}ω)

Each set X ⊆ Rω can be thought of as a set of elements which satisfy a predicate
on Rω. We can now interpret the coinduction proof principle as:

To show that all the elements satisfy the predicate P are elements
of {0, 1}ω it suffices to show that the property P is preserved by the
rules of R.

A set of elements which satisfies this property is often called invariant. For
an in-depth discussion on why they can be called invariants see [Jacobs, 1997].
The use of coinduction in the theory of streams is a recent field of research. For
an extensive treatment of this and related examples see [Rutten, 2001].

2.4 Constructive definitions by set of rules

As shown clearly by Winskel in [Winskel, 1993] and Pitts in [Pitts, 1994]
if φR is a monotone operator induced by a finitary set of rules we can give
an alternative constructive characterization of µX.φR(X) through two iteration
schema of φR which originates from Klenee in [Kleene, 1952]. The same can be
done for νX.φR(X) if φR is a monotone operator induced by a deterministic
set of rules.
Given a monotone operator φR : P(X) → P(X) induced by a set of rules R on
X and a set S ⊆ X , the sets defined by recursion as:

φ0
R(S) def= S

φn+1
R (S) def= φR(φn

R(S))
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are respectively the n-th iterates φR with base S.
In particular, if we take S = ∅ which is the bottom of 〈P(X),⊆,⋃,⋂〉 we have
that φ0

R(∅) = ∅ ⊆ φR(∅) and since φR is monotonic we have the following chain
of inclusions:

φ0
R(∅) ⊆ φ1

R(∅) ⊆ · · · ⊆ φn
R(∅) ⊆ · · ·

and dually if we take S = X as base, which is the top of 〈P(X),⊆,⋃,⋂〉, we
have:

· · · ⊆ φn
R(X) ⊆ · · · ⊆ φ1

R(X) ⊆ φ0
R(X)

Now we can prove the following lemma.

Lemma 2.4.1. Given a monotone operator φR : P(X) → P(X) induced by a
set of rules R:

(i) if R is finitary then µX.φR(X) =
⋃
n∈N

φn
R(∅)

(ii) if R is deterministic then νX.φR(X) =
⋂
n∈N

φn
R(X)

Proof. We sometimes omit to write the superscript (n ∈ N) in
⋂
φn
R(X) and⋃

φn
R(∅) only for clarity of notation.

(i) By lemma 2.3.4 we have that φ(
⋃
φn
R(X)) =

⋃
φn
R(X) hence it is a fixed

point. By least fixed point property of µX.φR(X) we only need to show
that

⋃
φn
R(∅) ⊆ µX.φR(X).

We prove this by induction on n. Obviously ∅ ⊆ µX.φR(X), then assume
φn
R(∅) ⊆ µX.φR(X), by monotonicity φR(φn

R(∅)) ⊆ φR(µX.φR(X)) and
then φn+1

R (∅) ⊆ φR(µX.φR(X)) ⊆ µX.φR(X). So we have
⋃
φn
R(∅) ⊆

µX.φR(X)

(ii) By lemma 2.3.4 we have that φ(
⋂
φn
R(X)) =

⋂
φn
R(X) hence it is a fixed

point.By greatest fixed point property of νX.φR(X) we only need to show
that νX.φR(X) ⊆ ⋂

φn
R(∅).

We prove this by induction on n. Obviously νX.φR(X) ⊆ X , then assume
νX.φR(X) ⊆ φn

R(X), by monotonicity φR(νX.φR(X)) ⊆ φR(φn
R(X)) and

then νX.φR(X) ⊆ φR(νX.φR(X)) ⊆ φn+1
R (X) ⊆ φn

R(X) so by induction
∀n ∈ N νX.φR(X) ⊆ φn

R(X) and then νX.φR(X) ⊆ ⋂
φn
R(X)

We remark that by lemma 2.4.1 we have that µX.φR(X) is the least upper
bound of the chain:

φ0
R(∅) ⊆ φ1

R(∅) ⊆ · · · ⊆ φn
R(∅) ⊆ · · ·

and dually νX.φR(X) is the greatest lower bound of the chain:

· · · ⊆ φn
R(X) ⊆ · · · ⊆ φ1

R(X) ⊆ φ0
R(X)

Lemma 2.4.1 works only because the rule set is finitary and deterministic
in the first and the second case, respectively. The result can be general-
ized to non finitary rule set iterating up to transfinite ordinals, see Aczel
[Aczel, 1977]. Another general constructive version of Knaster-Tarski theorem
is in [Cousot and Cousot, 1979] due to Cousot and Cousot.
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2.5 Complete lattices of binary relations

We now specialize our definitions to an interesting example which will be
useful in the sequel. We take, as complete lattice, the powerset of X ×X where
X ⊆ U . The complete lattice 〈P(X × X),⊆,⋃,⋂〉 is the complete lattice of
binary relations on X . From now on we do not write the subscript in φ.

Definition 2.5.1. Given the complete lattice of binary relations on X ⊆ U ,
〈P(X ×X),⊆,⋃,⋂〉 and a monotone operator φ : P(X ×X) → P(X ×X) we
have that:

• R ∈ P(X ×X) is a φ-congruence if and only if φ(R) ⊆ R
• R ∈ P(X ×X) is a φ-bisimulation if and only if R ⊆ φ(R)

Definition 2.5.2. Given the complete lattice of binary relations on X ⊆ U ,
〈P(X ×X),⊆,⋃,⋂〉 and a monotone operator φ : P(X ×X) → P(X ×X) we
have that:

• R ∈ P(X ×X) is a φ-equality if and only if R = µR.φ(R)

• R ∈ P(X ×X) is a φ-bisimilarity if and only if R = νR.φ(R)

By the last definition we have that the φ-equality is contained in all the
φ-congruences and dually the φ-bisimilarity contains all the φ-bisimulations.
Associated with these definition we have the following proof principles.

Definition 2.5.3. Given the complete lattice of binary relations on X ⊆ U ,
〈P(X ×X),⊆,⋃,⋂〉 and a monotone operator φ : P(X ×X) → P(X ×X) we
have that:

φ-induction if (x, y) ∈ R and R is a φ-congruence then (x, y) ∈ µR.φ(R)

φ-coinduction if (x, y) ∈ R and R is a φ-bisimulation then (x, y) ∈ νR.φ(R)

In the sequel we will study some notions of program equivalence. Hence we
are interested in some additional properties of operator induced by set of rules,
which permits to verify that a relation is an equivalence relation.
If we take the equality relation on X , Eq ∈ P(X ×X) which is defined as:

Eq
def= {(x, x) | x ∈ X}

we can isolate a first class of monotone operators. The following terminology is
due to Crole, see [Crole, 2003].

Definition 2.5.4. Given the complete lattice of binary relations on X ⊆ U ,
〈P(X×X),⊆,⋃,⋂〉 an operator φ : P(X×X) → P(X×X) is pre-extensional
if and only if:

• φ(Eq) = Eq

• φ(R) ◦ φ(R′) ⊆ φ(R ◦R′)

The following lemma show why we have isolated this class of monotone
operator.
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Lemma 2.5.5. Given the complete lattice of binary relations on X ⊆ U , 〈P(X×
X),⊆,⋃,⋂〉 and a pre-extensional monotone operator φ : P(X ×X) → P(X ×
X). Then νR.φ(R) is a preorder.

Proof.

Reflexivity By definition of extensional operator we have φ(Eq) = Eq and
since νR.φ(R) is the greatest fixed point we have Eq ⊆ νR.φ(R).

Transitivity By fixed point property νR.φ(R) ◦ νR.φ(R) is equal to
φ(νR.φ(R)) ◦ φ(νR.φ(R)) and by definition of pre-extensional operator
νR.φ(R) ◦ νR.φ(R) ⊆ φ(νR.φ(R) ◦ νR.φ(R)) hence νR.φ(R) ◦ νR.φ(R)
is a φ-bisimulation and by coinduction we have the conclusion.

Now remembering that the opposite Rop of a relation R ∈ P(X × X) is
defined as:

Rop def= {(y, x) | (x, y) ∈ R}
we can isolates another useful set of monotone operator.

Definition 2.5.6. Given the complete lattice of binary relations on X ⊆ U ,
〈P(X ×X),⊆,⋃,⋂〉 a pre-extensional operator φ : P(X ×X) → P(X ×X) is
extensional if and only if:

• φ(R)op ⊆ φ(Rop)

The following lemma show that the set of extensional monotone operator is
the one we are looking for.

Lemma 2.5.7. Given the complete lattice of binary relations on X ⊆ U , 〈P(X×
X),⊆,⋃,⋂〉 and an extensional monotone operator φ : P(X×X) → P(X×X).
Then νR.φ(R) is an equivalence relation.

Proof. Since φ is pre-extensional we only need to prove simmetry property.

Simmetry By fixed point property νR.φ(R)op = φ(νR.φ(R))op, since φ is
extensional νR.φ(R)op = φ(νR.φ(R))op ⊆ φ(νR.φ(R)op) and by coin-
duction νR.φ(R)op ⊆ νR.φ(R).

Finally we have that an extensional operator can corresponds exactly with
equality relation.

Definition 2.5.8. Given the complete lattice of binary relations on X ⊆ U ,
〈P(X × X),⊆,⋃,⋂〉 an extensional operator φ : P(X × X) → P(X × X) is
fully extensional if and only if:

νR.φ(R) = Eq

equality is the largest bisimulation.
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2.6 Possible future developments

We have seen so far that the least and greatest fixed points of a monotone
operator on a complete lattices are respectively the set inductively and coinduc-
tively defined by the operator. It is now natural to consider other intermediate
fixed point. It will be interesting to know if they can be useful in any computa-
tional situation. If so it is possible to try to characterize them in any particular
way, to use them to define special sets which have associated proof principles.
An interesting question is about the existence of properties of monotone opera-
tors which permit to characterize the least(greatest) fixed point of an operator
φ as the greatest(least) fixed point of another monotone operator φ′ and find
a general method to prove that the two definitions coincide. In particular we
think that can be useful, treat the case when φ = φ′ hence we have one and
only one fixed point and we can use as proof principle either induction and
coinduction.
Finally we think that it is possible to find and usefully characterize, analogously
to extensional operators, a class of monotone operators on the complete lattices
of binary relation which assure that the least fixed point is an equivalence rela-
tion.

2.7 Guide to references

We have tried to introduce (co)inductive definitions and (co)induction in a
general framework. This to be a base for the developments of the next sections.
Our presentation follows in spirit those given by Gordon [Gordon, 1995], Pitts
[Pitts, 1994] and more recently by Crole [Crole, 2003].
For a recent and simple account of ordered structures and fixed points see Davey
and Prestley [Davey and Priestley, 2002].
The main reference for inductive definition is the foundamental paper
[Aczel, 1977] by Aczel. Another interesting introduction to inductive and coin-
ductive definitions is [Cousot and Cousot, 1992] by the Cousots.
In [Winskel, 1993] (chapter 3 and 4) Winskel explains in depth how sets of rules
give rise to inductive definition of operational semantics, with associated proof
principle of rule induction.
Induction and Coinduction are well studied in the general framework of Cate-
gories, which seems to be the more natural way of study these notions. We have
chosen not to use the machinery of category theory only because its use does not
add anything to our exposition. Nevertheless we remark that all the concepts
we will introduce can be restated in the category theoretic framework. For an
introduction to induction and coinduction and applications in category theory
see Jacobs and Rutten in [Jacobs and Rutten, 1996], Crole in [Crole, 1998] and
Aczel [Aczel, 1995].



Chapter 3

The FPC Language

Language is a labyrinth of paths. You approach from one side and
know your way about; you approach the same place from another
side and no longer know your way about.

Ludwig Wittgenstein. “Philosophical Investigations”

FPC is a functional deterministic language with higher order functions and
with recursive types. FPC was first introduced by Plotkin in [Plotkin, 1985]
and then many authors studied different versions of FPC.
Winskel in [Winskel, 1993] gives both operational and denotational semantics
for an eager and a lazy version of FPC, Fiore in [Fiore, 1994] studies FPC
in the framework of a denotational model based on partial maps, Gordon in
[Gordon, 1995] studies bisimilarity for FPC and McCusker in [McCusker, 1996b]
gives a fully abstract model for FPC through game semantics.
We study a call-by-name extension of FPC which is not trivial in the sense
that it contains potentially infinite data structures built by means of recursive
types.

3.1 Syntax

The syntax of a functional programming language specifies the structure of
all possible terms of the language. Since for languages of this kind the terms
are programs, the syntax specifies the structure of all possible programs.
We are interested in abstract syntax. This means that we are not concerned
with the concrete details of how terms are written down as a linear sequences
of symbols, e.g lexical analysis, but only with their parse tree.

Definition 3.1.1. The set Term of raw (or untyped) FPC terms is given by
the abstract syntax trees generated by the following grammar specified via BNF:

20
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M ::= x variables
| λx.M lambda abstraction
| (MM) function application
| 〈M,M〉 pairing
| fst(M) first projection
| snd(M) second projection
| inlτ1,τ2(M) left injection
| inrτ1,τ2(M) right injection
| case M of {inlτ1,τ2(x1).M | inrτ1,τ2(x2).M} sum conditional
| absµT.τ (M) type abstraction
| rep(M) type representation

where x ∈ Var is a fixed, infinite set of variables.

The above definition uses a fixed set of basic constructors. To make things
easier to read we have tried to keep notations as intuitive as possible, for exam-
ple we wrote (M1M2) for the well known function app(M1,M2).
The informal meaning of the constructors is explained as follows. λx.M is a
name for the function mapping x to M where M can depend on x and (MN)
is the result of applying function M to the argument N . 〈M,N〉 is the ordered
pair with first and second components M and N , respectively, fst(M) is the
first component of the pair M and snd(M) is the second component of the pair
M .
The meaning of case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} is the same of
M1 with x1 replaced by M or M2 with x2 replaced by M according on whether
the term M is in the left or right component of a sum, inlτ1,τ2(M) is the map-
ping of a termM into the corresponding left component of a sum and analogusly
inrτ1,τ2(M) is the mapping of a term M into the corresponding right component
of a sum. Finally absµT.τ (M) and rep(M) are the obvious coercions from a
recursive type to its unfolding and vice-versa.
We study a call-by-name version of FPC; at the syntactic level this differs from
a call-by-value version only for the absence of a convergent term. We shall see
that the greatest differences will be at the semantic level.
In order to work with abstract syntax we need some assumptions on the struc-
ture of terms. We assume that function application associates to the left (e.g.
MNP means (MN)P ) and λ bindings extends as far to the right as possible
(e.g. λx.MN means (λx.MN) not (λx.M)N).
We remark that we built the terms of the language starting from a fixed infinite
set of variables and that function definitions and type abstractions are handled
anonymously, rather than through an explicit environment-based mechanism
binding identifiers to their definitions.
Some versions of FPC make available an explicit basic constructor for recur-
sively defined terms, and a term which represents divergent computations, see
for example [Winskel, 1993]. We have decided not to do so but we note that it
is possible, as in type-free lambda calculus, to define a derived costructors for
recursively defined terms as

Y def= λf.(λx.f(rep(x)x))(absµT.τ (λx.f(rep(x)x)))

When Y is applied to a term λx.F we write:

rec x.F def= Yλx.F
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Similarly we can define a divergent terms as:

Ω def= (λx.rep(x)x)(absµT.τ (λx.rep(x)x))

We will see in the sequel that these definition are consistent with our operational
semantics.



Chapter 4

Structural Operational
Semantics

In logic, there are no morals. Everyone is at liberty to build his
own logic, i.e. his own form of language, as he wishes. All that is
required of him is that, if he wishes to discuss it, he must state his
methods clearly, and give syntactical rules instead of philosophical
arguments.

Rudolf Carnap. “The formal syntax of Language”

Specifying the semantics for a programming language corresponds to defining
the mapping from the syntactical constructs of the language into their meaning
in an appropiate formal model. There are several approaches to the specifi-
cation of semantics for a programming language, depending on which formal
model is chosen to represent the meaning. Historically three of them emerged:
denotational, operational, axiomatic. In this work we are concerned with the
operational kind of semantics.
Operational semantics specifies the meaning of language through the descrip-
tion of how an abstract machine executes its constructs. The term operational
is due to the fact that this method of specifying semantics is based on syntactic
transformations of programs and simple operations on data.
Operational Semantics, because of its simplicity, emerged early in computer sci-
ence, the same idea of Turing machine derives from an operational setting. In
the ’60 and ’70 many computer scientists improved this theory, see [Jones, 2003],
with the definitions of new abstract machines to study computations. With the
theory emerged, also, the need for a formalization of the concepts involved in
order to make this a general theory and not only a bunch of different concepts
and techniques.
In 1981 in a course at Aarhus University [Plotkin, 1981], Plotkin proposed a
new useful formalization of how to specify operational semantics which is now
known as Structural Operational Semantics (SOS). For an historical ac-
count of how this idea emerged see [Plotkin, 2003].
A structural operational semantics is usually given by rules which specify in
a syntax-directed manner, how programs must be executed. We quote from
[Plotkin, 2003] the ideas which led Plotkin to SOS:

23
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The first idea,[. . .], was that structural operational semantics was in-
tended as being like an abstract machine but without all the complex
machinery in the configurations, just the minimum needed to explain
the semantical aspects of the programming language constructs.[. . . ]
The second idea was that the rules should be syntax-directed; this is
reflected in the title of the Aarhus notes: the operational semantics
is structural, not, as some took it, structured.

The term structural refers to the fact that the application of the rules is driven
by the abstract syntax of the terms. We follow Plotkin’s intuition and we call
syntax the abstract syntax tree of the language instead of concrete syntax.
The rules of structural operational semantics define a relation on the terms
of the language (or some configuration which does involve such terms). In
[Plotkin, 1981] Plotkin proposed many example of operational semantics based
on a single step relation, this approches is called small-step in opposition to
big-step which was also suggested in the same work by Plotkin but was really
applied only a few years later by Kahn in [Kahn, 1987].
By an analysis of abstract-syntax of a language we can obtain many different
interesting properties, particularly we can divide the properties in two class:
context-sensitive and context-free properties.
We call static semantics the context-sensitive aspects of abstract-syntax; the
word static emphasizes that in order to to deduce context-sensitive properties
of a program we do not need to compute but only to analyze its structure and
the context. Analogously we call dynamic semantic the context-free aspects
of the abstract syntax; in opposition the word dynamic emphasizes that the
context-free properties relate to the dynamical behaviour of the language.
The terms context-free and context-sensitive can cause some misunderstandings,
so we remark that here they are referred to semantical properties and not to
properties of the grammar of language. We hope that it is fairly clear that
no context-free grammar by itself would suffice to capture exactly well-formed
phrases of FPC.

4.1 Static Semantics

Static semantics isolates which abstract syntax trees of the language are
well-formed. Static semantics can be further be decomposed into two parts:
variable scope and rules of typing. Them specify how to interpret variables, and
how to discern the meaningful expressions. Our presentation of variable scope
partly follows in spirit the one in [Pitts, 1994] and the presentation of typing
rules partly follows the one in [Pitts, 1995].

Variable scoping

We are interesting in terms where consistent renamings of the variables don’t
affect their meanings. In FPC λ and case are said to be binding operators; in
particular if we have λx.M , and case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}
the bound variables are x and x1, x2 respectively.
A variable x is free in a term M if it is not bound by a binding operator. More
precisely we can define the set of free variables as follows.
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Definition 4.1.1. The set FV (M) of free variables of M is the set inductively
defined as:
FV (x) = x
FV (λx.M) = FV (M) − {x}
FV (M1M2) = FV (M1) ∪ FV (M2)
FV (〈M1,M2〉) = FV (M1) ∪ FV (M2)
FV (fst(M)) = FV (snd(M)) = FV (M)
FV (inlτ1,τ2(M)) = FV (inrτ1,τ2(M)) = FV (M)
FV (absµT.τ (M)) = FV (rep(M)) = FV (M)
FV (case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2})
= FV (M) ∪ (FV (M1) − {x1}) ∪ (FV (M2) − {x2})

Analogously we can define the set of Bound(M) of bound variables. A
term M with FV (M) = ∅ is a closed term, otherwise it is an open term.
Now bound variables names are inessential. For this reason we treat bound
variables as “nameless”. This could be done literally by adopting De Bruijn’s
nameless terms but we prefer to use an easier notation at the cost of introduce
new notions.

Definition 4.1.2. Two terms M,N are said α-equivalent, written M ≡α N
if they are syntactically identical up to renaming of bound variables.

To give a more formal definition of α-equivalence we need term substitution.

Definition 4.1.3. The term substitution of a term N for a variable x in a
term M , written M [N/x], is inductively defined as follows:
x[N/x] = N
y[N/x] = y where y �≡ x
(λy.M)[N/x] = λy.(M [N/x]) where y �≡ x and y /∈ FV (N)
(M1M2)[N/x] = (M1[N/x])(M2[N/x])
〈M1,M2〉[N/x] = 〈M1[N/x],M2[N/x]〉
fst(M)[N/x] = fst(M [N/x])
snd(M)[N/x] = snd(M [N/x])
inlτ1,τ2(M)[N/x] = inlτ1,τ2(M [N/x])
inrτ1,τ2(M)[N/x] = inrτ1,τ2(M [N/x])
absµT.τ (M)[N/x] = absµT.τ (M [N/x]))
rep(M)[N/x] = rep(M [N/x]))
case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}[N/x]
= case M [N/x] of {inlτ1,τ2(x1).M1[N/x] | inrτ1,τ2(x2).M2[N/x]}
where x �≡ x1, x �≡ x2 and x1, x2 /∈ FV (N)

Note that with this definition, substitution is a partial operation. We
have defined single term substitution, but when we need to perform sev-
eral substitutions we use a notation for multiple substitution. We write
M [N1/x1, · · · , Nn/xn] or M [ �N/�x] for substitution of N1 for x1, . . . , Nn for
xn in M , we think it is clear how to perform multiple substitution as a compo-
sition of single term substitutions.
We can now define inductively α-equivalence. The operator φα : P(Term ×
Term) → P(Term ×Term) induced by the set of instances of rules in table 4.1
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is defined as:

φα(X) def= {(M,N) | ∃ M1 ≡α M
′
1 · · ·Mn ≡α M

′
n

M ≡α N
, (n ≥ 0)

& (M1,M
′
1), · · · , (Mn,M

′
n) ∈ X}

It is easy to verify that φα is monotonic. Hence it posseses a least fixed point
µX.φα(X), since rules of table 4.1 are all finitary it can be constructively defined
with respect to ⊆ and with ∅ as basis.

Definition 4.1.4. α-equivalence is the relation ≡α⊆ Term × Term induc-
tively defined as:

≡α = µX.φα(X)

With this definition we have obtained the inessentiality of bound variables.
For example λx.x ≡α λy.y. From now on we shall consider FPC terms up to
renaming of bound variables. In the sequel we will not make a notational dis-
tinction between a FPC syntax tree and the α-equivalence class of the term it
determines. This requires that all definitions which involve terms are invariant
under α-equivalence.
An example of that is substitution. We have seen that our definition of substi-
tution is a partial operation on Term but if we identify syntax trees with the
α-equivalence classes of terms they determines, it becomes a total operation.
For example the substitution (λx.xz)[zx/z] which is undefined because of the
capture of the free variable x can be performed if we change λx.xz with an
α-equivalent term λy.yz. They identify the same term, so the change doesn’t
affect the meaning and we have (λy.yz)[zx/z] ≡ λy.y(zx).
It is easy to prove by induction the following lemma which states the invariance
of substitution under α-equivalence:

Lemma 4.1.5. Let M ≡α M
′, x ∈ FV (M) and N ≡α N

′ then :

M [N/x] ≡α M
′[N ′/x]

So our definition of substitution preserves α-equivalence in the sense that
substitution is capture avoiding, free variable of N cannot be bound in M [N/x].
In the sequel we write Term for the set of α-equivalence class of terms. Further-
more we write simply M ≡ N for syntactical equivalence up to α-equivalence.

Typing rules

FPC is a typed language: this means that all expressions of FPC can assume
values only in a fixed range (depending on their type) during computations. We
have chosen to leave out type informations in the definition of the language, but
they are implicitly or explicitly present in a valid expression. The set Type of
FPC-types is given by the following grammar:

τ ::= T type variable
| τ → τ ′ function type
| τ × τ ′ product type
| τ + τ ′ sum type
| µT.τ recursive type
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M ≡α M (α-reflexivity)

N ≡α M

M ≡α N (α-simmetry)

M ≡α M
′ M ′ ≡α N

M ≡α N (α-transitivity)

y /∈ FV (M)
λx.M ≡α λy.M [y/x] (α-lambda)

case M of {inlτ1,τ2(x).M1[x/x1] | inrτ1,τ2(y).M2[y/x2]}
≡α case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} (α-case)

M ≡α M
′ N ≡α N

′

MN ≡α M
′N ′ (α-app)

M1 ≡α M
′
1 M2 ≡α M

′
2

〈M1,M2〉 ≡α 〈M ′
1,M

′
2〉 (α-pairs)

M ≡α M
′

fst(M) ≡α fst(M ′) (α-fst)

M ≡α M
′

snd(M) ≡α snd(M ′) (α-snd)

M ≡α M
′

inlτ1,τ2(M) ≡α inlτ1,τ2(M ′) (α-inl)

M ≡α M
′

inrτ1,τ2(M) ≡α inrτ1,τ2(M ′) (α-inr)

M ≡α M
′

rep(M) ≡α rep(M ′) (α-rep)

M ≡α M
′

absµT.τ (M)〉 ≡α absµT.τ (M ′) (α-abs)

M ≡α M
′ x ∈ FV (M)

λx.M ≡α λx.M
′ (α-cong-lambda)

M ≡α M
′ M1 ≡α M

′
1 x1 ∈ FV (M1) M2 ≡α M

′
2 x2 ∈ FV (M2)

case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ≡α

case M ′ of {inlτ1,τ2(x1).M ′
1 | inrτ1,τ2(x2).M ′

2} (α-cong-case)

Table 4.1: α-equivalence rules
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Γ � x : τ if x is defined in Γ with type τ (� Var)

Γ, x : τ �M : τ1
Γ � λx.M : τ → τ1

(� lam)

Γ �M : τ → τ1 Γ �M1 : τ
Γ �MM1 : τ1

(� app)

Γ �M1 : τ Γ �M2 : τ1
Γ � 〈M1,M2〉 : τ × τ1

(� pair)

Γ �M : τ × τ1
Γ � fst(M) : τ

(� fst)

Γ �M : τ × τ1
Γ � snd(M) : τ1

(� snd)

Γ �M : τ1
Γ � inlτ1,τ2(M) : τ1 + τ2

(� inl)

Γ �M : τ2
Γ � inrτ1,τ2(M) : τ1 + τ2

(� inr)

Γ �M : τ1 + τ2 Γ, x1 : τ1 �M1 : τ Γ, x2 : τ2 �M2 : τ
Γ � case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} : τ

(� case)

Γ �M : τ [µT.τ/T ]
Γ � absµT.τ (M) : µT.τ

(� abs)

Γ �M : µT.τ
Γ � rep(M) : τ [µT.τ/T ]

(� rep)

Table 4.2: FPC typing rules
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We have no ground type instead we have a fixed infinite set of type variables.
We can build derived types by using type constructors; in particular → denotes
the function type constructor, × the cartesian product, + the separated sum
and µT the recursive type constructor.
Our choice of ground type and type constructors depend from the fact that we
are interested in a call-by-name version of FPC.
µT is a binding constructor, we can define the set of free type variables for a
type τ as the set of variables of τ which are not in the scope of a binder. As
usual open types are types with occurrences of some free type variables and
analogously closed types are types without free variables occurrences.
An FPC typing judgement takes the form

Γ �M : τ

where Γ is a finite function from variables to types and M : τ is a type assertion.
The set TEnv of all finite partial function from variable to types defined as:

TEnv = {Γ | Γ : V ar ⇀ Type}
and can be seen as the set of all possible type environments, hence we read a
type judgement Γ �M : τ as “in the environment Γ, M is a term of type τ”. We
want to isolate those term which are well formed, this means that we consider
a term only if it can be assigned a type.
Now we are able to define inductively the type assignment relation: fixed Γ ∈
TEnv define the operator φΓ : P(Term ×Type) → P(Term ×Type) induced by
the set of instances of typing rules in table 4.2 as:

φΓ(X) def= {(M, τ) | ∃ Γ1 �M1 : τ1 · · ·Γn �Mn : τn
Γ �M : τ

, (n ≥ 0)

& (M1, τ1), · · · , (Mn, τn) ∈ X}
We can easily see that this operator is monotonic, hence it possesses a least
fixed point µX.φΓ(X) and since rules of table 4.2 are all finitary we can define
it constructively with respect to ⊆ and with ∅ as basis.

Definition 4.1.6. For each Γ ∈ TEnv, the type assignment relation for Γ
is the relation ΘΓ ⊆ Term × Type inductively defined as:

ΘΓ = µX.φΓ(X)

We finally can define

Definition 4.1.7. Type assignment relation is the relation Θ ⊆ TEnv ×
Term × Type defined as:

Θ = {(Γ,M, τ) | Γ ∈ TEnv & (M, τ) ∈ ΘΓ}
We say that a type judgement Γ �M : τ is valid if and only if (Γ,M, τ) ∈ Θ.

When we write (Γ � M : τ) ∈ Θ we mean that (Γ,M, τ) ∈ Θ and in particular
that (M, τ) ∈ ΘΓ.
We write dom(Γ) when we want to refer to the domain of the function Γ :
V ar ⇀ Type and Γ, x : τ for the extension of the function Γ by mapping x to τ ,
with the assumption that x /∈ dom(Γ). If dom(Γ) = {xi | 1 ≤ i ≤ n} and for all
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i we have Γ(xi) = τi than we can write Γ �M : τ as x1 : τ1, . . . , xn : τn �M : τ .
Similarly, given Γ,Γ′ ∈ TEnv we write Γ,Γ′ for the union of the partial functions
Γ and Γ′ under the assumption that dom(Γ) ∩ dom(Γ′) = ∅.
We can now state some useful properties of the type assignment relation.

Lemma 4.1.8 (Inversion).

1. If Γ � x : τ then Γ(x) = τ

2. If Γ � λx.M : τ → τ1 then Γ, x : τ �M : τ1

3. If Γ �MN : τ1 then there exists τ such that Γ �M : τ → τ1 and Γ � N : τ

4. If Γ � 〈M1,M2〉 : τ × τ1 then Γ �M1 : τ and Γ �M2 : τ1

5. If Γ � fst(M) : τ then there exists τ1 such that Γ �M : τ × τ1

6. If Γ � snd(M) : τ then there exists τ1 such that Γ �M : τ1 × τ

7. If Γ � inlτ1,τ2(M) : τ1 + τ2 then Γ �M : τ1

8. If Γ � inrτ1,τ2(M) : τ1 + τ2 then Γ �M : τ2

9. If Γ � case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} : τ then Γ � M :
τ1 + τ2, Γ, x1 : τ1 �M1 : τ and Γ, x2 : τ2 �M2 : τ

10. If Γ � absµT.τ (M) : µT.τ then Γ �M : τ [µT.τ/T ]

11. If Γ � rep(M) : τ [µT.τ/T ] then Γ �M : µT.τ

Proof. All cases are obvious because in each case exactly one rule applies.

Lemma 4.1.9.

(i) If Γ �M : τ then FV (M) ⊆ dom(Γ)

(ii) If Γ � M : τ then for any Γ′ ∈ TEnv such that dom(Γ) ⊆ dom(Γ′) and
for each x ∈ (dom(Γ′) − dom(Γ)), x /∈ Bound(M) we have Γ′ �M : τ

(iii) If Γ,Γ′ �M : τ and FV (M) ⊆ dom(Γ) then Γ �M : τ

Proof.

(i) We prove it by rule induction on the derivation of Γ � M : τ . We show
only the case λx.M , the others are similar.
If Γ � λx.M : τ → τ1 then by lemma 4.1.8 Γ, x : τ1 � M : τ . By
induction hypothesis FV (M) ⊆ dom(Γ)∪{x}, we know that FV (λx.M) =
FV (M) − {x} ⊆ (dom(Γ) ∪ {x}) − {x}, hence FV (λx.M) ⊆ dom(Γ)

(ii) We prove it by rule induction on the derivation of Γ � M : τ . We show
only the case λx.M , the others are similar.
If Γ � λx.M : τ1 → τ then by lemma 4.1.8 we have Γ, x : τ1 � M : τ . By
induction hypothesis for each Γ′ such that dom(Γ)∪{x} ⊆ dom(Γ′) and for
each x ∈ (dom(Γ)−dom(Γ′)) then x /∈ Bound(M), we have Γ′ �M : τ but
in particular if we write Γ1 for the function Γ′ restricted to dom(Γ′)−{x}
we have Γ1, x : τ1 �M : τ and by (� lam) Γ1 � λx.M : τ1 → τ .
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(iii) We prove it by rule induction on the derivation of Γ � M : τ . We show
only the case λx.M , the others are similar.
If Γ,Γ′ � λx.M : τ → τ ′ then by lemma 4.1.8 we have Γ,Γ′, x : τ �M : τ ′.
Since FV (λx.M) = FV (M) − {x} and FV (λx.M) ⊆ dom(Γ) we have
FV (M) ⊆ dom(Γ) ∪ {x} and so by induction hypothesis Γ, x : τ �M : τ ′

and by (� lam) Γ � λx.M : τ → τ ′

It follows from (i) that if ∅ �M : τ then M is a closed term.

Lemma 4.1.10.

(i) If Γ �M : τ and Γ �M : τ1 then τ = τ1

(ii) If Γ, x : τ1 �M : τ and Γ � N : τ1 then Γ �M [N/x] : τ

(iii) If Γ � N1 : τ1, . . . ,Γ � Nn : τn and Γ, x1 : τ1, . . . , xn : τn � M : τ then
Γ �M [N1/x1, · · · , Nn/xn] : τ

Proof.

(i) We prove it by rule induction on the derivation of Γ � M : τ . We show
only the case (MN), the others are similar.
Suppose Γ � MN : τ and Γ � MN : τ1, hence by lemma 4.1.8 we have
that Γ � M : α → τ and Γ � N : α for the former and Γ � M : α1 → τ1
and Γ � N : α1 for the latter. By induction hypothesis α→ τ = α1 → τ1
and α = α1 and hence τ = τ1.

(ii) We prove it by rule induction on the derivation of Γ, x : τ1 � M : τ . We
show only the case λy.M , the others are similar.
Suppose Γ, x : τ1 � λy.M : τ → τ ′, hence by lemma 4.1.8 we have that
Γ, x : τ1, y : τ � M : τ ′ and y /∈ dom(Γ ∪ {x}). By induction hypothesis
for N such that Γ � N : τ1 we have Γ, y : τ � M [N/x] : τ ′ and (� lam)
give us Γ � λy.M [N/x] : τ → τ ′. Finally the definition of substitution
Γ � (λy.M)[N/x] : τ → τ ′.

(iii) It follows immediately by applying (ii) repeatedly.

Now we can isolate the well formed term of FPC.

Definition 4.1.11. Let Expτ (Γ) be the set of terms of type τ in Γ defined as:

Expτ (Γ)
def
= {M ∈ Term | (Γ �M : τ) ∈ Θ}

Hence we say that a term M is typable if and only if there exist Γ ∈ TEnv
and τ ∈ Type such that M ∈ Expτ (Γ). We usually will write Expτ instead of
Expτ (∅) and we think it is clear what we mean. Finally we can isolate the set
of programs, executable terms of the language.

Definition 4.1.12. The set of programs of FPC is the set Exp defined as
follows:

Exp
def
= {M ∈ Term | ∃ τ ∈ Type, M ∈ Expτ (∅)}

Hence FPC programs, are closed and typable FPC terms.
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Example of typing As examples of typable terms we prove that the derived
constructor Y and the term Ω are typable. We have defined Y as:

λf.(λx.f(rep(x)x))(absµα.α→τ (λx.f(rep(x)x)))

so we can first prove that λx.f(rep(x)x) is typable:

x : µα.α→ τ

f : τ → τ

x : µα.α→ τ

rep(x) : (µα.α→ τ) → τ x : µα.α→ τ

rep(x)x : τ
f(rep(x)x) : τ

λx.f(rep(x)x) : (µα.α→ τ) → τ

and so we can prove that Y is typable as follows:

f : τ → τ

λx.f(rep(x)x) : (α′) → τ

λx.f(rep(x)x) : (α′) → τ

absα′(λx.f(rep(x)x)) : α′

(λx.f(rep(x)x))(absα′(λx.f(rep(x)x))) : τ
λf.(λx.f(rep(x)x))(absα′(λx.f(rep(x)x))) : (τ → τ) → τ

It is clear that we have used α′ as abbreviation for the recursively defined type
µα.α→ τ . Therefore we have ∅ � Y : (τ → τ) → τ where τ represents any type,
hence we can define a family of derived costructors Yτ , one for each τ ∈ Type.
From the above proof we have that the following rule usually given for rec as a
basic constructor of FPC, for example in [Winskel, 1993]:

Γ, x : τ � F : τ
Γ � rec x.F : τ

is equivalent to the rule for rec when it is a derived constructor:

Γ � Y : (τ → τ) → τ

Γ, x : τ � F : τ
Γ � λx.F : τ → τ

Γ � rec x.F : τ

Barendregt in [Barendregt, 1992] gives an exaustive explanation of the proof for
a version of lambda calculus without an explicit constructor for recursive types.
Similarly we can prove that Ω defined as:

(λx.rep(x)x)(absµα.α→τ (λx.rep(x)x))

is typable. We first prove that (λx.rep(x)x) is typable as follows.

x : µT.T → τ

x : µT.T → τ

rep(x) : (µT.T → τ) → τ x : µT.T → τ

rep(x)x : τ
(λx.rep(x)x) : (µT.T → τ) → τ

Now we can show how to type Ω.

(λx.rep(x)x) : (µT.T → τ) → τ

(λx.rep(x)x) : (µT.T → τ) → τ

absµT.T→τ (λx.rep(x)x) : µT.T → τ

(λx.rep(x)x)absµT.T→τ (λx.rep(x)x) : τ

Hence we have ∅ � Ω : τ and since τ is any type we have that we can define a
family of divergent terms Ωτ , one for each τ ∈ Type.
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4.2 Dynamic Semantics

Dynamic semantics, in an operational framework, describes how a program
must be executed. In order to specify an operational semantics we need a kind
of relation to relate terms in a computation. Depending on the abstraction
level of specification, one can choose beetween different relations, but all of
them must specify how the computations shall be performed.
During the last two decades emerged two approaches which became the
standard ways to express operational semantics: big-step and small-step. They
are both example of structural operational semantics.
The big-step approach was pionereed in 1979 by Martin-Löf see
[Martin-Löf, 1982], was indipendently suggested by Plotkin in his notes
[Plotkin, 1981] but became really popular only after the work of Kahn
[Kahn, 1987], who called it natural semantics. Big-step semantics is intended
to capture the meaning of an entire computation. We give the rules for two
big-step relations, one for the semantics of convergent terms (evaluation), and
one for semantics of divergent ones (divergence). Evaluation is also known as
natural semantics [Kahn, 1987] or big-step relation.
The small-step approach was firstly formalized by Plotkin in [Plotkin, 1981],
which is a good reference to different examples of its application. This approach
uses a relation between terms which represents all the feasible single steps in
the computational framework. We introduce one small-step relation transition,
also known as reduction or small-step relation. We show that with transition
relations we are able to capture the semantics of both convergent and divergent
terms.
Remark. Since in what follows we will only deal with well typed closed terms
(i.e. Exp) we usually omit type information; to make our treatment work we
will prove that our relations respects typing.

4.2.1 Big-Step

In specifying operational semantics through the big-step approach we use
relations which represent entire computations from terms. We firstly introduce
rules to define inductively a (big-step) evaluation on FPC terms which captures
entire convergent computations from terms to values. The rules we introduce
are now accepted as standard for convergent computation.
Fiore in [Fiore, 1994] gives an operational semantics based on big-step approach
for the call-by-value FPC. Winskel in [Winskel, 1993], Gunter in [Gunter, 1992]
and McCusker in [McCusker, 1996b] give an operational semantics for a call-by-
name version of FPC through an evaluation relation. Our presentation differs
from the latters only in form rather then content, because we want to emphasize
the role of inductive definition in the evaluation relation.
We then introduce the rules to define coinductively a big-step relation diver-
gence on FPC terms, which captures entire divergent computations. Similar
definition of divergence are already given for different languages. See for an ex-
ample [Pitts, 1994] where a big-step coinductive definition of PCF language is
given. Our presentation of divergence follows the line of the one for evaluation,
in order to emphasize the role of coinductive definition.
We follow the presentation of operational semantics given by Moran in
[Moran, 1994] for a non deterministic version of lambda calculus.
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Evaluation

λx.M ⇓ λx.M (+ lambda)

M1 ⇓ λx.M M [M2/x] ⇓ C
M1M2 ⇓ C (+ app)

Divergence
M1 ⇑

M1M2 ⇑ (− app)

M1 ⇓ λx.M M [M2/x] ⇑
M1M2 ⇑ (− app lambda)

Reduction
Basic Reduction
(λx.M)M2 −→M [M2/x] (app tran)

Simplification Reduction
M −→M ′

MM1 −→M ′M1
(app simpl)

Table 4.3: Function application - (call by name)

Evaluation We are interested in defining a binary relation in order to capture
the relation of convergence of computations from a term to a value.
We firstly introduce the set Can ⊆ Exp of terms of the language in canonical
form. Terms in canonical form or values are defined by the following produc-
tions:

C ::= λx.M | 〈M,M〉 | inl(M) | inr(M) | absµT.τ (C)

we let C range over Can , note that the property to be a term in canonical form
or not depends only from the outermost operators, this beacuse we have chosen
a lazy evaluation. Can is the set of terms which represent the values of the
language. We sometimes call the terms in canonical form, canonical terms or
values but we think it is clear what we mean.
Restating our request, we are interested in a binary relation to capture only the
computations from general terms which reach terms in canonical form.
Evaluation will be defined as a relation ⇓ ⊆ Exp × Can through rules of tables
4.3-4.6. We note that rules (+ lambda), (+ pair), (+ inl), (+ inr) and (+ abs
can) are all instances of the rule:

C ⇓ C (+ can)

We read M ⇓ C as “the term M evaluates to term C”. Using a logical view,
evaluation relation can be considered as a kind of convergence judgement, when
we write M ⇓ C this means that “the computation starting from expression M
converges to canonical form C”.
Since FPC is a deterministic sequential language we can consider evaluation
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Evaluation

〈M1,M2〉 ⇓ 〈M1,M2〉 (+ pair)

M ⇓ 〈M1,M2〉 M1 ⇓ C
fst(M) ⇓ C (+ fst)

M ⇓ 〈M1,M2〉 M2 ⇓ C
snd(M) ⇓ C (+ snd)

Divergence
M ⇑

fst(M) ⇑ (− fst)

M ⇓ 〈M1,M2〉 M1 ⇑
fst(M) ⇑ (− fst pair)

M ⇑
snd(M) ⇑ (− snd)

M ⇓ 〈M1,M2〉 M2 ⇑
snd(M) ⇑ (− snd pair)

Reduction
Basic Reduction
fst(〈M1,M2〉) −→M1 (fst tran)
snd(〈M1,M2〉) −→ M2 (snd tran)

Simplification Reduction
M −→M ′

fst(M) −→ fst(M ′)
(fst simpl)

M −→M ′

snd(M) −→ snd(M ′)
(snd simpl)

Table 4.4: Products
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Evaluation

absµT.τ (C) ⇓ absµT.τ (C)
(+ abs can)

M ⇓ absµT.τ (C)
rep(M) ⇓ C (+ rep)

M ⇓ C
absµT.τ (M) ⇓ absµT.τ (C)

(+ abs)

Divergence
M ⇑

rep(M) ⇑ (− rep)

M ⇑
absµT.τ (M) ⇑ (− abs)

Reduction
Basic reduction
rep(absµT.τ (C)) −→ C (rep tran)

Simplification Reduction
M −→M ′

rep(M) −→ rep(M ′)
(rep simpl)

M −→M ′

absµT.τ (M) −→ absµT.τ (M ′)
(abs simpl)

Table 4.6: Recursive types
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rules in tables 4.3-4.6 as L-rules. Following [Ibraheem and Schmidt, 2000] we
define L-rules as follow:

Definition 4.2.1. A rule r, instance of the following rule schema:

M1 � C1 · · · Mk � Ck

M � C
is an L-rule if

• the value of each Mi with 0 ≤ i ≤ k is a function of M and of all Cj with
0 ≤ j < i

• the value of each Ci with 0 ≤ i ≤ k is a function of Mi

• the value of C is a function of Ci with 0 ≤ i ≤ k

where � is some binary relation symbol.

Particularly the dependencies of each Mi from M and all Cj in our case are
structural dependencies, which reflects the structural property of the semantics.
The intuition behind L-rules is that the computation is performed following left
to right evaluation.
Using again logical view, we can call the evaluation rules in tables 4.3-4.6 infer-
ence rules, the judgements above the line are the antecedents and the judgement
below the line consequent. So we can see a derivation as a proof tree justifying
why a term M can be evaluated to a canonical form C. Finally the rules without
antecedents are called axioms.
We note that in the evaluation rules defined in tables 4.3-4.6 the axioms can
be referred by (+ can), they are sufficient to capture all the convergent FPC
terms.
Now we are able to define inductively evaluation relation: taken the operator
φ⇓ : P(Exp×Can) → P(Exp×Can) induced by the set of instances of evaluation
rules in tables 4.3-4.6 defined as:

φ⇓(X) def= {(M,C) | ∃ M1 ⇓ C1 · · ·Mn ⇓ Cn

M ⇓ C , (n ≥ 0)

& (M1, C1), · · · , (Mn, Cn) ∈ X}
we can easily see that it is monotonic. Hence it possesses a least fixed point
µX.φ⇓(X) and since rules of tables 4.3-4.6 are all finitary we can define it
constructively with respect to ⊆ and with ∅ as basis.

Definition 4.2.2. Evaluation relation is the relation ⇓ ⊆ Exp × Can in-
ductively defined as:

⇓ = µX.φ⇓(X)

It is clear that when we write M ⇓ C we mean (M,C) ∈ ⇓.
We note that given a set of convergent judgements, φ⇓ gives the set of all
convergent judgement which can be inferred from this set in one step through
the rule.
We are sometimes interested in convergent terms instead of pairs consisting of
terms with their values, so we define ⇓Exp⊆ Exp the set of convergent terms as:

⇓Exp
def= {M |∃ C (M ⇓ C)}
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When is clear from the context what we mean, we write ⇓ instead of ⇓Exp omit-
ting the subsctipt Exp.
From (+ can) we directly have that evaluation relation is reflexive on canon-
ical terms. We note that the evaluation rules are labelled with a +, dif-
ferently from the rules for divergence. This notation, due to the Cousots
[Cousot and Cousot, 1992], means that they should be read inductively, in oppo-
site to rules labelled with − which, as we will see, should be read coinductively.
As for typing rules it is easy to verify the following inversion lemma.

Lemma 4.2.3 (Inversion).

1. If M1M2 ⇓ C then there exists x ∈ Var, M ∈ Exp such that M1 ⇓ λx.M
and M [M2/x] ⇓ C

2. If fst(M) ⇓ C then there exists 〈M1,M2〉 ∈ Exp such that M ⇓ 〈M1,M2〉
and M1 ⇓ C

3. If snd(M) ⇓ C then there exists 〈M1,M2〉 ∈ Exp such that M ⇓ 〈M1,M2〉
and M2 ⇓ C

4. If absµT.τ (M) ⇓ absµT.τ (C) then M ⇓ C
5. If rep(M) ⇓ C then M ⇓ absµT.τ (C)

6. If case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇓ C then there exists
M ′ ∈ Exp such that either M ⇓ inlτ1,τ2(M ′) and M1[M ′/x1] ⇓ C or
M ⇓ inrτ1,τ2(M ′) and M2[M ′/x2] ⇓ C

Proof. All cases are obvious by simple case inspection.

We note that in case (4) of lemma 4.2.3 we have that the height of the proof
tree of M ⇓ C is smaller than the heigh of the proof tree of absµT.τ (M) ⇓
absµT.τ (C). Since we can apply the same argument to the other cases we have
that lemma 4.2.3 permits us to reason inductively on the height of proof tree.
For example we can easily prove the following.

Proposition 4.2.4 (Determinacy). Evaluation of FPC terms is determinis-
tic, that is:

if M ⇓ C and M ⇓ C′ then C ≡ C′

Proof. We can easily prove it for different cases by induction on the height of
derivation tree of M ⇓ C. We show only the case M ≡ M1M2, the others are
similar.
If M1M2 ⇓ C by lemma 4.2.3-(1) we have that there exists λx.M ∈ Exp such
that M1 ⇓ λx.M and M [M2/x] ⇓ C and analogously if M1M2 ⇓ C′ we have
that there exists λx′.M ′ ∈ Exp such that M1 ⇓ λx′.M ′ and M ′[M2/x

′] ⇓ C′. By
induction hypothesis we have λx.M ≡ λx′.M ′ but then M ′[M2/x

′] ≡M [M2/x]
and again by induction hypothesis C ≡ C′.

Proposition 4.2.5 (Type preservation). Evaluation of FPC preserves
types, that is:

if ∅ �M : τ and M ⇓ C then ∅ � C : τ
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Proof. We can easily prove it for different cases by induction on the height of
derivation tree of M ⇓ C.
Base case is trivial. We show only the case M ≡M1M2, the others are similar.
Suppose ∅ � M1M2 : τ , by inversion rule 4.1.8-(3) we have that there exists τ1
such that ∅ �M1 : τ1 → τ and ∅ �M2 : τ1. Since M1M2 ⇓ C by lemma 4.2.3-(1)
we have that there exists λx.M such that M1 ⇓ λx.M and M [M2/x] ⇓ C. By
induction hypothesis we have ∅ � λx.M : τ1 → τ and by inversion rule 4.1.8-(2)
∅, x : τ1 � M : τ . By lemma 4.1.10-(ii) we have ∅ � M [M2/x] : τ hence by
induction hypothesis ∅ � C : τ .

The above proposition justifies the fact that in our treatment of evaluation
relation we have not considered type informations.
Evaluation is an high-level specification; it can be used, for example, to specify
which canonical form an expression may have, but it is more useful when you
want to prove properties of the convergent derivations by induction on the height
of the derivation tree.

Example of Convergence We show an example of convergence which will
be useful in the sequel. We prove the following convergence judgement:

(fst〈λx.snd(x),Ωτ 〉)〈Ωτ , λz.z〉 ⇓ λz.z
For clarity we first prove the following.

〈λx.snd(x),Ωτ 〉 ⇓ 〈λx.snd(x),Ωτ 〉 λx.snd(x) ⇓ λx.snd(x)
fst〈λx.snd(x),Ωτ 〉 ⇓ λx.snd(x)

With the above derived convergence judgement the proof of the whole judgement
is the following.

fst〈λx.snd(x),Ωτ 〉 ⇓ λx.snd(x)
〈Ωτ , λz.z〉 ⇓ 〈Ωτ , λz.z〉 λz.z ⇓ λz.z

snd〈Ωτ , λz.z〉 ⇓ λz.z
(fst〈λx.snd(x),Ωτ 〉)〈Ωτ , λz.z〉 ⇓ λz.z

Divergence A divergent computation is intuitively a computation which
never ends, a typical example of divergent terms is Ωτ . Clearly convergence
is the negative of divergence, so by property 4.2.4 we have that a term M ∈ Exp
diverges if and only if (� C, M ⇓ C). This involves a quantification over all
canonical terms and it is not always easy to prove. So we need a more direct
definition for divergence.
Following the ideas which have lead us to the definition of evaluation we can
consider a divergence judgement M ⇑ which means “the computation starting
from expression M never ends”. We read M ⇑ as “the term M diverges”.
To define divergence we use the divergence rules in tables 4.3-4.6. We have
chosen to follow the notation used by Pitts in [Pitts, 1994] for divergence and
to use as rules instances of the following schema:

M1 ⇓ C1 · · · Mk ⇓ Ck Mk+1 ⇑
M ⇑

instead we could have choosen to use a rules schema such the following:

M1 ⇓ C1 · · · Mk ⇓ Ck Mk+1 ⇓ Ω
M ⇓ Ω
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where ⇓ Ω is only a notation for ⇑. This choice gives some notational prob-
lems when we want to define the divergence relation but emphasize that our
divergence rules are instances of L-rules. We prefer the former notation which
simplifies the following definitions but we remark that divergence rules have left
to right nature.
We now do not need axioms because we define divergence coinductively
[Cousot and Cousot, 1992] instead of inductively.
Similarly to the evaluation case we can take the operator φ⇑ : P(Exp) → P(Exp)
induced by the set of instances of divergence rules in tables 4.3-4.6:

φ⇑(X) def= {M | ∃ M1 ⇓ C1 · · ·Mn ⇓ Cn Mn+1 ⇑
M ⇑ , (n ≥ 0) & Mn+1 ∈ X}

we can easily verify that φ⇑ is monotonic. Hence it possesses a greatest fixed
point νX.φ⇑(X) and since rules of tables 4.3-4.6 are all deterministic we can
define it constructively with respect to ⊆ and with Exp as basis.

Definition 4.2.6. The set ⇑ of divergent terms is the set coinductively defined
by φ⇑:

⇑ def
= νX.φ⇑(X)

Given a set of divergent terms, φ⇑ yields all divergent terms which can be
deduced in one step from this set by applying the rules. The set coinductively
defined by φ⇑ is obtained by iterating φ⇑ starting from the set of all well formed
terms Exp, each iteration remove the terms that cannot be deduced by applying
the rules once from the conclusion of previous iteration.
Note that some rules have, in the antecedents, convergence judgments. This
is possible because convergence is constructed without reference to divergence.
This means that our definition of divergence depends in a certain sense from
convergence.
It is easy to verify the following inversion lemma.

Lemma 4.2.7 (Inversion).

1. If M1M2 ⇑ then either M ⇑ or there exists x ∈ Var, M ∈ Exp such that
M1 ⇓ λx.M and M [M2/x] ⇑

2. If fst(M) ⇑ then either M ⇑ or there exists 〈M1,M2〉 ∈ Exp such that
M ⇓ 〈M1,M2〉 and M1 ⇑

3. If snd(M) ⇑ then either M ⇑ or there exists 〈M1,M2〉 ∈ Exp such that
M ⇓ 〈M1,M2〉 and M2dv

4. If absµT.τ (M) ⇑ then M ⇑
5. If rep(M) ⇑ then M ⇑
6. If case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇑ then either M ⇑ or

there exists M ′ ∈ Exp such that either M ⇓ inlτ1,τ2(M ′) and M1[M ′/x1] ⇑
or M ⇓ inrτ1,τ2(M ′) and M2[M ′/x2] ⇑

Proof. All cases are obvious by a simple case analysis.
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We remark that the divergence rules are labelled with − to stress that they
form a coinductive definition and not because they are negative rules. This
definition of divergence is a high-level specification and is useful when onr wants
to prove properties of the divergent derivations by coinduction. We will see in
the next section that is possible to characterize divergence coinductively also
with a small step semantics.

Example of divergence As an example of divergence we show the divergence
of Ωτ1 . We have defined it as:

(λx.rep(x)x)absµT.τ (λx.rep(x)x)

We have that its proof of divergence is an infinite tree. For this reason we only
give an itnitial part of proof tree, for clearity of notation we omitt the obvious
convergence judgements for canonical terms.

rep(absµT.τ (λx.rep(x)x)) ⇓ λx.rep(x)x

...
(λx.rep(x)x)absµT.τ (λx.rep(x)x) ⇑

rep(absµT.τ (λx.rep(x)x))absµT.τ (λx.rep(x)x) ⇑
(λx.rep(x)x)absµT.τ (λx.rep(x)x) ⇑

4.2.2 Small-Step

The idea which underlies small-step approaches is to capture single compu-
tation steps. We first give the rules to define inductively a small-step transition
relation on FPC terms which captures all the single steps of all computations.
We know that a computation is not only a set of single steps but a sequence of
single steps, hence we introduce for transition an intuitive kind of composition
property. We finally show how characterize inductively and coinductively the
notions of convergence and divergence, respectively.
Small-step relation was used to define operational semantics of different lan-
guage, either functional and not. For many examples of the use of these rela-
tions see [Plotkin, 1981]. Moran in [Moran, 1994] gives operational semantics
to a non deterministic version of lambda calculus through a small-step relation.
The same happens in [Birkedal and Harper, 1999] for a call-by-value language
similar to FPC. An operational semantics for a call-by-name version of FPC,
through a small-step relation, was given by Gordon in [Gordon, 1995].
Our presentation is close to the those given by Gordon in [Gordon, 1995] and
Moran in [Moran, 1994].

Transition To capture all valid computation single steps, we need a binary
relation −→ ⊆ Exp × Exp as general as possible. Given the set of instances
of reduction rules in tables 4.3-4.6 we can define, similarly to big-step case, an
operator φ→ : P(Exp × Exp) → P(Exp × Exp) as:

φ→ (X) def= {(M,N) | ∃ M ′
n −→ N ′

n

M −→ N
(0 ≤ n ≤ 1) & (M ′

n, N
′
n) ∈ X}

φ→ is monotonic and so it possesses a least fixed point µX.φ→(X) and since
rules of tables 4.3-4.6 are all finitary we can define it constructively with
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respect to ⊆ and with ∅ as basis.

Definition 4.2.8. Transition relation is the relation −→ ⊆ Exp × Exp
inductively defined as:

−→ def
= µX.φ→(X)

We write (M −→ N) instead of (M,N) ∈ −→ and it can be read as “term
M reduces to term N”.
−→ is often called transition relation because represents the transition from a
state to another, but it is also known as reduction or small-step relation. We use
the term transition when we want to stress the fact that, to capture an entire
computation, we need the transitive closure of the relation. Analogously we call
reduction, the operation of rewriting a single term into another.
We say that M is a redex if it appears on the left of any basic reduction rules,
a contractum if it appears on the right. The set Rdx of redex is the set of
terms defined by the following production:

R ::= (λx.M)N | fst(〈M1,M2〉) | snd(〈M1,M2〉) | | rep(absµT.τ (C))
| case inlτ1,τ2(M) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}
| case inrτ1,τ2(M) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}

We remark that there are no rules for term in canonical form, as shown by a
simple analysis of rules, so these terms do not reduce further. Particularly the
terms in canonical form are the only terms in Exp which do not reduce as will
be proved (also stuck terms don’t reduce further, but we have decided not to
consider them). This justifies the fact that we can think to them as values.
A computation is not a general set of single steps, but a sequence of steps.
According to this intuition, in order to express computation by a transition
relation, we need to compose single steps.
We can define the set of computations of n steps, or transitions of n steps as:

−→n def= {(M,N) | ∃M1, . . . ,Mn−1 & (M,M1), (M1,M2), . . . , (Mn−1, N) ∈−→}
When we want to stress that in a computation (M −→n N) after m steps of
computation occur the term Mm we can write (M −→m Mm −→(n−m) N).
We can now define the transitive closure of −→ as:

−→+ def=
⋃
n>0

{(M −→n N)}

Transitive closure captures all the computations of length n > 0. To add reflex-
ivity we sometimes want to consider as computation also transitions of 0 steps.
These computations have no steps, so we need a relation which do not modify
terms. We know that the needed relation is the identity relation. So we have:

−→0 def= {(M,M) | M ∈ Exp}
Now we can define the reflexive-transitive closure of −→ as:

−→∗ def=
⋃
n≥0

{(M −→n N)}
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The reflexive-transitive closure of −→ captures all the finite computations,
whereas we write M −→ω to mean that starting from the term M there is
an infinite sequence of transition. We define later the set of terms spawning
infinitely long computations.
Note that we have two kind of reduction rules: basic reductions and simplifica-
tion reductions. We can consider basic reductions as rules which define how we
can reduce a term in the specified form into another term. Simplification reduc-
tions can be viewed as rules which define how to propagate basic reductions to
contexts.
A simple analysis of the simplification reduction rules shows that all the rules
can be given through a general schema. It can be done using the notion of
evaluation context pioneered in [Felleisen and Friedman, 1986]. We introduce
evaluation contexts, analogously to Gordon in [Gordon, 1995], as compositions
of atomic experiments.

Definition 4.2.9. Given an arbitrary variable • which can be viewed as a hole,
the set Exper of experiments is defined as:

E ::= [•] M1 | fst([•]) | snd([•])| rep([•])| absµT.τ ([•])
| case [•] of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}

Definition 4.2.10. Let Ectx be the set of evaluation context E recursively
defined as:

�E ::= Id empty
| �E ◦ E non-empty

where E ∈ Exper and Id ≡ [•] and composition �E ◦ E means the syntactical
substitution of E to • in �E which we write as �E [•/E [•]].

Pitts in [Pitts, 2002] use two notions strictly related to experiments and
evaluation contexts for a fragment of ML; they are called frame and frame
stack respectively.
The definition of evaluation context gives strategies of reduction, the variable
• in a evaluation context indicates, where in an expression, a reduction can
take place without affecting the context. Note that there is no experiment E [•]
which can bind a variable of M in the substitution E [M/•]. We do not add type
information in the definition of evaluation context but we remark that types are
always used implicitly.
It is easy to verify some properties of evaluation contexts.

Lemma 4.2.11. For each evaluation context �E there exist unique E1, · · · , En ∈
Exper such that E ≡ Id ◦ E1 ◦ · · · ◦ En.

Lemma 4.2.12 (Unique redex decomposition). For each R ∈ Rdx, R can
be written uniquely as E [C] where C is a value and E ∈ Exper is an experiment.

Proof. It follows immediately from definition of Rdx by case analysis.

Furthermore we can prove the following.

Lemma 4.2.13 (Unique decomposition). For all M ∈ Exp either M is a
value or M can be written uniquely as �E [R] where R is a redex.
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Proof. We can prove the lemma by structural induction. We suppose the lemma
valid for all subterms and analyze the different cases:

M ≡ C . Trivial

M ≡M1M2 .We have two different possibilities:

• M1 is a value, because M is well typed, it can be only a lambda
abstraction λx.M ′′, so we have the redex of rule (app tran)

• M1 is not a value, by induction hypothesis it can be written uniquely
as �EM1 [M ′] where M ′ is a redex, so we can write uniquely M1M2

as �EM1 [M
′]M2. Thus M can be written uniquely as �E [M ′] where

�E [•] ≡ �EM1 [•]M2

M ≡ fst(M ′) .We have two different possibilities:

• M ′ is a value, becauseM is well typed, it can be only a pair 〈M1,M2〉,
so we have the redex of the rule (fst tran)

• M ′ is not a value, by hypothesis it can be written uniquely as
�EM ′ [M ′′] where M ′′ is a redex, so we can write uniquely fst(M ′)
as fst(�EM ′ [M ′′]). Thus M can be written uniquely as �E [M ′′] where
�E [•] ≡ fst(�EM ′ [•]).

M ≡ snd(M ′) .We have two different possibilities:

• M ′ is a value, as before it can be only a pair 〈M1,M2〉, so we have
the redex of the rule (snd tran)

• M ′ is not a value, by hypothesis it can be written uniquely as
�EM ′ [M ′′] where M ′′ is a redex, so we can write uniquely snd(M ′)
as snd(�EM ′ [M ′′]). Thus M can be written uniquely as �E [M ′′] where
�E [•] ≡ snd(�EM ′ [•]).

M ≡ case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} . We have only two dif-
ferent possibilities:

• M ′ is a value, because M is well typed, it can be either inl(M ′′) or
inr(M ′′), the former is the redex of the rule (cond tran inl) the latter
the redex of the rule (cond tran inr)

• M ′ is not a value, by hypothesis it can be written
uniquely as �EM ′ [M ′′] where M ′′ is a redex, so we can write
uniquely (case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2})
as (case �EM ′ [M ′′] of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}).
Thus M can be written uniquely as �E [M ′′] where �E [•] ≡
(case �EM ′ [•] of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2})

M ≡ absµT.τ (M ′) . We have two different possibilities:

• M ′ is a value, but hence by definition of canonical terms also
absµT.τ (M ′) is a value.
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• M ′ is not a value, and by hypothesis it can be written uniquely as
�EM ′ [M ′′] where M ′′ is a redex, so we can write uniquely absµT.τ (M ′)
as absµT.τ (�EM ′ [M ′′]). Thus M can be written uniquely as �E [M ′′]
where �E [•] ≡ absµT.τ (�EM ′ [•]).

M ≡ rep(M ′) . We have two different possibilities:

• M ′ is a value, because M is well typed, it can be only absµT.τ (C),
so we have the redex of the rule (rep tran)

• M ′ is not a value, by hypothesis it can be written uniquely as
�EM ′ [M ′′] where M ′′ is a redex, so we can write uniquely rep(M ′)
as rep(�EM ′ [M ′′]). Thus M can be written uniquely as �E [M ′′] where
�E [•] ≡ rep(�EM ′ [•]).

By the last two lemmas we have the following.

Lemma 4.2.14 (Unique decomposition). For all M ∈ Exp, either M is a
value or M can be written uniquely as �E [E [C]] where C is a value, �E ∈ Ectx and
E ∈ Exper.

Now we are ready to add a generic rule to substitute all the simplification
reduction rules.

M −→M ′

�E [M ] −→ �E [M ′]
(red tran)

So the transition relation becomes the binary relation inductively defined as the
smallest relation closed under the basic rules in tables 4.3-4.6 and the general
rule (red tran). Note that (red tran) rule tells that transition relation is a special
kind of pre-congruence.
As an immediate consequence of this definition we can prove that transition is
deterministic:

Lemma 4.2.15 (Determinacy). If (M −→ N) and (M −→ N ′) then N ≡
N ′.

Proof. We can prove the lemma by induction on the structure of M . By lemma
4.2.13 we know that either M is a value or M has a unique decomposition
�E [M ′] where M ′ is a redex. We have three distinct cases. If M is a value
then we have no transition. If M is a redex and �E [•] ≡ • conclusion follows
immediately by a simple analysis of the basic rules. Otherwise by induction
hypothesis we have that if M ′ −→ M1 and M ′ −→ M2 then M1 ≡ M2, hence
we have M ≡ �E [M ′] −→ �E [M1] ≡ N and M ≡ �E [M ′] −→ �E [M2] ≡ N ′ but
�E [M1] ≡ �E [M2] and so N ≡ N ′.

Lemma 4.2.16 (Type preservation). If (M −→ N) and ∅ � M : τ then
∅ � N : τ .
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Proof. If M is a redex it follows immediately by an analysis of the different
case and type inversion 4.1.8. The only special cases are when M is equiva-
lent to (λx.M ′)N ,case inlτ1,τ2(M) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} and
case inrτ1,τ2(M) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}. We consider the first
case, the others are similar.
By determinacy of transition we have (λx.M ′)N −→ M ′[N/x]. Suppose
∅ � (λx.M ′)N : τ then by inversion rule 4.1.8-(3) we have that there exists
τ1 such that ∅ � λx.M ′ : τ1 → τ and ∅ � N : τ1. Furthermore by 4.1.8-
(2) we have that ∅, x : τ � M : τ hence by lemma 4.1.10-(ii) it follows that
∅ �M ′[N/x] : τ .
Otherwise if M is not a redex we can apply to it a simplification reduction, hence
by induction hypothesis and determinacy of typing the conclusion follows.

The above proposition justifies the fact that in our treatment of reduction
relation we have not considered type informations.
Giving an operational semantics via a transition relation is useful to stress the
importance, not only of the values, but also of the reduction strategies.
As evaluation relation, the transition relation is syntax-directed, but in a dif-
ferent way. Looking at the transition rules we can see that, differently from
evaluation relation, the analysis for the application of rules is not strictly on the
syntactic structure but rather on where in an expression a reduction is feasible.
It depends strictly from the language.
The idea behind transition relation is that the reduction rules are essentially
rewriting rules from terms to terms and the evaluation contexts tell which term
can be rewritten. Transition relation is particularly useful when you want to
prove properties about convergent and divergent derivations by induction on
the length of computations.
We define by a transition point of view some useful notion.

Definition 4.2.17. For all M ∈ Exp
M reduces (M −→) iff {∃ N | (M −→ N)}
M value ¬(M −→) iff {� N | (M −→ N)}
M evaluates to N (M ↓ N) iff {(M −→∗ N) for some value N}
M evaluates (M ↓) iff {∃ a value N | (M ↓ N))}
M diverges (M ↑) iff {∀ N (M −→∗ N) =⇒ (N −→)}

Since transition is deterministic we write (M −→∗ C) instead of (M ↓ C)
and (M −→ω) instead of (M ↑) when we want to emphasize that these are
defined from a transition relation. We will see in the next section that these
definitions of evaluation and of divergence correspond exactly to the ones given
by natural semantics rules. We first prove an easy lemma:

Lemma 4.2.18. If M is a value then M ∈ Can

Proof. We prove the contrapositive by induction on the structure of M . Assume
M /∈ Can , we show two cases, the other are similar.

M ≡M1M2 .We have two different possibilities:

• M1 is a value, by induction hypothesis and because M is well typed,
it can be only a lambda abstraction λx.M ′′, and since we can apply
rule (app tran) we have that M is not a value.
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• M1 is not a value hence there exists M ′
1 such that M1 −→M ′

1. Thus
by (red tran) rule we have M1M2 −→ M ′

1M2 and hence it is not a
value.

M ≡ fst(M1) .We have two different possibilities:

• M1 is a value, by induction hypothesis and because M is well typed,
it can be only a pair 〈M1,M2〉, and since we can apply rule (fst tran)
we have that M is not a value.

• M1 is not a value hence there exists M ′
1 such that M1 −→M ′

1. Thus
by (red tran) rule we have fst(M1) −→ fst(M ′

1) and hence it is not
a value.

We now state an important result which follows immediately from lemma
4.2.13 and lemma 4.2.15:

Lemma 4.2.19. For all M ∈ Exp we have that either exists C ∈ Can unique
such that M ⇓ C or M ⇑.

Proof. For each M ∈ Exp by lemma 4.2.13 we have that either M is a value so
M −→0 M and hence M ⇓ or it can be written uniquely as �E [R] where R ∈ Rdx .
So R −→ R′ where R′ is not necessarily in Rdx and by (red tran) we have:

R −→ R′

�E [R] −→ �E [R′]

and hence M reduce to a term N ≡ �E [R′] and by lemma 4.2.15 this is unique.
Now again by lemma 4.2.13 we have that N is either a value or it reduces
and by applying repeatedly the above argument by lemma 4.2.15 we have that
either exists unique C ∈ Can such that M −→∗ C or it do not exists and then
∀ N (M −→∗ N) =⇒ (N −→) hence M ⇑.

Examples of transition We show two examples of transition.The two exam-
ples lead to the interesting considerations of the following sections.
As a first example we show the convergence of the term

(fst〈λx.snd(x),Ωτ 〉)〈Ωτ , λz.z〉
already used in the example for evaluation relation. We have the following proof.

fst〈λx.snd(x),Ωτ 〉 −→ λx.snd(x)
fst〈λx.snd(x),Ωτ 〉〈Ωτ , λz.z〉 −→ (λx.snd(x))〈Ωτ , λz.z〉 −→ snd〈Ωτ , λz.z〉 −→ λz.z

Usually when we write a proof by transition we do not write the premisses of
the rules so it becomes:

fst〈λx.snd(x),Ωτ 〉〈Ωτ , λz.z〉 −→ (λx.snd(x))〈Ωτ , λz.z〉 −→ snd〈Ωτ , λz.z〉 −→ λz.z

which can finally be rewritten as:

(fst〈λx.snd(x),Ωτ 〉)〈Ωτ , λz.z〉 −→3 λz.z
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The second example show the divergence of the term Ωτ1 .

Ωτ1 ≡ (λx.rep(x)x)absµT.τ (λx.rep(x)x) −→
rep(absµT.τ (λx.rep(x)x))absµT.τ (λx.rep(x)x) −→

(λx.rep(x)x)absµT.τ (λx.rep(x)x) −→· · ·

It is easy to verify that the above is an infinite sequence of transitions.

Following Gordon in [Gordon, 1995], we now characterize inductively and
coinductively respectively the notions of convergence and divergence by a tran-
sition relation.

Inductive Characterization of Convergence By definition 4.2.17 we have
the set of term which can be evaluated to other ↓ defined as:

↓ def= {(M,N) | M ↓ N} = {(M,N) | (M −→∗ N) & ¬(N −→)}

Taken the operator ψ↓ : P(Exp × Exp) → P(Exp × Exp) defined as:

ψ↓(X) def= {(N,N) | ¬(N −→)} ∪ {(M,N) | ∃N ′ (M −→ N ′) & (N ′, N) ∈ X}

we can easily see that it is monotonic. Hence it possesses a least fixpoint,
µX.ψ↓(X) which is the least ψ↓-closed set and since rules are all finitary we can
define it constructively with respect to ⊆ and with ∅ as basis. We can prove
that ↓ can be inductively characterized.

Theorem 4.2.20. ↓ = µX.ψ↓(X)

Proof.

(µX.ψ↓(X) ⊆↓) .
By induction we only need to show that ↓ is ψ↓-closed: ψ↓(↓) ⊆↓.
Suppose that (M,N) is in ψ↓(↓), we have two cases:

• (M,N) ∈ {(N,N) | ¬(N −→)}, so (N ≡ M) and we have that
¬(M −→) but we know that M −→0 M and so M −→∗ M so we
have that (M,M) ∈ ↓.

• (M,N) ∈ {(M,N) | ∃N ′ (M −→ N ′) & (N ′, N) ∈ ↓} we have
((M −→ N ′) & (N ′, N) ∈ ↓) hence (M −→ N ′ −→∗ N) & ¬(N −→),
which can be rewritten as (M −→∗ N) & ¬(N −→) and so (M,N) ∈
↓.

(↓⊆ µX.ψ↓(X)) .
We know that if (M,N) ∈ µX.ψ↓(X) then (M,N) ∈ ψ↓(µX.ψ↓(X)) by
the fixpoint property. Suppose (M,N) ∈ ↓ then (M −→∗ N) & ¬(N −→),
so ∃ n (M −→n N) & ¬(N −→). We prove the assertion by induction on
n.

• if (n = 0) then we have (M −→0 N) & ¬(N −→) but we know
that the only term N with the property M −→0 N is M so we have
¬(M −→) and (M,M) ∈ µX.ψ↓(X).
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• suppose the assertion valid for n, hence for n we have that for all M ′

such that if (M ′ −→n N) & ¬(N −→) then (M ′, N) ∈ µX.ψ↓(X).
We want to show that if (M −→n+1 N) & ¬(N −→) then also
(M,N) ∈ µX.ψ↓(X). If (M −→n+1 N) & ¬(N −→) we know that
∃ M ′ (M −→ M ′ −→n N) & ¬(N −→), by induction hypotesis
we have (M ′, N) ∈ µX.ψ↓(X) and so (M −→ M ′) & ((M ′, N) ∈
µX.ψ↓(X)) hence (M,N) ∈ ψ↓(µX.ψ↓(X)) but it is equal to
(M,N) ∈ µX.ψ↓(X).

Coinductive Characterization of Divergence By definition 4.2.17 we
have the set of divergent terms ↑ defined as:

↑ def= {M | ∀ N (M −→∗ N) =⇒ (N −→)}

Taken the operator ψ↑ : P(Exp) → P(Exp) defined as:

ψ↑(X) def= {M | ∃N (M −→ N) & N ∈ X}

we can easily see that it is monotonic. Hence it possess a greatest fixpoint,
νX.ψ↑(X) which is the largest ψ↑-dense set and since rules are all deterministic
we can define it constructively with respect to ⊆ and with Exp as basis. We
can prove that ↑ can be coinductively characterized by the following theorem.

Theorem 4.2.21. ↑ = νX.ψ↑(X)

Proof.

(↑⊆ νX.ψ↑(X)) .
By coinduction we only need to show that ↑ is ψ↑-dense: ↑ ⊆ ψ↑(↑).
Suppose that M is in ↑, we know that whenever (M −→∗ M ′) then
(M ′ −→), in particular ∃ N (M −→ N) & (N −→). We only need
to show that N ∈ ↑. Now if (N −→∗ N ′) also (M −→∗ N ′) and by
hypothesis (N ′ −→) hence N ∈ ↑.

(νX.ψ↑(X) ⊆↑) .
By definition of φ⇑, for each X ⊆ P(Exp) we have that M ∈ ψn

↑ (X) if and
only if there exist Nn−1 ∈ ψn−1

↑ (X), . . . , N1 ∈ ψ↑(X), N ∈ X such that
M −→ Nn−1 −→ · · · −→ N1 −→ N , since transition is deterministic they
are unique.
Suppose that M is in νX.ψ↑(X), by fixpoint property ∀n ∈ N we have
νX.ψ↑(X) = ψn

↑ (νX.ψ↑). Hence ∀n ∈ N we have M ∈ ψn
↑ (νX.ψ↑) and

by the above remarks there exist unique M ′
n such that (M −→n M ′

n) and
M ′

n ∈ νX.ψ↑(X) so M ′ −→. Thus we have M ∈ ↑.

Furthermore we can coinductively characterize ↑ in a different manner which
will be useful in the sequel. Taken the operator ψ+

↑ : P(Exp) → P(Exp) defined
as:

ψ+
↑ (X) def= {M | ∃N (M −→+ N) & N ∈ X}
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we can easily see that it is monotonic. Hence it possess a greatest fixpoint,
νX.ψ+

↑ (X) which is the largest ψ+
↑ -dense set and since rules are all deterministic

we can define it constructively with respect to ⊆ and with Exp as basis. The +
in ψ+

↑ means that it can be considered as the transitive closure of ψ↑. We can
prove the following.

Theorem 4.2.22. ↑ = νX.ψ+
↑ (X)

Proof. By theorem 4.2.21 we have that we only need to prove that νX.ψ+
↑ (X) is

ψ↑-dense and analogously that νX.ψ↑(X) is ψ+
↑ -dense. The latter is immediately

by definition of ψ+
↑ and since νX.ψ↑(X) = ψ↑(νX.ψ↑(X)). For the former take

M ∈ νX.ψ+
↑ (X). By fixpoint property we have that there exists N such that

M −→n+1 N and N ∈ νX.ψ+
↑ (X). If n = 0 we have the conclusion. Otherwise

we have that there exists M1 such that M −→ M1 and M1 −→n N but hence
M1 ∈ νX.ψ+

↑ (X) and so the conclusion.

We sometimes write M −→ω instead of M ∈↑ when we want to stress the
fact that a term M ∈↑ is the beginning of an infinitely long computation. An
easy corollary to theorem 4.2.22 is the following.

Corollary 4.2.23. If M −→∗ N and M −→ω then N −→ω.

4.2.3 Relating Evaluation and Transition

In the definition of an operational semantics we are interested in giving a
partial function from programs to values. This function can be defined as:

{ (M,C) | (M ⇓ C) }
it is partial because not all M evaluate to some C. We quote a phrase of Pitts
in [Pitts, 1994] with reference to this partial function:

The evaluation relation provides a convenient formulation for reason-
ing about properties of this partial function, but it is less convenient
for calculating the value of the partial function (if any) at particular
programs.

So, in order to calculate the value of the partial function for a particular pro-
gram, we must use another relation instead of evaluation relation.
Transition relation captures the single steps of computations so can be useful
for calculating values; furthermore, in the last section, we saw how we can use
it to define the notion of convergence. We can think of using evaluation relation
in reasoning about properties and transition relation calculating the values of
the partial function, but this can be done if and only if the evaluation relation
agrees with the transition relation.
We now prove that our definition of evaluation relation is sound with respect
to transition relation. We only need to remember that in order to capture com-
putation we need the reflexive-transitive closure of the transition relation and
that canonical terms do not reduce.

Theorem 4.2.24 (Soundness).

⇓ ⊆ ↓
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Proof. We want to show that for all (M,C) ∈⇓ then (M,C) ∈↓. This can be
rewritten as:

(M ⇓ C) =⇒ (M −→∗ C)

We prove this by induction on height of evaluation trees depending on the
structure of M .

• M ≡ C
(C ⇓ C) =⇒ (C −→0 C)

• M ≡M1M2

By lemma 4.2.3 (M1M2 ⇓ C) if and only if (M1 ⇓ λx.M ′) and
(M ′[M2/x] ⇓ C). By induction hypothesis (M1 ⇓ λx.M ′) =⇒ (M1 −→∗

λx.M ′) and M ′[M2/x] ⇓ C =⇒ (M ′[M2/x] −→∗ C), so by (app tran) and
transitivity we have the conclusion.

• M ≡ fst(M ′)
By lemma 4.2.3 (fst(M ′) ⇓ C) if and only if (M ′ ⇓ 〈M1,M2〉) and (M1 ⇓
C). By induction hypothesis (M ′ ⇓ 〈M1,M2〉) =⇒ (M ′ −→∗ 〈M1,M2〉)
and (M1 ⇓ C) =⇒ (M1 −→∗ C), so by (fst tran) and transitivity we have
the conclusion.

• M ≡ snd(M ′)
By lemma 4.2.3 (snd(M ′) ⇓ C) if and only if (M ′ ⇓ 〈M1,M2〉) and (M2 ⇓
C). By induction hypothesis (M ′ ⇓ 〈M1,M2〉) =⇒ (M ′ −→∗ 〈M1,M2〉)
and (M2 ⇓ C) =⇒ (M2 −→∗ C), so by (snd tran) and transitivity we have
the conclusion.

• M ≡ case M1 of {inlτ1,τ2(x1).M2 | inrτ1,τ2(x2).M3}
By lemma 4.2.3 we have two cases depending either (M1 ⇓ inl(M ′)) or
(M1 ⇓ inr(M ′)).
If (M1 ⇓ inl(M ′)) then (case M1 of {inlτ1,τ2(x1).M2 | inrτ1,τ2(x2).M3} ⇓
C) =⇒ (M2[M ′/x1] ⇓ C), by induction hypothesis we have
(M1 ⇓ inl(M ′)) =⇒ (M1 −→∗ inl(M ′)) and (M2[M ′/x1] ⇓ C) =⇒
(M2[M ′/x1] −→∗ C), so by (cond tran inl) and transitivity we have the
conclusion.
Similarly if (M1 ⇓ inr(M ′)) then
(case M1 of {inlτ1,τ2(x1).M2 | inrτ1,τ2(x2).M3} ⇓ C) =⇒ (M3[M ′/x2] ⇓
C), by induction hypothesis we have (M1 ⇓ inr(M ′)) =⇒ (M1 −→∗

inr(M ′)) and (M3[M ′/x2] ⇓ C) =⇒ (M3[M ′/x2] −→∗ C), so by (cond
tran inr) and transitivity we have the conclusion.

• M ≡ abs(M1)
By lemma 4.2.3 (abs(M1) ⇓ C) if and only if (M1 ⇓ C′) and C ≡
absµT.τ (C′)). By induction hypothesis (M1 ⇓ C′) =⇒ (M1 −→∗ C′)
so by (abs simpl) we have the conclusion.

• M ≡ rep(M1)
By lemma 4.2.3 (rep(M1) ⇓ C) if and only if (M1 ⇓ absµT.τ (C′)). By
induction hypothesis (M1 ⇓ absµT.τ (C′)) =⇒ (M1 −→∗ absµT.τ (C′)) so
by (rep tran) we have the conclusion.
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We now want to prove that evaluation relation is complete with respect to
transition relation but we prove first the following:

Lemma 4.2.25. For all M,C:

if (M −→M ′) then (M ′ ⇓ C) =⇒ (M ⇓ C)

Proof. We prove the lemma by induction on the proof of the transition (M −→
M ′). To prove the lemma for basic reduction rules we do not need assumption
other then (M ′ ⇓ C). We proceed by cases:

• M ≡ (λx.M1)M2 −→ M1[M2/x] ≡M ′

assume (M1[M2/x] ⇓ C). Then, as (λx.M1 ⇓ λx.M1), an application of
rule (+ app) shows that (λx.M1)M2 ⇓ C).

• M ≡ fst(〈M1,M2〉) −→ M1 ≡M ′

assume (M1 ⇓ C). Then, as (〈M1,M2〉 ⇓ 〈M1,M2〉), an application of
rule (+ fst) shows that (fst(〈M1,M2〉) ⇓ C).

• M ≡ snd(〈M1,M2〉) −→ M2 ≡M ′

assume (M2 ⇓ C). Then, as (〈M1,M2〉 ⇓ 〈M1,M2〉), an application of
rule (+ snd) shows that (snd(〈M1,M2〉) ⇓ C).

• M ≡ case inl(M ′) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
M1[M ′/x1] ≡M ′

assume (M1[M ′/x1] ⇓ C). Then, as (inl(M ′) ⇓
inl(M ′)), an application of rule (+ cond inl) shows that
(case inl(M ′) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇓ C).

• M ≡ case inr(M ′) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
M2[M ′/x2] ≡M ′

assume (M2[M ′/x2] ⇓ C). Then, as (inr(M ′) ⇓
inr(M ′)), an application of rule (+ cond inr) shows that
(case inr(M ′) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇓ C),

• M ≡ rep(absµT.τ (C)) −→ C ≡M ′

(absµT.τ (C) ⇓ absµT.τ (C)), then an application of rule (+ rep) shows
that (rep(absµT.τ (C)) ⇓ C)).

To prove the reduction step rules we add an assumption. We assume the lemma
is valid for (N −→ N ′), the premisses of the rules.

• M ≡ NM1 −→ N ′M1 ≡M ′

assume (N ′M1 ⇓ C), then the only possibility is that (N ′ ⇓ λx.M2)
and (M2[M1/x] ⇓ C). By induction hypothesis (N ⇓ λx.M2) and an
application of rule (+ app) shows that (N(M1) ⇓ C).

• M ≡ fst(N) −→ fst(N ′) ≡M ′

assume (fst(N ′) ⇓ C), then the only possibility is that (N ′ ⇓ 〈M1,M2〉)
and (M1 ⇓ C). By induction hypothesis (N ⇓ 〈M1,M2〉) and an applica-
tion of rule (+ fst) shows that fst(N) ⇓ C).

• M ≡ snd(N) −→ snd(N ′) ≡M ′

assume (snd(N ′) ⇓ C), then the only possibility is that (N ′ ⇓ 〈M1,M2〉)
and (M2 ⇓ C). By induction hypothesis (N ⇓ 〈M1,M2〉) and an applica-
tion of rule (+ snd) shows that snd(N) ⇓ C).
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• M ≡ case N of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
case N ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ≡M ′

assume (case N ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇓ C), then
we have only two possibilities: (N ′ ⇓ inl(N1) & (M1[N1/x1] ⇓ C) or
(N ′ ⇓ inr(N1) & (M2[N1/x2] ⇓ C).
If (N ′ ⇓ inl(N1) & (M1[N1/x1] ⇓ C), by induction hypothesis
(N ⇓ inl(N1)) and an application of rule (+ cond inl) shows that
(case N of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇓ C).
Otherwise if (N ′ ⇓ inr(N1) & (M2[N1/x2] ⇓ C), by induction hypothesis
(N ⇓ inr(N1) and an application of rule (+ cond inr) shows that
(case N of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇓ C).

• M ≡ rep(N) −→ rep(N ′) ≡M ′

assume (rep(N ′) ⇓ C), then the only possibility is that (N ′ ⇓
absµT.τ (N1)) and (N1 ⇓ C). By induction hypothesis (N ⇓ absµT.τ (N1))
and an application of rule (+ rep) shows that (rep(N) ⇓ C).

• M ≡ abs(N) −→ abs(N ′) ≡M ′

assume (abs(N ′) ⇓ C), then the only possibility is that (N ′ ⇓ C′) and
(C ≡ abs(C′)). By induction hypothesis (N ⇓ C′) and an application of
rule (+ abs) shows that (abs(N) ⇓ C).

We can now prove completeness theorem.

Theorem 4.2.26 (Completeness).

↓ ⊆ ⇓
Proof. We want to show that for all (M,N) ∈ ↓ we have (M,N) ∈ ⇓. We know
that if (M,N) ∈↓ then ¬(N −→) and remembering that the class of terms which
do not reduce are exactly terms in canonical form, we can rewrite the thesis as:

(M −→∗ C) =⇒ (M ⇓ C)

We prove this by induction on the number of step:

Base The base case is trivial.
(M −→0 C) =⇒ (M ≡ C), so we have C ⇓ C.

Inductive step We assume that for all M,C if (M −→n C) then (M ⇓ C)
and we want to show that if (M −→n+1 C) then (M ⇓ C).
If (M −→n+1 C) then by transitivity (M −→ M ′ −→n C) so we have
(M −→M ′) and by induction hypothesis (M ′ ⇓ C). By lemma 4.2.25 we
obtain (M ⇓ C)

Corollary 4.2.27.
⇓ = ↓

Now we have two relations which capture convergence, one useful in reason-
ing about programs, the other useful in calculating the value of the programs.
Furthermore, we have an inductive characterization of evaluation relation in
terms of transition relation. This justifies definition 4.2.17.
We are interested in finding out a direct correspondence beetween the proofs of
convergence through the two relations.
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4.2.4 Relating divergence and transition

We have defined divergence coinductively through big-step rules, we have
also characterized divergence coinductively through transition relation. We now
want to show that the two definitions agree. We first show that the big-step
coinductive definition of divergence is sound with respect to divergence coin-
ductively defined by transition steps.

Theorem 4.2.28 (Soundness).

⇑ ⊆ ↑
Proof. We know that ↑ is defined coinductively as νX.ψ↑(X) so by coinduction
we only need to show that ⇑ is ψ↑-dense. Remembering the definition of ψ↑, we
want to show:

⇑ ⊆ {M | ∃N (M −→ N) & N ∈⇑}
which can be rewritten:

M ⇑ =⇒ (∃N (M −→ N) & N ∈⇑)

Assume M ⇑, we prove this by induction on the structure of M :

M ≡M1M2 we have two distinct cases:

• (M1 ⇑). By induction hypothesis (M1 −→M ′
1) and M ′

1 ⇑, from (red
tran) we have (M1M2 −→ M ′

1M2) and an application of (− app)
shows that M ′

1M2 ⇑.

• (M1 ⇓ λx.M) & (M [M2/x] ⇑). We have again two sub-cases: if
M1 ≡ λx.M ′ then by (app tran) (λx.M ′M2 −→ M [M2/x]) and so
the conclusion; otherwise (M1 −→ M ′

1), by lemma 4.2.25 we have
M ′

1 ⇓ λx.M ′ and an application of rule(− app lambda) shows that
M ′

1M2 ⇑.

M ≡ fst(M ′) we have two distinct cases:

• (M ′ ⇑). By induction hypothesis (M ′ −→M ′′) and M ′′ ⇑, from (red
tran) we have (fst(M ′) −→ fst(M ′′)) and an application of (− fst)
shows that fst(M ′′) ⇑.

• (M ′ ⇓ 〈M1,M2〉) & (M1 ⇑). We have again two sub-cases: if
(M ′ ≡ 〈M1,M2〉) then by (fst tran) (fst(〈M1,M2〉) −→ M1) and
so the conclusion; otherwise (M ′ −→ M ′′), by lemma 4.2.25 we have
(M ′′ ⇓ 〈M1,M2〉) and an application of rule (− fst pair) shows that
fst(M ′′) ⇑.

M ≡ snd(M ′) we have two distinct cases:

• (M ′ ⇑). By induction hypothesis (M ′ −→M ′′) and M ′′ ⇑, from (red
tran) we have (snd(M ′) −→ snd(M ′′)) and an application of rule
(− snd) shows that snd(M ′′) ⇑.

• (M ′ ⇓ 〈M1,M2〉) & (M2 ⇑). We have again two sub-cases: if (M ′ ≡
〈M1,M2〉) then by (snd tran) (snd(〈M1,M2〉) −→ M2) and so the
conclusion; otherwise (M ′ −→M ′′), by lemma 4.2.25 we have (M ′′ ⇓
〈M1,M2〉) and an application (− snd pair) shows that snd(M ′′) ⇑.
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M ≡ case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} we have three distinct
cases:

• (M ′ ⇑). By induction hypothesis (M ′ −→M ′′) and M ′′ ⇑, from (red
tran) we have (case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
case M ′′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2})
and an application of rule (− cond) shows that
case M ′′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇑.

• (M ′ ⇓ inl(M ′′)) & (M1[M ′′/x1] ⇑). We have again
two sub-cases: if (M ′ ≡ inl(M ′′)) then by (cond tran
inl) (case inl(M ′′) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
M1[M ′′/x1]) and so the conclusion; otherwise (M ′ −→M), by lemma
4.2.25 we have (M ⇓ inl(M ′′)) and an application of (− cond inl)
shows that case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇑.

• (M ′ ⇓ inr(M ′′)) & (M2[M ′′/x2] ⇑). We have again
two sub-cases: if (M ′ ≡ inr(M ′′)) then by (cond tran
inr) (case inr(M ′′) of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
M2[M ′′/x2]) and so the conclusion; otherwise (M ′ −→M), by lemma
4.2.25 we have (M ⇓ inr(M ′′)) and an application of (− cond inr)
shows that case M of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} ⇑.

M ≡ rep(M ′) The only possibility is M ′ ⇑ hence by induction hypothesis
(M ′ −→M ′′) & M ′′ ⇑, from (red tran) we have (rep(M ′) −→ rep(M ′′))
and an application of rule (− rep) shows that rep(M ′′) ⇑.

M ≡ absµT.τ (M ′) The only possibility is M ′ ⇑ hence by induction hy-
pothesis (M ′ −→ M ′′) & M ′′ ⇑, from (red tran) we have
(absµT.τ (M ′) −→ absµT.τ (M ′′)) and an application of rule (− abs) shows
that absµT.τ (M ′′) ⇑.

Theorem 4.2.29 (Completeness).

↑ ⊆ ⇑

Proof. We know that ⇑ is defined coinductively as νX.φ⇑(X) so by coinduction
we only need to show that ↑ is φ⇑-dense. Remembering the definition of φ⇑, we
want to show:

↑ ⊆ {M | ∃ M1 ⇓ C1 · · ·Mn ⇓ Cn Mn+1 ⇑
M ⇑ , (n ≥ 0) & Mn+1 ∈↑}

which can be rewritten:

M −→ω =⇒ (∃ M1 ⇓ C1 · · ·Mn ⇓ Cn Mn+1 ⇑
M ⇑ , (n ≥ 0) & Mn+1 −→ω)

We prove this by induction on the structure of M . Assume M −→ω.

M ≡M1M2 to prove that it is φ⇑-dense we need to show that either M1 −→ω

or there exists λx.M ′ such that M1 ⇓ λx.M ′ and M ′[M2/x] −→ω. Since
M1M2 −→ω we have two cases:
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• (M1M2 −→ M ′
1M2). By lemma 4.2.19 either M1 −→ω or there ex-

ists λx.M ′ ∈ Can such that M1 −→+ λx.M ′. If the former, the
conclusion follows immediately. Otherwise by (red tran) rule we
have M1M2 −→+ λx.M ′M2 but by (app tran) rule λx.M ′M2 −→
M ′[M2/x] hence M1M2 −→+ M ′[M2/x] and by corollary 4.2.23
M ′[M2/x] −→ω, the conclusion.

• (M1M2 −→ M ′[M2/x] where M1 ≡ λx.M ′). By corollary 4.2.23 the
conclusion follows immediately.

M ≡ fst(M ′) to prove that it is φ⇑-dense we need to show that either M ′ −→ω

or there exists 〈M1,M2〉 such that M ′ ⇓ 〈M1,M2〉 and M1 −→ω. Since
fst(M ′) −→ω we have two cases:

• (fst(M ′) −→ fst(M ′′)). By lemma 4.2.19 either M ′ −→ω or there
exists 〈M1,M2〉 ∈ Can such that M ′ −→+ 〈M1,M2〉. If the for-
mer, the conclusion follows immediately. Otherwise by (red tran)
rule we have fst(M ′) −→+ fst(〈M1,M2〉) and by (fst tran) rule
fst(〈M1,M2〉) −→ M1 hence fst(M ′) −→+ M1 and by corollary
4.2.23 M1 −→ω, the conclusion.

• (fst(M ′) −→ M1 where M ′ ≡ 〈M1,M2〉). By corollary 4.2.23 the
conclusion follows immediately.

M ≡ snd(M ′) to prove that it is φ⇑-dense we need to show that either M ′ −→ω

or there exists 〈M1,M2〉 such that M ′ ⇓ 〈M1,M2〉 and M2 −→ω. Since
snd(M ′) −→ω we have two cases:

• (snd(M ′) −→ snd(M ′′)). By lemma 4.2.19 either M ′ −→ω or there
exists 〈M1,M2〉 ∈ Can such that M ′ −→+ 〈M1,M2〉. If the for-
mer, the conclusion follows immediately. Otherwise by (red tran)
rule we have snd(M ′) −→+ snd(〈M1,M2〉) and by (snd tran) rule
snd(〈M1,M2〉) −→ M2 hence snd(M ′) −→+ M2 and by corollary
4.2.23 M2 −→ω, the conclusion.

• (snd(M ′) −→ M2 where M ′ ≡ 〈M1,M2〉). By corollary 4.2.23 the
conclusion follows immediately.

M ≡ case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} to prove that it is φ⇑-
dense we need to show that either M ′ −→ω or there exists inl(M ′′) ∈ Can
such that M ′ ⇓ inl(M ′′) and M1[M ′′/x1] −→ω or there exists inr(M ′′) ∈
Can such that M ′ ⇓ inr(M ′′) and M2[M ′′/x2] −→ω. Since fst(M ′) −→ω

we have three cases:

• (case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→
case M ′′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}). By lemma
4.2.19 either M ′ −→ω or there exists unique C ∈ Can such that
M ′ −→+ C. In the former case we have the conclusion. In the latter
we have (case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→+

case C of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}) where C can be
either inl(M ′′) or inl(M ′′) for some M ′′. If C ≡ inl(M ′′)
then case C of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}) −→
M1 and so by transitivity and by corollary 4.2.23 we
have the conclusion. Otherwise C ≡ inr(M ′′) then
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case C of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2}) −→ M2 and
again by transitivity and by corollary 4.2.23we have the conclusion.

• (case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→ M1[M ′′/x1]
where M ′ ≡ inl(M ′′)). By corollary 4.2.23 the conclusion follows
immediately.

• (case M ′ of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} −→ M2[M ′′/x2]
where M ′ ≡ inr(M ′′). By corollary 4.2.23 the conclusion follows
immediately.

M ≡ rep(M ′) to prove that it is φ⇑-dense we need to show that M ′ −→ω. By
lemma 4.2.19 either M ′ −→ω or there exists absµT.τ (C) ∈ Can such that
M ′ −→+ absµT.τ (C). If the former, the conclusion follows immediately.
Otherwise by theorem 4.2.26 and (+ rep) rule we have rep(M ′) ⇓ C which
contradict the assumption that rep(M ′) −→ω .

M ≡ absµT.τ (M ′) to prove that it is φ⇑-dense we need to show that M ′ −→ω.
By lemma 4.2.19 either M ′ −→ω or there exists C ∈ Can such that
M ′ −→+ C. If the former, the conclusion follows immediately. Otherwise
by theorem 4.2.26 and (+ abs) rule we have absµT.τ (M ′) ⇓ absµT.τ (C)
which contradict the assumption that rep(M ′) −→ω.

By soundness and completeness we have the following corollary:

Corollary 4.2.30.
⇑ = ↑

So we have two ways to define coinductively divergence. We note that the
above corollary justifies the fact that in our treatment of divergence we have
not considered type informations.
As for the case of convergence, one relation is useful to reason about properties
of divergent terms and the other describes better infinite computation paths.
Again we are interested in finding out a direct correspondence beetween the
proofs of divergence through the two relations.



Chapter 5

From Big-step to Small-step

The thesis is then this: manuals for translating one language into
another can be set up in divergent ways, all compatible with the
totality of speech dispositions, yet incompatible with one another.
In countless places they will diverge in giving, as their respective
translations of a sentence of the one language, sentences of the other
language which stand to each other in no plausible sort of equivalence
however loose.

W.V. Quine. “Word and Object”

Soundness theorem 4.2.24 shows that if M ⇓ C then M −→∗ C, soundness
theorem 4.2.28 shows that if M ⇑ then M −→ω. Furthermore lemmas 4.2.4 and
4.2.15 show that both evaluation and transition are deterministic, hence we can
suppose that we can map the proof of M ⇓ C to the proof of M −→∗ C and
the proof of M ⇑ to the proof of M −→ω respectively.
We know that the proof by big-step semantics is a possibly infinite tree where
the leaves are axioms, hence the only essential assumptions for our proof are
the axioms, in particular since the only axiom scheme is (+ can) we are only
interested in canonical terms.
Moreover we have seen that our big-step rules are instances of L-rules, this
implies that the order of occurrence of canonical terms is important. So we can
suppose that we can characterize a proof by big-step semantics by the sequence
of the axioms which occur in its proof tree. Now we want to formalize this
intuition.
The sequel is a refinement of the method proposed by Ibraheem and Schmidt
in [Ibraheem and Schmidt, 2000].

5.1 Proof Assumptions

For convergence judgement we can give the following definition.

Definition 5.1.1. The convergence proof assumption of a convergence
judgement M ⇓ C

HP (M ⇓ C) ∈ Can+

is defined as follow:

59
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• HP (C ⇓ C) = 〈C〉
• HP (M ⇓ C) = 〈C1

1 , · · · , Ck1
1 , · · · , C1

n, · · · , Ckn
n 〉

if there exists a rule
M1 ⇓ C1 · · ·Mn ⇓ Cn

M ⇓ C
such that:

HP (M1 ⇓ C1) = 〈C1
1 , · · · , Ck1

1 〉
...

HP (Mn ⇓ Cn) = 〈C1
n, · · · , Ckn

n 〉

where Can+ is the set of all finite not empty sequences of canonical terms.

Analogously for divergence judgement we have the following.

Definition 5.1.2. The divergence proof assumption of a divergence judge-
ment M ⇑

HP (M ⇑) ∈ Canω

is defined as follow:

HP (M ⇑) = 〈C1
1 , · · · , Ck1

1 , · · · , C1
n, · · · , Ckn

n , C1
n+1 · · ·Ckn+1

n+1 · · · 〉

if there exists a rule

M1 ⇓ C1 · · ·Mn ⇓ Cn Mn+1 ⇑
M ⇑

such that:

HP (M1 ⇓ C1) = 〈C1
1 , · · · , Ck1

1 〉
...

HP (Mn ⇓ Cn) = 〈C1
n, · · · , Ckn

n 〉
HP (Mn+1 ⇑) = 〈C1

n+1, · · · , Ckn+1
n+1 , · · · 〉

where Canω is the set of all infinite sequences of canonical terms.

Hence we can define a total function HP : Exp → Can≤ω, where Can≤ω is
the set of all non empty finite and infinite sequences of canonical terms.

Definition 5.1.3. The proof assumption of a term M ∈ Exp

HP (M) ∈ Can≤ω

is defined as:

• HP (M) = HP (M ⇓ C) if M ⇓ C
• HP (M) = HP (M ⇑) if M ⇑
The set of all proof assumptions is denoted by Hyp. It is easy to prove the

following lemma.
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Lemma 5.1.4. For each M ∈ Exp and S1, S2 ∈ Can≤ω, if HP (M) = S1 and
HP (M) = S2 then S1 = S2.

Proof. We first consider the case where there exists C ∈ Can such that M ⇓ C
and we prove the statement by induction.
The case HP (C ⇓ C) is trivial. Suppose HP (M ⇓ C) = 〈C1, · · · , Cn〉 and
HP (M ⇓ C) = 〈C′

1, · · · , C′
n〉, by definition of convergence proof assumption we

have that there exist:

M ′′
1 ⇓ C′′

1 · · ·M ′′
n ⇓ C′′

n

M ⇓ C
M ′′′

1 ⇓ C′′′
1 · · ·M ′′′

m ⇓ C′′′
m

M ⇓ C
but by Inversion (lemma 4.2.3) we have that n = m and:

M ′′
1 ≡M ′′′

1 , C
′′
1 ≡ C′′′

1 , · · · ,M ′′
n ≡M ′′′

n , C
′′
n ≡ C′′′

n

By induction hypothesis we have:

HP (M ′′
1 ⇓ C′′

1 ) = 〈C1
1 , · · · , Ck1

1 〉 = HP (M ′′′
1 ⇓ C′′′

1 )
...

HP (M ′′
n ⇓ C′′

n) = 〈C1
n, · · · , Ckn

n 〉 = HP (M ′′′
n ⇓ C′′′

n )

whence the conclusion.
We now treat the case where M ⇑. We prove it by an analysis of the case and by
using the fact that ⇑=

⋂
n∈N

φn
⇑(Exp). Suppose HP (M ⇑) = 〈C1, · · · , Cn, · · · 〉

and HP (M ⇑) = 〈C′
1, · · · , C′

n, · · · 〉. By definition of divergence proof assump-
tion we have that there exist:

M ′′
1 ⇓ C′′

1 · · ·M ′′
n ⇓ C′′

n

...
M ′′

n+1 ⇑
M ⇑

M ′′′
1 ⇓ C′′′

1 · · ·M ′′′
m ⇓ C′′′

m

...
M ′′′

n+1 ⇑
M ⇑

such that

HP (M ′′
1 ⇓ C′′

1 ) = 〈C1
1 , · · · , Ck1

1 〉 HP (M ′′′
1 ⇓ C′′′

1 ) = 〈Ĉ1
1 , · · · , Ĉk1

1 〉
...

HP (M ′′
n ⇓ C′′

n) = 〈C1
n, · · · , Ckn

n 〉 HP (M ′′′
n ⇓ C′′′

n ) = 〈Ĉ1
n, · · · , Ĉkn

n 〉
HP (M ′′

n+1 ⇑) = 〈C1
n+1, · · · , Ckn+1

n+1 , · · · 〉 HP (M ′′′
n+1) = 〈Ĉ1

n+1, · · · , Ĉkn+1
n+1 , · · · 〉

but by Inversion lemma 4.2.7 we have that n = m and:

M ′′
1 ≡M ′′′

1 , C
′′
1 ≡ C′′′

1 , · · · ,M ′′
n ≡M ′′′

n , C
′′
n ≡ C′′′

n ,M
′′
n+1 ≡M ′′′

n+1

By rules analysis we have two cases: either n = 0 or n = 1. If n = 0 then by rule
analysis we can apply inductive hypothesis to M ′′

n+1 and hence the conclusion
follows. Otherwise by the previous case we have:

HP (M ′′
1 ⇓ C′′

1 ) = 〈C1
1 , · · · , Ck1

1 〉 = HP (M ′′′
1 ⇓ C′′′

1 )

and

HP (M ′′
n+1 ⇑) = 〈C1

n+1, · · · , Ckn+1
n+1 , · · · 〉 HP (M ′′

n+1) = 〈Ĉ1
n+1, · · · , Ĉkn+1

n+1 , · · · 〉
We can repeatedly apply the same argument, hence the conclusion follows.
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The definition of proof assumptions toghether with the above lemma assure
that for each M ∈ Exp there exists a unique proof assumption HP (M).
Furthermore one can try to prove a converse statement like the following:

For each (M,C), (M ′, C′) ∈⇓, S ∈ Can≤ω if HP (M ⇓ C) = S and
HP (M ′ ⇓ C′) = S then (M,C) ≡ (M ′, C′).

Unfortunately this fails as shown for example by

HP (absτ ((λy : α.λx : τ.rep(x)x)Ωα)) = HP ((λy : α.λx : τ.rep(x)x)Ωα)

in the case of convergence and by

HP (Ωτ1×τ2) = HP (fst(Ωτ1×τ2)) = HP (snd(Ωτ1×τ2))

in the case of divergence. Hence we need to add more information to proof
assumption in order to consider equivalently a term or its proof assumption. We
will introduce in the next paragraph proof assumption with context information.
Now to make our map explicit we need a notion of length of a proof assumption.

Definition 5.1.5. The length of a proof assumption is a function len : Hyp→
N ∪ {ω} defined for all M ∈ Exp as:

• len(HP (M)) = (n− 1) if ∃C ∈ Can (M ⇓ C) & HP (M) = 〈C1, · · · , Cn〉
• len(HP (M)) = ω if M ⇑
Note that length differs from the height of proof trees. We want to prove

the following propositions which state that the length of a proof assumption is
the number of small steps in the proof by small-steps semantics.

Proposition 5.1.6.

Let M ∈ Exp; if there exists n ∈ N such that len(HP (M)) = n then M −→n C

Proposition 5.1.7.

Let M ∈ Exp if len(HP (M)) = ω then M −→ω

We are not only interested in proving the propositions, which can be easily
done by means of a cost semantics as in [Harper, 2003], but also in the method
to prove them. We will see that it gives us an algorithm to translate big-step
into small-step proofs.
Before proving the above propositions we add context information to evaluation
and divergence rules.

5.2 Judgements with context information

In our definition of transition relation we used the notion of evaluation con-
text; rule (red tran) states that reductions are preserved in evaluation context.
We now want to consider an analogous statement also for the evaluation relation.
We add to convergence and divergence judgements some context information.
Context informations are not interesting for the computation but only for the
traslation from big-step to small-step. To do this we can use the notions of
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experiment and of evaluation context already introduced in 4.2.9 and 4.2.10 re-
spectively.
We can now define two new kinds of judgement. We have evaluation with context
information judgement :

�E �M ⇓ C
where �E is an evaluation context and M ⇓ C is a convergence judgement and
divergence with context information judgement

�E �M ⇑
where �E is an evaluation context and M ⇑ is a divergence judgement.
Since �E [C] is not always a canonical term we have that a judgement �E �M ⇓ C
does not mean that �E [M ] ⇓ �E [C] but, by remembering corollary 4.2.27, only that
�E [M ] −→∗ �E [C]. Hence we can consider judgements with context information
as “we are in the evaluation context �E and the term M evaluates to C” and “we
are in the evaluation context �E and the term M diverges ” for evaluation and
divergence respectively.
By these observations we obtain rules in tables 5.1 and 5.2. We note that in
the definition of rule (ctx rep) we added the assumption (�E � C ⇓ C). The
same assumption without context information has been used implicitly in the
rule (+ rep), we decided to explicit it now because we need the next structural
properties.

Lemma 5.2.1 (+ Structural). For each instance of + rules with context
information of table 5.1:

�E ◦ E1 �M1 ⇓ C1 · · · �E ◦ En �Mn ⇓ Cn

�E �M ⇓ C
we have:

(i) �E [M ] ≡ �E [E1[M1]] & �E [C] ≡ �E [En[Cn]]

(ii) ∀i (0 < i < n) �E [Ei[Ci]] −→ �E [Ei+1[Mi+1]]

Proof. (i) follows immediately by an ispection of the rules.
(ii) an ispection of the rules shows immediately that for i such that (0 < i < n)
each Ei[Ci] is a redex such that Ei[Ci] −→ Ei+1[Mi+1] so (red tran) and show
the conclusion.

Lemma 5.2.2 (− Structural). For each instance of − rules with context
information of table 5.2:

�E ◦ E1 �M1 ⇓ C1 · · · �E ◦ En �Mn
�E ◦ En+1 �Mn+1 ⇑

�E �M ⇑
we have:

(i) �E [M ] ≡ �E [E1[M1]]

(ii) ∀i (0 < i ≤ n) �E [Ei[Ci]] −→ �E [Ei+1[Mi+1]]

Proof. (i) follows immediately by an ispection of the rules.
(ii) an ispection of the rules shows immediately that for i such that (0 < i ≤ n)
each Ei[Ci] is a redex such that Ei[Ci] −→ Ei+1[Mi+1] so (red tran) show the
conclusion.
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5.3 Proof assumption with context information

In definition 4.2.2 and 4.2.6 we have defined relations without any reference
to context. We want that our definition of evaluation relation with context
information have exactly the same meaning of evaluation and only add some
useful syntactical information.
Now taken the operator φctx

⇓ : P(Ectx × Exp × Can) → P(Ectx × Exp × Can)
induced by the set of instances of + rules with context information in table 5.1
defined as:

φctx
⇓ (X) def= {(�E ,M,C) | ∃

�E1 �M1 ⇓ C1 · · · �En �Mn ⇓ Cn

�E �M ⇓ C , (n ≥ 0)

& (�E1,M1, C1), · · · , (�En,Mn, Cn) ∈ X}
we can easily see that it is monotonic. Hence it possesses a least fixed point
µX.φctx

⇓ (X) and since rules are all finitary we can define it constructively with
respect to ⊆ and with ∅ as basis.

Definition 5.3.1. Evaluation relation with context information is the
relation ⇓ctx ⊆ Ectx × Exp × Can inductively defined as:

⇓ctx = µX.φctx
⇓ (X)

we usually write �E �M ⇓ C instead of (�E ,M,C) ∈⇓ctx.

Analogously taken the operator φctx
⇑ : P(Ectx × Exp) → P(Ectx × Exp)

induced by the set of instances of − rules with context information in table 5.2
defined as:

φctx
⇑ (X) def= {(�E ,M) | ∃

�E1 �M1 ⇓ C1 · · · �En �Mn ⇓ Cn
�En+1 �Mn+1

�E �M ⇓ C ,

(n ≥ 0) & (�E1,M1, C1), · · · , (�En,Mn, Cn) ∈⇓ctx, (�En+1,Mn+1) ∈ X}
we can easily see that it is monotonic. Hence it possesses a greatest fixed point
νX.φctx

⇓ (X) and since rules are all deterministic we can define it constructively
with respect to ⊆ and with Exp as basis.

Definition 5.3.2. Divergence relation with context information is the
relation ⇑ctx ⊆ Ectx × Exp coinductively defined as:

⇑ctx = νX.φctx
⇑ (X)

we usually write �E �M ⇑ instead of (�E ,M) ∈⇑ctx.

It is now easy to verify the following lemmas:

Lemma 5.3.3. For M ∈ Exp:

(+i) M ⇓ C =⇒ ∀�E (�E �M ⇓ C)

(−i) M ⇑=⇒ ∀�E : (�E �M ⇑)

(+ii) If for some �Ei we have �Ei �M ⇓ C then for each �E : �E �M ⇓ C
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(−ii) If for some �Ei we have �Ei �M ⇑ then for each �E : �E �M ⇑
(+iii) If for some �E we have (�E �M ⇓ C) then M ⇓ C
(−iii) If for some �E we have (�E �M ⇑) then M ⇑

Now we can add context information to assumption.

Definition 5.3.4. The evaluation proof assumption with context infor-
mation of a convergence judgement with context information �E �M ⇓ C:

HP (�E �M ⇓ C) ∈ (Ectx ,Can)+

is defined as follow:

• HP (�E � C ⇓ C) = 〈(�E , C)〉
• HP (�E �M ⇓ C) = 〈(�E1

1 , C
1
1 ), · · · , (�Ek1

1 , Ck1
1 ), · · · , (�E1

n, C
1
n), · · · , (�Ekn

n , Ckn
n )〉

if there exists a rule:

�E1 �M1 ⇓ C1 · · · �En �Mn ⇓ Cn

�E �M ⇓ C
such that:

HP (�E1 �M1 ⇓ C1) = 〈(�E1
1 , C

1
1 ), · · · , (�Ek1

1 , Ck1
1 )〉

...
HP (�En �Mn ⇓ Cn) = 〈(�E1

n, C
1
n), · · · , (�Ekn

n , Ckn
n )〉

Definition 5.3.5. The divergence proof assumption with context infor-
mation of a divergence judgement with context information �E �M ⇑:

HP (�E �M ⇑) ∈ (Ectx ,Can)ω

is defined as follow:

HP (�E �M ⇑) = 〈(�E1
1 , C

1
1 ), · · · , (�Ek1

1 , Ck1
1 ), · · · , (�E1

n, C
1
n), · · ·

· · · , (�Ekn
n , Ckn

n ), (�E1
n+1, C

1
n+1), · · · , (�Ekn+1

n+1 , C
kn+1
n+1 ), · · · 〉

if there exists a rule:

�E1 �M1 ⇓ C1 · · · �En �Mn ⇓ Cn
�En+1 �Mn+1 ⇑

�E �M ⇑
such that:

HP (�E1 �M1 ⇓ C1) = 〈(�E1
1 , C

1
1 ), · · · , (�Ek1

1 , Ck1
1 )〉

...
HP (�En �Mn ⇓ Cn) = 〈(�E1

n, C
1
n), · · · , (�Ekn

n , Ckn
n )〉

HP (�En+1 �Mn+1 ⇑) = 〈(�E1
n+1, C

1
n+1), · · · , (�Ekn+1

n+1 , C
kn+1
n+1 )), · · · 〉
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Definition 5.3.6. The proof assumption with context information of a
term with context information (�E ,M) where M ∈ Exp and �E ∈ Ectx

HP (�E ,M) ∈ (Ectx ,Can)≤ω

is defined as:

• HP (�E ,M) = HP (�E �M ⇓ C) if M ⇓ C
• HP (�E ,M) = HP (�E �M ⇑) if M ⇑
The set of all proof assumptions with context information is denoted by

Hypctx. The notion of length is defined analogously to the one given for proof
assumptions.

Definition 5.3.7. The length of a proof assumption with context information
is a function len : Hypctx → N ∪ {ω} defined for each M ∈ Exp and �E ∈ Ectx
as:

• len(HP (�E,M)) = (n − 1) if ∃C ∈ Can (�E � M ⇓ C) & HP (�E ,M) =
〈(�E1, C1), · · · , (�En, Cn)〉

• len(HP (�E,M)) = ω if �E �M ⇑
We have that the computation of a term can be together characterized by its

proof assumption. In particular the structure of proof trees with the fact that
the rules are L-rules, captures the direction of the computation. Hence we can
consider the set of the assumptions of a proof tree: We now prove the following
lemma:

Lemma 5.3.8 (+ Structural).
For each M ∈ Exp, �E ∈ Ectx such that M ⇓ C for some C and

HP (�E ,M) = 〈(�E1, C1), · · · , (�En, Cn)〉

we have:

(i) �E [M ] ≡ �E1[C1] & �E [C] ≡ �En[Cn]

(ii) ∀i (0 < i < n) �Ei[Ci] −→ �Ei+1[Ci+1]

Proof. We prove it by induction on the height of proof tree of M ⇓ C.
The base case is trivial. Now suppose M ⇓ C and:

HP (�E ,M) = 〈(�E1
1 , C

1
1 ), · · · , (�Ek1

1 , Ck1
1 ), · · · ,

(�Ekn−1
n−1 , C

kn−1
n−1 ), (�E1

n, C
1
n), · · · , (�Ekn

n , Ckn
n )〉

by lemma 5.3.3 we have that �E �M ⇓ C and hence we have that there exists a
+ rule such that:

�E ◦ E1 �M1 ⇓ C1 · · · �E ◦ En �Mn ⇓ Cn

�E �M ⇓ C
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and by definition and determinacy of HP we have:

HP (�E ◦ E1 �M1 ⇓ C1) = 〈(�E1
1 , C

1
1 ), · · · , (�Ek1

1 , Ck1
1 )〉

...
HP (�E ◦ En �Mn ⇓ Cn) = 〈(�E1

n, C
1
n), · · · , (�Ekn

n , Ckn
n )〉

By induction hypothesis we have:

�E [E1[M1]] ≡ �E1
1 [C1

1 ] & �E [E1[C1]] ≡ �Ek1
1 [Ck1

1 ]
...

�E [En[Mn]] ≡ �E1
n[C1

n] & �E [En[Cn]] ≡ �Ekn
n [Ckn

n ]

and
∀i (0 < i < k1) �E i

1[C
i
1] −→ �E i+1

1 [Ci+1
1 ]

...
∀j (0 < j < kn) �Ej

n[Cj
n] −→ �Ej+1

n [Cj+1
n ]

By lemma 5.2.1 �E [M ] ≡ �E [E1[M1]] and �E [C] ≡ �E [En[Cn]] hence �E [M ] ≡ �E1
1 [C1

1 ]
and �E [C] ≡ �Ekn

n [Ckn
n ] respectively and so (i) follows.

Now by lemma 5.2.1 we have that

∀k (0 < k < n) �E [Ek[Ck]] −→ �E [Ek+1[Mk+1]]

and hence

�E1
1 [C1

1 ] −→ · · · −→ �Ek1
1 [Ck1

1 ] ≡ �E [E1[C1]] −→ �E [E2[M2]] ≡
�E1
2 [C1

2 ] −→ · · · ≡ · · · −→ �Ekn−1
n−1 [Ckn−1

n−1 ] ≡
�E [En−1[Cn−1]] −→ �E [En[Mn]] ≡ �E1

n[C1
n] −→ · · · −→ �Ekn

n [Ckn
n ]

Whence the conclusion.

Lemma 5.3.9 (− Structural).
For each M ∈ Exp, �E ∈ Ectx such that M ⇑ and

HP (�E ,M) = 〈(�E1, C1), · · · , (�En, Cn), · · · 〉

we have:

(i) �E [M ] ≡ �E1[C1]

(ii) ∀i (0 < i) �Ei[Ci] −→ �Ei+1[Ci+1]

Proof. We prove the lemma by induction on the abstract structure of M and
the fact that ⇑ctx can be constructively defined as

⋂
n∈N

φctx
⇑ (Exp). Assume

that �E �M ⇑ then we have there exists a −rule such that:

�E ◦ E1 �M1 ⇓ C1 · · · �E ◦ En �Mn ⇓ Cn
�E ◦ En+1 �Mn+1 ⇑

�E �M ⇑
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By an inspection of the rules for each M we have at most two possibilities:
either n = 0 or n = 1.
If n = 0 then we have

�E ◦ E1 �M1 ⇑
�E �M ⇑

where by lemma 5.2.2 �E [M ] ≡ �E [E1[M1]] and by definition of proof assump-
tion HP (�E � M ⇑) = HP (�E ◦ E1 � M1 ⇑). By induction hypothesis we have
�E [E1[M1]] ≡ �E1[C1] hence by lemma 5.2.2 (i) follows. Again by induction hypoth-
esis we have ∀i (0 < i) �Ei[Ci] −→ �Ei+1[Ci+1] and since transition is deterministic
and HP (�E �M ⇑) = HP (�E ◦ E1 �M1 ⇑) we have the conclusion.
Otherwise if n = 1 we have

�E ◦ E ′ �M ′ ⇓ C′

�E ◦ E ′′ ◦ Ek �M ′′
k ⇓ C′′

k
�E ◦ E ′′ ◦ Ek+1 �M ′′

k+1 ⇑
�E ◦ E ′′ �M ′′ ⇑

�E �M ⇑

By lemma 5.2.2 �E [M ] ≡ �E [E ′[M ′]] and by definition of proof assumption with
context information we have:

HP (�E �M ⇑) = 〈(�E1, C1), · · · , (�Em, Cm), (�Em+1, Cm+1) · · · 〉

where:

HP (�E ◦ E ′ �M ′ ⇓ C′) = 〈(�E1, C1), · · · , (�Em, Cm)〉
HP (�E ◦ E ′′ �M ′′ ⇑) = 〈(�Em+1, Cm+1) · · · 〉

Now by lemma 5.3.8 we have �E [E ′[M ′]] ≡ �E1[C1] hence (i) follows. Further-
more again by lemma 5.3.8 we have ∀i (0 < i < m) �Ei[Ci] −→ �Ei+1[Ci+1] and
�E [E ′[C′]] ≡ �Em[Cm]. By lemma 5.2.2 �E [E ′[Cm]] −→ �E [E ′′[M ′′]]. We can now
apply the same argument for n to k. By repeatedly apply the above argument
(ii) follows.

Proposition 5.3.10. Let M ∈ Exp, �E ∈ Ectx, if there exists n ∈ N such that
(HP (�E ,M)) = n then:

�E [M ] −→n �E [C]

Proof. Lemma 5.3.8 and len definition give the conclusion.

Proposition 5.3.11. Let M ∈ Exp, �E ∈ Ectx, if len(HP (�E,M)) = ω then:

�E [M ] −→ω

Proof. Lemma 5.3.8 and len definition give the conclusion.

Propositions 5.1.6 and 5.1.7 follows from proposition 5.3.10 and 5.3.11 re-
spectively by taking �E equals to Id.
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5.4 Conclusion

The proofs of structural lemmas 5.3.8 and 5.3.9 give us an algorithm to
translate a proof of convergence by big-step semantics in a proof of convergence
by small-step semantics.

Translation Algorithm
STEP 1 Add to the proof tree of M context information to obtain

the proof tree of (Id,M)
STEP 2 take the sequence HP (Id,M) = 〈(E1, C1), · · · 〉
STEP 3 for all 0 ≤ i ≤ len(HP (IdM)) set Ei[Ci] −→ Ei+1[Ci+1]

Translation Algorithm can be applied both to convergent and divergent terms.
In table 5.3 we show an example of the algorithm applied to the term:

(fst〈λx.snd(x),Ωτ 〉)〈Ωτ , λz.z〉

In table 5.4 we show an example of the algorithm applied to the term:

(λy.(λx.xx)y)(λx.xx)

We note that in order to justify the above method the validity of structural
lemmas 5.3.8 and 5.3.9 is needed. This does not work for all languages. In
particular it seems to work only for sequential deterministic languages and under
the assumption that all the premisses are made explicit.
In non sequential languages the order of premisses is not always defined. So it is
not possible to define the big-step semantics through instances of L-rules. The
request of explicitate all the implicit premisses of each rule is needed in order to
explicitate all the single steps of computation which are involved in a big-step
rule.
We remark that our method is only an application and refinement of the one
first outlined by Ibraheem and Schmidt in [Ibraheem and Schmidt, 2000]. The
method is formulated and analyzed there in a more abstract way.



Chapter 6

Contextual Equivalence

There is no assurance here that the extensional agreement of ‘bach-
elor’ and ‘unmarried man’ rests on meaning rather than merely on
accidental matters of fact, as does extensional agreement of ‘creature
with a heart’ and ‘creature with a kidney’.

W.V. Quine. “Two Dogmas of Empiricism”

We have so far defined operational semantics for FPC language through two
different relation which we have proved to be equivalent. In particular, a se-
mantics induces a notion of program equivalence. Intuitively, by an operational
point of view, two programs are equivalent if they behave in the same way when
they are executed on the same machine. This was more clearly expressed by
Ong in [Ong, 1995]:

Two program fragments are equivalent if they can always be in-
terchanged without affecting the visible or observable outcome of
the computation. This criterion of sameness which is called obser-
vational equivalence is formally expressed in terms of invariance of
observable outcome under all program contexts.

We shall refer to program equivalence by a different name and when we refer
to the name observational equivalence we do not mean a concrete equivalence
relation on our language but the abstract process of deciding equivalence of
things, in general, by observing their properties. In this sense we say that the
equivalence induced by operational semantics is the observational equivalence
for FPC terms.
An equivalence notion with the above properties was first introduced for lambda
calculus by Morris in [Morris, 1968] with the name of Extensional Equivalence.
We call it Contextual Equivalence and this is widely accepted as the natural
notion of operational semantics for FPC.
In the sequel we formalize the above informal definition. In order to have a
formal definition we need to define exactly what does it means interchanging
two program fragments and what are the observable outcomes of a program. We
can formalize the former via the general notion of contexts, the latter via the
familiar notion of evaluation.

74
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Once we have formalized contextual equivalence for FPC we prove some in-
teresting properties. In particular we show the validity of a kind of syntactic
continuity and rational completeness.
Our presentation of context and contextual equivalence follows exactly the one
given by Pitts in [Pitts, 1995]. Differently from Pitts, as an exercise, we prove
all the properties of contextual equivalence directly by induction. Finally the
proofs of syntactic continuity and rational completeness follows in spirit those
by Sands in [Sands, 1997] and by Smith in [Smith, 1991].

6.1 Context

We have seen that to give a formal definition of contextual equivalence we
are interested in a notion of interchanging program fragments. Since program
fragments are FPC terms we need a notion of interchanging terms in programs.
To give a definition as general as possible, we use the notion of context. In-
formally a context is a syntax tree containing some sorts of parameters which
represent holes. When all the holes are replaced by terms we have a program.
In this sense we can think the holes as meta-variables. So we can define contexts
by adding parameters to the definition of our language as follows.

Definition 6.1.1 (Context). Let Ctx be the set of FPC contexts defined by
the following grammar specified via BNF:

C :: = x | p | λx.C | (CC) | 〈C, C〉 | fst(C)| snd(C)
| case C of {inlτ1,τ2(x1).C | inrτ1,τ2(x2).C}
| inlτ1,τ2(C) | inrτ1,τ2(C)| absµT.τ (C) | rep(C)

where p ranges over some fixed set of parameters

We note that by the above definition we have that either evaluation contexts
and expressions are particular cases of the more general notion of context. In
particular evaluation contexts form a subset of the set of contexts which contains
exactly one occurence of a unique parameter • and Exp is the set of α-equivalence
classes of contexts which do not contain parameter at all.
By the above remark it is natural extends to contexts the definitions which
we have so far stated for FPC terms. It is easy to extends the notions of free
variable, bound variable, α-equivalence.
In the sequel we usually work with only one parameters which we write ◦. We
write C[◦] to stress that C is a context and ◦ is the only parameter contained in
C.

Context substitution

The name “context” underlines the importance of filling the hole ◦ with a
term M to obtain a new term. In general, filling the occurrences of a hole ◦
with a term M is different from the natural extension to contexts of substitution
operation defined in 4.1.3. Since a term M can be viewed as a context, to gen-
eralize we can define the operation of substitution of a context for a parameter
in a context.
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Definition 6.1.2. The substitution in a context of a context C′ for a pa-
rameter ◦ in a context C, written C[C′/◦], is inductively defined as follows:
C[C′/◦] = C if C is a variable
◦[C′/◦] = C′

(λy.C)[C′/◦] = λy.(C[C′/◦])
(C1C2)[C′/◦] = (C1[C′/◦]C2[C′/◦])
〈C1, C2〉[C′/◦] = 〈C1[C′/◦], C2[C′/◦]〉
fst(C)[C′/◦] = fst(C[C′/◦])
snd(C)[C′/◦] = snd(C[C′/◦])
inlτ1,τ2(C)[C′/◦] = inlτ1,τ2(C[C′/◦])
inrτ1,τ2(C)[C′/◦] = inrτ1,τ2(C[C′/◦])
absµT.τ (C)[C′/◦] = absµT.τ (C[C′/◦]))
rep(C)[C′/◦] = rep(C[C′/◦]))
case C of {inlτ1,τ2(x1).C1 | inrτ1,τ2(x2).C2}[C′/◦]
= case C[C′/◦] of {inlτ1,τ2(x1).C1[C′/◦] | inrτ1,τ2(x2).C2[C′/◦]}

By the above definition it is clear that in the substitution C[C′/◦], the free
variables of C′ may become bound. We write traps(C[◦]) for the set of variables
that occur in C[◦] associated to binders containing the hole ◦ within their scope.
Thus any x ∈ FV (M) such that x ∈ traps(C[◦]) becomes bound in C[M ].
The above remarks implies that substitution in α-equivalent contexts does not
preserve α-equivalence, as shown by the following.

Lemma 6.1.3.
C1 ≡α C2 �=⇒ C1[C/◦] ≡α C2[C/◦]

Proof. We only need to show a counter example: taken C1 ≡ λx.◦ ≡α λy.◦ ≡ C2

and C ≡ x we have C1[C/◦] ≡ λx.x which is not α-equivalent to C2[C/◦] ≡
λy.x.

Nevertheless substituting α-equivalent contexts results in α-equivalent con-
texts, as shown by the following.

Lemma 6.1.4.
C1 ≡α C2 =⇒ C[C1/◦] ≡α C[C2/◦]

Proof. We prove it by induction on the structure of C. We show the case
C ≡ λx.C′ the other cases are similar.
We assume C1 ≡α C2 . We want to show that (λx.C′)[C1/◦] ≡α (λx.C′)[C2/◦]
By definition of substitution we have (λx.C′)[C1/◦] = λx.(C′[C1/◦]) and
(λx.C′)[C2/◦] = λx.(C′[C2/◦]) but by induction hypothesis we have C′[C1/◦] ≡α

C′[C2/◦]. Hence if x ∈ Bound(C′[C1/◦]) we have immediately the conclusion,
otherwise x ∈ FV (C′[C1/◦]) and by (α-cong lambda) the conclusion.

By the above lemma, the operation of substituting for a parameter in a con-
text induces a well-defined operation on α-equivalence classes of contexts. In
particular it is well-defined on the set of α-equivalence classes of contexts with
no occurrences of parameters at all, Term.
By lemma 6.1.4 we have the following remark which is quoted by Pitts in
[Pitts, 1995].
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The term C[M ] will denote the term resulting from choosing a rep-
resentative syntax tree for M , substituting it for the parameter in
C, and forming the α-equivalence class of the resulting FPC syntax
tree which is indipendent of the choice of representative for M .

Typed Contexts

Since FPC is a typed language we need that contexts be typed terms with
typed holes as subterms which can be filled with type-compatible terms. Hence
we have that contexts and parameters must assume types. We usually write pτ

to indicate that parameter p has type τ .
In particular we are interested in contexts which are well-typed. Hence we need
a kind of context type judgement which can take the form

Γ � C : τ

where Γ ∈ TEnv and τ ∈ Type.
We have that context type judgements are of the same kind of type judgements
for FPC terms hence we can think that context type assignment relation
is the natural extension of type assignment relation for FPC terms. So we have
that typing rules for contexts are rules in table 4.2, considering meta-variables
M,N,M1, . . . as contexts C, C1, C2, . . . instead of terms, with the following axiom.

Γ � ◦τ : τ (� param)

Given typing rules for contexts it is easy to define context type assignment
relation analogously to definition 4.1.7 as the set of relation inductively defined
by typing rules.
By quoting Pitts in [Pitts, 1995] we have the following important remark.

When typing rules are applied to syntax tree rather than α-
equivalence class of syntax trees then they enforce a separation
beetween free and bound variables and hence are not closed under
α-equivalence.

In [Pitts, 1994] Pitts gives an alternative treatment which avoid this problem
by using the notion of “function variables”.
Context type assignment relation permits to isolate the set of well-typed con-
texts:

Definition 6.1.5. Let Ctx τ (Γ) be the set of contexts that can be assigned type
τ , given Γ:

Ctx τ (Γ) def= {C | Γ � C : τ}
in particular we define:

Ctx τ
def= Ctx τ (∅)

It is clear by definition of context type assignment relation that many
properties on type assignment on term can be naturally extended to type
assignment on contexts.

We need that context substitution preserves typing, we have that it is pre-
served in the following sense.
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Lemma 6.1.6. For each M ∈ Expτ (Γ,Γ′), C[◦τ ] ∈ Ctxτ ′(Γ′) such that
dom(Γ) ⊆ traps(C[◦τ ]) we have C[M ] ∈ Expτ ′(Γ′)

Proof. The proof is by induction on the derivation of Γ � C [◦τ ] : τ ′. We prove
it for C[◦τ ] ≡ λx.C′[◦τ ] with τ ′ = τ1 → τ2, the other cases are similar.
We assume that Γ,Γ′ � M : τ and Γ′ � λx.C′[◦τ ] : τ1 → τ2 with dom(Γ) ⊆
traps(C[◦τ ]). We want to prove that Γ′ � λx.C′[M ] : τ1 → τ2.
If Γ′ � λx.C′[◦τ ] : τ1 → τ2 then by inversion property Γ′, x : τ1 � C′[◦τ ] : τ2. It
is easy to verify that traps(C′[◦τ ]) = traps(C[◦τ ])− {x} and so dom(Γ)− {x} ⊆
traps(C′[◦τ ]). Hence by induction hypothesis we have Γ′, x : τ1 � C[M ] : τ2 and
by (� lam) Γ′ � λx.C[M ] : τ1 → τ2.

A closed and typable context C ∈ Ctx τ , analogously to closed and typable
terms can be considered as program contexts. Intuitively program contexts
are different in nature with respect to programs, as clearly noted by Ong in
[Ong, 1995]:

Program contexts are an auxiliary syntactic construction; they are
not objects that computer manipulate, but a conceptual device.

Lemma 6.1.6 show the importance of program contexts and how we can use
them. Taken a program context C[◦τ ] ∈ Ctx τ1 , by the above remark a conceptual
device, the substitution of all occurrences of ◦τ with a term M such that Γ �
M : τ where dom(Γ) ⊆ traps(C[◦τ ]) give us a program term, an executable
object of the language.

6.2 Evaluation Context with holes

In 4.2.10 we have defined the notion of evaluation context. An evaluation
context is a context which contains a single occurrence of a single hole. In
particular by lemma 4.2.13 we have that for each M ∈ Exp either it is a value
or it can be written uniquely as �E [M ′] where M ′ ∈ Rdx . Hence the hole specify
the position in a term where the next reduction step can be performed.
By lemma 6.1.6 we have that for each M ∈ Expτ (Γ), C[◦τ ] ∈ Ctx τ ′ such that
dom(Γ) ⊆ traps(C[◦τ ]) we have C[M ] ∈ Expτ ′ . Hence either each C[M ] is a
value or it can be written uniquely as �E [M ′] where M ′ ∈ Rdx . Unfortunately
this does not give us information about the relation beetween M ′ and M . For
this reason we introduce the following notion.

Definition 6.2.1. Evaluation context with holes are defined by the follow-
ing grammar specified via BNF:

Ê ::= • | Ê (C) | fst(Ê) | snd(Ê)| rep(Ê)| absµT.τ (Ê)
| case Ê of {inlτ1,τ2(x1).C1 | inrτ1,τ2(x2).C2}

Similarly to context it is easy to assign type to evaluation context with holes.
Since for a context we usually use only one parameter then we usually write an
evaluation context with hole as Ê [◦τ ]〈•τ ′〉 where ◦τ is the hole of the context
and •τ ′ indicates where the next reduction can occur. We used two different
type of brackets only for clearity of notation.
The notion of evaluation context with holes is extensively used by Smith in
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[Smith, 1991] and by Mason, Talcott and Smith in [Mason et al., 1996]. Sands
uses it in [Sands, 1997] with the name reduction context with holes.
The following lemma is the analogous of lemma 4.2.13 for evaluation context
with holes.

Lemma 6.2.2 (Unique Context Factorization). For each M ∈
Expτ (Γ), C[◦τ ] ∈ Ctxτ1 , where dom(Γ) ⊆ traps(C) , either C[M ] is a value
or there exists a unique Ê [◦τ ]〈•τ2〉 : τ1 and C1[◦τ ] : τ2 such that C[◦τ ] ≡
Ê [◦τ ]〈C1[◦τ ]〉 and C1[M ] is a redex.

Proof. By lemma 6.1.6 we have that C[M ] is a closed expression and there exists
M ′ ∈ Expτ1 such that C[M ] ≡M ′. By lemma 4.2.13 either M ′ is a value or we
can write C[M ] uniquely as E〈M ′′〉 : τ where M ′′ : τ2 is a redex. M can occur in
E〈•τ2〉 hence we write Ê1[◦τ ]〈•τ2〉 for Ê [◦τ/M ]〈•τ2〉. Analogously we write C1[◦τ ]
for M ′′[◦/M ] where C1[◦τ ] ∈ Ctxτ2 . Thus, we have C[◦τ ] ≡ Ê1[◦τ ]〈C1[◦τ ]〉 and
C1[M ] ≡M ′′ is a redex.

We show a simple example which explains how the above lemma works. Let
M,N ∈ Expτ→(τ1+τ2) and Q ∈ Expτ where M ≡ λx.M ′:

C[◦τ→(τ1+τ2)] ≡ case (◦τ→(τ1+τ2))Q of {inlτ1,τ2(x1).◦τ→(τ1+τ2) | inrτ1,τ2(x2).N}
we have that:

C[M ] ≡ case MQ of {inlτ1,τ2(x1).M | inrτ1,τ2(x2).N} ≡ Ê [M ]〈C1[M ]〉
where

Ê [◦τ→(τ1+τ2)]〈•τ1+τ2〉 ≡ case •τ1+τ2 of {inlτ1,τ2(x1).◦τ→(τ1+τ2) | inrτ1,τ2(x2).N}
and

C1[◦τ→(τ1+τ2)] ≡ (◦τ→(τ1+τ2))Q

and since M ≡ λx.M ′ we have that C1[M ] is a redex.
The following lemma formalizes a common case analysis usually used informally
in proofs of properties for contextual equivalence. This is an adaptation of
lemma A.6 in [Sands, 1997] to FPC.

Lemma 6.2.3 (Activity). For each M ∈ Expτ , C[◦τ ] ∈ Ctxτ1 if C[M ] reduces
then C[M ] ≡ Ê [M ]〈C1[M ]〉 and we have that one of the following applies:

(i) the reduction is “uniform” in M which means that there exists C′
1[◦τ ] ∈

Ctxτ1 such that ∀ N ∈ Expτ , C1[N ] −→ C′
1[N ]

(ii) M is a redex and C1[◦τ ] ≡ ◦τ .

(iii) M is a value and there exists E ∈ Exper such that C1[M ] ≡ E [M ]

Proof. By lemma 6.1.6 we have that C[M ] ∈ Expτ1 and by lemma 6.2.2 since
C[M ] reduces we can write it uniquely as ≡ Ê [M ]〈C1[M ]〉 where C1[M ] is a
redex. By a simple analysis of redex cases we have three distinct possibilities:

C1[◦τ ] ≡ ◦τ hence M is a redex and (ii) follows

C1[◦τ ] ≡ E [◦τ ] hence by lemma 4.2.12 we have that M is a value and (iii)
follows
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C1[◦τ ] �≡ E [−τ ] & C1[◦τ ] �≡ ◦τ we show that by a simple analysis of redex cases
and of transition rules (i) follows.

• C1[M ] ≡ (λx.C2[M ])C3[M ]. For such a redex we can only apply
(app tran) rule, in the reduction, the occurrences of M in C3[M ]
remain untouched and hence the reduction is uniform in C3[M ]. Now
consider the occurrences of M in C2[M ], in the reduction we have
that the free occurrences of x in C2[M ] are replaced by C3[M ], but
since M ∈ Expτ we have that x /∈ FV (M) = ∅. Hence the reduction
is uniform in C2[M ] and so (i) follows.

• C1[M ] ≡ fst(〈C2[M ], C3[M ]〉). For such a redex we can only apply (fst
tran) rule, in the reduction, the occurrences of M in C2[M ] remain
untouched and hence the reduction is uniform in C2[M ]. Now consider
C3[M ], in the reduction we have that it is eliminated but we have that
C3[M ] is eliminated indipendently from its structure and hence the
reduction is uniform in C3[M ] and so (i) follows.

• C1[M ] ≡ snd(〈C2[M ], C3[M ]〉). For such a redex we can only apply
(snd tran) rule, in the reduction, the occurrences of M in C3[M ]
remain untouched and hence the reduction is uniform in C3[M ]. Now
consider C2[M ], in the reduction we have that it is eliminated but we
have that C2[M ] is eliminated indipendently from its structure and
hence the reduction is uniform in C2[M ] and so (i) follows.

• C1[M ] ≡ case inl(C′[M ]) of {inlτ1,τ2(x1).C2[M ] | inrτ1,τ2(x2).C3[M ]}.
For such a redex we can only apply (cond tran inl) rule, in the
reduction, the occurrences of M in C′[M ] remain untouched and
hence the reduction is uniform in C′[M ].
Now consider C3[M ], in the reduction we have that it is eliminated
but we have that it is eliminated indipendently from its structure
and hence the reduction is uniform in C3[M ].
Finally consider the occurrences of M in C2[M ], in the reduction we
have that the free occurrences of x1 in C2[M ] are replaced by C′[M ],
but since M ∈ Expτ we have that x1 /∈ FV (M) = ∅. Hence the
reduction is uniform in C2[M ] and (i) follows.

• C1[M ] ≡ case inr(C′[M ]) of {inlτ1,τ2(x1).C2[M ] | inrτ1,τ2(x2).C3[M ]}.
For such a redex we can only apply (cond tran inl) rule, in the
reduction, the occurrences of M in C′[M ] remain untouched and
hence the reduction is uniform in C′[M ].
Now consider C2[M ], in the reduction we have that it is eliminated
but we have that it is eliminated indipendently from its structure
and hence the reduction is uniform in C2[M ].
Finally consider the occurrences of M in C3[M ], in the reduction we
have that the free occurrences of x2 in C3[M ] are replaced by C′[M ],
but since M ∈ Expτ we have that x2 /∈ FV (M) = ∅. Hence the
reduction is uniform in C3[M ] and (i) follows.
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6.3 Observable types

We have so far seen that two program fragments, e.g. two terms, are equiva-
lent if they can always be interchanged in all program contexts, e.g. substituted
in closed and typable context, without affecting the observable outcome.
In order to give a formal definition of contextual equivalence we now need to
formalize what can be considered the observable outcome of a program.
It is natural for a programmer to consider as the observable outcome of a pro-
gram the final output of the program’s computation. In section 4 we have speci-
fied the operational behavior of FPC programs through relations which capture
both the convergence and divergence of programs computation. In particular
an evaluation judgement M ⇓ C captures the convergence of the computation
originating from a term M to a value C, and lemma 4.2.4 shows that evaluation
is deterministic. Hence we can consider as observation for a term M the result
of its evaluation, if it exists.
Thus two program fragments M and N are equivalent if for each C[◦] such that
C[M ] and C[N ] are programs of the same types we have:

C[M ] ⇓ C ⇐⇒ C[N ] ⇓ C
However the above condition is sometimes too strong, in particular for our
language, since we have chosen a lazy evaluation, the observation stops
on the outermost operator, hence for example we have that 〈A,B〉 and
〈fst(〈A,B〉), snd(〈A,B〉)〉 are two different canonical terms. It seems reason-
able by lemma 4.2.19 and the quantification over all contexts to observe for a
term M only if its computation converges or diverges.
Thus two program fragments M and N are equivalent if for each C[◦] such that
C[M ] and C[N ] are programs of the same type we have:

C[M ] ⇓ ⇐⇒ C[N ] ⇓
Since FPC is a typed language we now must define at what type should conver-
gence be observable. We call these the observable types of FPC. McCusker in
[McCusker, 1996a] observes that the choice of observable types in a call-by-value
language does not make any difference. This is because the convergence of a
term (λx.M)N , where M is a convergent closed expression of observable type
and N is an expression of any type, depends only on the convergence of N . In
a call-by-name language as our version of FPC the situation is different. For
example the choice to observe convergence at product types permits to distin-
guish beetween the terms Ωτ1×τ2 and 〈Ωτ1 ,Ωτ2〉 which otherwise are considered
equal; the choice to observe convergence at function types permits to distin-
guish beetween the terms Ωτ1→τ2 and λx.Ωτ2 where x : τ1 which otherwise are
considered equal.
Furthermore McCusker in [McCusker, 1996a] suggested to restrict observable
type only to sum types. This because we have the case constructor which
forces convergence to be observable at sum types, if it is observable anywhere.
Consider the term

case M of {inlτ1,τ2(x1).N | inrτ1,τ2(x2).N}
where M is a closed expression of sum type and N is a convergent closed expres-
sion of any type. The convergence of this term depends only on the convergence
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of M . This means that for each context of sum type we can build a context
of any type which has the same behaviour. Unfortunately it seems that the
converse do not generally holds. This can be reasonable for our version of FPC,
depending on our type constructor, nevertheless we prefer a strictly finer notion
of contextual equivalence. Hence we observe the convergence at each type τ ,
instead of restricting our attention to sum types only. Thus finally we have that
two program fragments M and N are equivalent if for any τ1 ∈ Type and for
each C[◦] ∈ Expτ1

such that C[M ] and C[N ] are programs we have:

C[M ] ⇓ ⇐⇒ C[N ] ⇓

6.4 Contextual Equivalence

We can now state the formal definition of contextual approximability.

Definition 6.4.1 (Contextual preorder). Let M,M ′ ∈ Expτ (Γ) for some
Γ ∈ TEnv , τ ∈ Type. We say that M contextually approximates M ′, written
Γ �M �τ M

′ if and only if for each τ1 ∈ Type and for each C[◦τ ] ∈ Ctx τ1 such
that dom(Γ) ⊆ traps we have:

C[M ] ⇓=⇒ C[M ′] ⇓

We read Γ � M �τ M
′ as “in the environment Γ, M contextually approx-

imate M ′”. We note that by our definition, contextual preorder is a family of
relations, one for each Γ ∈ TEnv , τ ∈ Type. We now must verify that we have
really defined a preorder on expressions.

Lemma 6.4.2 (Preorder). For each Γ ∈ TEnv , τ ∈ Type, �τ is a preorder
on Expτ (Γ). Hence:

(i) Reflexivity: Γ �M : τ =⇒ (Γ �M �τ M)

(ii) Transitivity: Γ �M �τ M
′ & Γ �M ′ �τ M

′′ =⇒ Γ �M �τ M
′′

Proof.

(i) Reflexivity is trivial.

(ii) Assume Γ � M �τ M
′ and Γ � M ′ �τ M

′′ and let C[◦τ ] ∈ Ctx τ1 be an
arbitrarily context with dom(Γ) ⊆ traps(C), then C[M ], C[M ′], C[M ′′] ∈
Expτ1

. By assumption C[M ] ⇓=⇒ C[M ′] ⇓ and C[M ′] ⇓=⇒ C[M ′′] ⇓,
so C[M ] ⇓=⇒ C[M ′′] ⇓. Since C[◦τ ] was choosen arbitrarily we have
Γ �M �τ M

′′.

We can finally define formally contextual equivalence as the equivalence
relation induced by �τ .

Definition 6.4.3 (Contextual equivalence). Given Γ ∈ TEnv , τ ∈ Type, let
M,M ′ ∈ Expτ (Γ):

Γ �M ∼=τ M
′ def= (Γ �M �τ M

′) & (Γ �M ′ �τ M)
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We read Γ �M ∼=τ M
′ as “in the environment Γ, M is contextually equiva-

lent to M ′”. Since we are usually interested in closed terms we write M ∼=τ M
′

and M �τ M
′ for ∅ �M ∼=τ M

′ and ∅ �M �τ M
′ respectively. As for contex-

tual preorder it is clear that contextual equivalence is a family of relations, one
for each Γ ∈ TEnv , τ ∈ Type.

Lemma 6.4.4 (Equivalence). For each Γ, ∼=τ is an equivalence relation on
Expτ (Γ). Hence:

Symmetry Γ �M ∼=τ M
′ ⇐⇒ Γ �M ′ ∼=τ M

An immediate consequence of the definition of contextual equivalence is the
following property.

Lemma 6.4.5.

Γ �M �τ M
′ & Γ ⊆ Γ1 =⇒ Γ1 �M �τ M

′

Proof. Take any C[◦τ ] ∈ Ctx τ1 , dom(Γ1) ⊆ traps(C) such that C[M ] ⇓. Γ ⊆ Γ1

and hence dom(Γ) ⊆ traps(C), so by assumption C[M ′] ⇓.

6.4.1 Contextual Equivalence and congruence

A congruence is an equivalence relation that is preserved by all contexts.
The following lemma shows that contextual preorder is a precongruence on FPC
with the consequence that contextual equivalence is a congruence on FPC. This
was originally proved by Morris in [Morris, 1968]. Our proof is a typed version
of the one used by Morris.

Lemma 6.4.6 (Precongruence). Given Γ,Γ1 ∈ TEnv , τ ∈ Type, for each
M,M ′ ∈ Expτ (Γ,Γ1), if Γ,Γ1 � M �τ M ′ then ∀ τ1 ∈ Type, ∀ C[◦τ ] ∈
Ctx τ1(Γ), dom(Γ1) ⊆ traps(C[◦τ ]) we have:

Γ � C[M ] �τ1 C[M ′]

Proof. Assume Γ,Γ1 � M �τ M ′ and let C[◦τ ] be any context in Ctx τ1(Γ)
with dom(Γ1) ⊆ traps(C). For all τ2 let C1[◦τ1 ] be an arbitrary context
in Ctx τ2 with dom(Γ) ⊆ traps(C). Then C1[C[◦τ ]] ≡ C2[◦τ ] is a context
with dom(Γ) ⊆ traps(C2[◦τ ]), dom(Γ1) ⊆ traps(C2[◦τ ]) , and by hypothesis
C2[M ] ⇓=⇒ C2[M ′] ⇓. Thus, since C1[◦τ1] was choosen arbitrarily and by lemma
6.1.6, we have Γ � C[M ] ∼=τ C[M ′].

Corollary 6.4.7 (Congruence). Given Γ,Γ1 ∈ TEnv , τ ∈ Type, for
each M,M ′ ∈ Expτ (Γ,Γ1), if Γ,Γ1 � M ∼=τ M ′ then ∀ τ1, ∀ C[◦τ ] ∈
Ctx τ1(Γ), dom(Γ1) ⊆ traps(C[◦τ ]) we have:

Γ � C[M ] ∼=τ1 C[M ′]

The precongruence property of contextual preorder has several interesting
consequences. For example the following.

Corollary 6.4.8 (Lambda abstraction).

Γ, x : τ1 �M �τ M
′ =⇒ (Γ � λx.M �τ1→τ λx.M

′)
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Proof. It follows immediately from precongruence properties with C[◦τ ] ≡ λx.◦τ

where C[◦τ ] ∈ Ctx τ1→τ (Γ) and x ∈ traps(C).

It is now possible to prove the following lemma, which states a kind of
monotonicity.

Lemma 6.4.9 (Monotonic). For each M1,M
′
1 ∈ Expτ1

(Γ,Γ1), . . . ,Mn,M
′
n ∈

Expτn
(Γ,Γ1), if Γ,Γ1 �M1 �τ1 M

′
1, . . . ,Γ,Γ1 �Mn �τn M

′
n then:

∀ τ, ∀ C[◦τ1 , . . . , ◦τn ] ∈ Ctx τ (Γ), dom(Γ1) ⊆traps(C[◦τ ])
Γ � C[M1, . . . ,Mn] �τ C[M ′

1, . . . ,M
′
n]

Proof. Assume

Γ,Γ1 �M1 �τ1 M
′
1, Γ,Γ1 �M2 �τ2 M

′
2, . . . , Γ,Γ1 �Mn �τn M

′
n

Then by precongruence property for some C1[◦τ1 ], . . . , Cn[◦τn ] ∈ Ctx τ (Γ) such
that ∀ i, 1 ≤ i ≤ n, dom(Γ1) ⊆ traps(Ci):

Γ � C[M1,M2, . . . ,Mn] : τ ≡ C1[M1] �τ C1[M ′
1] ≡ C[M ′

1,M2, . . . ,Mn]
Γ � C[M ′

1,M2, . . . ,Mn] : τ ≡ C2[M2] �τ C2[M ′
2] ≡ C[M ′

1,M
′
2, . . . ,Mn]

...
Γ � C[M1,M

′
2, . . . ,Mn] : τ ≡ Cn[Mn] �τ Cn[M ′

n] ≡ C[M ′
1,M

′
2, . . . ,M

′
n]

so by transitivity we have the conclusion.

6.4.2 Contextual Equivalence and Computation

Intuitively in order to have a theory of program equivalence we need to
show that contextual equivalence respects computations. We now prove differ-
ent properties of both evaluation and transition. We prove the properties by
induction on the length of computations, following the schema extensively used
by Smith in [Smith, 1991], it is easy to prove the same results by induction on
the height of the big-step proof trees.

Lemma 6.4.10. For each M,M ′ ∈ Expτ :

M −→M ′ =⇒ ∅ �M �τ M
′

Proof. Assume (M −→ M ′) and for some C[◦τ ] ∈ Ctx τ1 , C[M ] ⇓. We proceed
by induction on the length of computation.
For the base case C[M ] is a value, hence C[M ] ⇓ C[M ], and since (M −→ M ′)
we have that the canonical form depends on C[◦τ ] so C[M ′] ⇓ C[M ′].
Now assume the lemma valid for shorter computation. By lemma 6.2.2, C[M ]
can be written uniquely as Ê [M ]〈C1[M ]〉 where C1[M ] is a redex. Consider the
next computation step:

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈M ′′〉
Observe that the occurences of M outside the reduction context scope remain
untouched, so we are interested in M ′′. By lemma 6.2.3, since M ∈ Expτ and
M /∈ Can we have two cases depending on the structure of M ′′:
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Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C2[M ]〉
for some C2[◦τ ] �≡ ◦τ . By assumption Ê [M ]〈C2[M ]〉 ⇓ but it is a shorter com-
putation hence we can apply induction hypothesis and obtain Ê [M ′]〈C2[M ′]〉 ⇓.
Since Ê [M ′]〈C1[M ′]〉 −→ Ê [M ′]〈C2[M ′]〉 we have the conclusion.
Otherwise:

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C1[M ′]〉
where C1[◦τ ] ≡ ◦τ . Hence Ê [M ]〈C1[M ′]〉 ⇓ and fixed M ′ by induction hypothesis
Ê [M ′]〈C1[M ′]〉 ⇓.

Lemma 6.4.11. For each M,M ′ ∈ Expτ :

M −→M ′ =⇒ ∅ �M ′ �τ M

Proof. Assume (M −→ M ′) and for C[◦τ ] ∈ Ctx τ1 , C[M ′] ⇓. We proceed by
induction on the length of computation.
For the base case C[M ′] is a value, hence either C[M ′] is a value depending on
C[◦τ ] or M ′ is a value with τ = τ1. In the former case, also C[M ] is a value, in
the latter we know that M −→ M ′ so M ⇓ M ′ by lemma 4.2.26. Then both
give the conclusion.
Now assume the lemma valid for shorter computation. By lemma 6.2.2, C[M ′]
can be written uniquely as Ê [M ′]〈C1[M ′]〉 where C1[M ′] is a redex. Consider the
next computation step:

Ê [M ′]〈C1[M ′]〉 −→ Ê [M ′]〈M ′′〉
Observe that the occurences of M ′ outside the reduction context scope remain
untouched, so we are interested in M ′′. By lemma 6.2.3, since M ∈ Expτ and
M /∈ Can we have two cases depending on the structure of M ′′:

Ê [M ′]〈C1[M ′]〉 −→ Ê [M ′]〈C2[M ′]〉
for some C2[◦τ ] �≡ ◦τ . By assumption Ê [M ′]〈C2[M ′]〉 ⇓ but it is a shorter com-
putation hence we can apply induction hypothesis and obtain Ê [M ]〈C2[M ]〉 ⇓.
Since Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C2[M ]〉 we have the conclusion.
Otherwise:

Ê [M ′]〈C1[M ′]〉 −→ Ê [M ′]〈C1[M ′′]〉
for someM ′′ where C1[◦τ ] ≡ ◦τ . Hence Ê [M ′]〈M ′′〉 ⇓ and fixed M ′′ by induction
hypothesis Ê [M ]〈M ′′〉 ⇓. But by assumption M −→ M ′ and M ′ −→ M ′′ then
we have:

Ê [M ]〈M〉 −→ Ê [M ]〈M ′〉 −→ Ê [M ]〈M ′′〉
the conclusion.

Hence for transition relation we have the following.

Corollary 6.4.12 (−→⊆∼=). For all M,M ′ ∈ Expτ :

M −→M ′ =⇒M ∼=τ M
′

We can now easily prove the followings.

Lemma 6.4.13. For each M ∈ Expτ , C ∈ Canτ :

M ⇓ C =⇒M �τ C
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Proof. By corollary 4.2.27 we have that M ⇓ C ⇐⇒ M −→ M1 −→ · · · −→ C.
By lemma 6.4.10 we have M �τ M1 �τ · · · �τ C and transitivity gives the
conclusion.

Lemma 6.4.14. For each M ∈ Expτ , C ∈ Canτ :

M ⇓ C =⇒ C �τ M

Proof. By corollary 4.2.27 we have that M ⇓ C ⇐⇒ M −→ M1 −→ · · · −→ C.
By lemma 6.4.11 we have C �τ · · · �τ M1 �τ M and by transitivity the
conclusion.

Hence for evaluation relation we have the following.

Corollary 6.4.15 (⇓⊆∼=). For each M ∈ Expτ , C ∈ Canτ :

M ⇓ C ⇒M ∼=τ C

We have proved important properties of computation with respect to contex-
tual equivalence, in particular for convergent computation. Contextual equiva-
lence is useful also in the case where computation diverges. This is stated by
the two following lemmas.

Lemma 6.4.16 (Syntactic Bottom).

Γ �M : τ =⇒ Γ � Ωτ �τ M

Proof. We only need to show ∀C[◦τ ] ∈ Ctx τ1 if C[Ωτ ] ⇓ also C[M ] ⇓. Assume
C[Ωτ ] ⇓ for some C[◦τ ] ∈ Ctx τ1 . We prove the lemma by induction on the length
of computation.
For the base case C[Ωτ ] ⇓ C[Ωτ ] is surely due to C[◦τ ] because Ωτ is divergent,
so we have also C[M ] ⇓ C[M ].
Now assume the lemma valid for shorter computation. By lemma 6.2.2, C[Ωτ ]
can be written uniquely as Ê [Ωτ ]〈C1[Ωτ ]〉 where C1[Ωτ ] is a redex. Consider the
next step of computation:

Ê [Ωτ ]〈C1[Ωτ ]〉 −→ Ê [Ωτ ]〈M ′′〉
Observe that the occurences of Ωτ outside the reduction context scope remain
untouched, so we are interested in M ′′. By lemma 6.2.3, since Ωτ ∈ Expτ and
Ωτ /∈ Can we have only one possibility, otherwise we contradict the assumption:

Ê [Ωτ ]〈C1[Ωτ ]〉 −→ Ê [Ωτ ]〈C2[Ωτ ]〉
for some C2[◦τ ] �≡ ◦τ . By assumption Ê [Ωτ ]〈C2[Ωτ ]〉 ⇓ but it is a shorter com-
putation hence we can apply induction hypothesis and obtain Ê [M ]〈C2[M ]〉 ⇓.
Since Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C2[M ]〉 we have the conclusion.

Lemma 6.4.17 (Divergence). For each M ∈ Expτ

M ⇑ ⇐⇒ Ωτ ∼=τ M

Proof. (=⇒) From lemma 6.4.16 we only need to show that M ⇑=⇒M �τ Ωτ .
We show that M ⇑=⇒ ∀C[◦τ ] ∈ Ctx τ1 (C[M ] ⇓=⇒ C[Ωτ ] ⇓). Assume C[M ] ⇓
for some C[◦τ ] ∈ Ctx τ1 . We proceed by induction on the length of computation.
For the base case C[M ] ⇓ C[M ] is surely due to C[◦τ ] because M ⇑, so we have
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also C[Ωτ ] ⇓ C[Ωτ ].
Now assume the conclusion valid for shorter computation. By lemma 6.2.2,
C[M ] can be written uniquely as Ê [M ]〈C1[M ]〉 where C1[M ] is a redex. Consider
the next step of computation:

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈M ′′〉
Observe that the occurences of M outside the reduction context scope remain
untouched, so we are interested in M ′′. By lemma 6.2.3, since M ∈ Expτ and
M /∈ Can we have only one possibility, otherwise we contradict the assumption:

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C2[M ]〉
for some C2[◦τ ] �≡ ◦τ . By assumption Ê [M ]〈C2[M ]〉 ⇓ but it is a shorter com-
putation hence we can apply induction hypothesis and obtain Ê [Ωτ ]〈C2[Ωτ ]〉 ⇓.
Since Ê [Ωτ ]〈C1[Ωτ ]〉 −→ Ê [M ]〈C2[Ωτ ]〉 we have the conclusion.
(⇐=) If Ωτ ∼=τ M then for all C[◦τ ] ∈ Ctx τ1 , C[Ωτ ] ⇓ ⇐⇒ C[M ] ⇓ but we know
that for each C[◦τ ] ≡ Ê [◦τ ]〈•τ 〉 we have Ê [Ωτ ]〈Ωτ 〉 ⇑ which implies Ê [M ]〈M〉 ⇑
and hence M ⇑.

We can now prove the following interesting properties.

Corollary 6.4.18 (Beta reduction). For each x : τ1 �M : τ, A ∈ Expτ1
we

have:
(λx.M)A ∼=τ M [A/x]

Proof. By reflexivity x : τ1 � M ∼=τ M and so by lemma 6.4.8 we have ∅ �
λx.M ∼=τ1→τ λx.M . By congruence property of contextual equivalence we have
(λx.M)A ∼=τ (λx.M)A and hence since (λx.M)A −→ M [A/x] by corollary
6.4.12 and transitivity (λx.M)A ∼=τ M [A/x]

Corollary 6.4.19 (Beta reduction). For each 〈M1,M2〉 : τ1 × τ2 we have:

fst(〈M1,M2〉) ∼=τ1 M1 snd(〈M1,M2〉) ∼=τ2 M2

Proof. Since fst〈M1,M2〉 −→M1 and snd〈M1,M2〉 −→M2 by corollary 6.4.12
the conclusion follows.

Corollary 6.4.20 (Beta reduction). For each inl(M) : τ1 + τ2, inr(N) :
τ1 + τ2 we have:

case inlτ1,τ2(M) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} ∼=τ1 M

case inrτ1,τ2(N) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} ∼=τ2 N

Proof. Since case inlτ1,τ2(M) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} −→ M and
case inrτ1,τ2(N) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} −→ N by corollary 6.4.12
the conclusion follows.

Corollary 6.4.21 (Beta reduction). For each absµT.τ (C) : muT.τ we have:

rep(absµT.τ (C)) ∼=τ [µT.τ/T ] C

Proof. Since rep(absµT.τ (C)) −→ C by corollary 6.4.12 the conclusion follows.

We have proved the above lemmas by using transition relation, Pitts in
[Pitts, 1995] uses a big-step semantics for PCFL hence he needs to introduce a
new program equivalence called kleene equivalence in order to prove them.
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6.4.3 Contextual Equivalence and Extensionality

An interesting property which will be useful in the sequel is Extensionality
We first prove the following lemma.

Lemma 6.4.22. For each x : τ1 � N �τ N
′ and M ∈ Expτ1

we have:

N [M/x] �τ N
′[M/x]

Proof. If x : τ1 � N �τ N
′ by lemma 6.4.8 we have ∅ � λx.N �τ1→τ λx.N

′. By
the congruence property of contextual equivalence for each M ∈ Expτ1

we have
(λx.N)M ∼=τ (λx.N ′)M but by lemma 6.4.18 we have (λx.N)M ∼=τ N [M/x]
and (λx.N ′)M ∼=τ N

′[M/x] and hence by transitivityN [M/x] �τ N
′[M/x].

Now we can prove the following generalization of the above lemma which
will be useful in the sequel.

Lemma 6.4.23. For all x1 : τ1, . . . , xn : τn � N �τ N
′ we have:

∀M1 ∈ Expτ1
, . . . ,Mn ∈ Expτn

N [M1/x1, · · · ,Mn/xn] �τ N
′[M1/x1, · · ·,Mn/xn]

Proof. Take x1 : τ1, . . . , xn : τn � N �τ N
′ and general M1 ∈ Expτ1

, . . . ,Mn ∈
Expτn

. By lemma 6.4.8 we have:

x2 : τ2, . . . , xn : τn � λx1.N �τ λx1.N
′

and by congruence property of contextual equivalence:

x2 : τ2, . . . , xn : τn � (λx1.N)M1 �τ (λx1.N
′)M1

Now we can repeat this argument to find:

� (λxn. · · · ((λx1.N)M1) · · · )Mn �τ (λxn. · · · ((λx1.N
′)M1) · · · )Mn

Now by lemma 6.4.18 we have:

�((λxn−1. · · · ((λx1.N)M1) · · · )Mn−1)[Mn/xn]
�τ ((λxn−1. · · · ((λx1.N

′)M1) · · · )Mn−1)[Mn/xn]

and by repeating we have:

N [M1/x1, · · · ,Mn/xn] �τ N
′[M1/x1, · · · ,Mn/xn]

It is interesting to note that we use extensively contexts as part of our
metalanguage in the proofs of proposition as the above.

Lemma 6.4.24. For each N,N ′ ∈ Expτ (x1 : τ1, . . . , xn : τn):

∀M1 ∈ Expτ1
, . . . ,Mn ∈ Expτn

(N [M1/x1, · · · ,Mn/xn] �τ N
′[M1/x1, · · · ,Mn/xn])

=⇒ x1 : τ1, . . . , xn : τn � N �τ N
′
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Proof. If N ∈ Expτ (∅) the conclusion follows immediately. Otherwise take
C[◦τ ] ∈ Ctx τ2+τ3 such that x ∈ traps(C) and assume that C[N ] ⇓. We prove the
lemma by induction on the length of computation.
Since N /∈ Expτ (∅) we have N /∈ Can hence for the base case the only possibility
is C[N ] ⇓ C[N ] depending on C[◦] and hence we have C[N ′] ⇓ C[N ′]. Now assume
the conclusion valid for shorter computation.
By lemma 6.2.2, C[M ] can be written uniquely as Ê [N ]〈C1[N ]〉 where C1[N ] is a
redex. Consider the next step of computation:

Ê [N ]〈C1[N ]〉 −→ Ê [N ]〈N ′′〉
Observe that the occurrences of M outside the reduction context scope remain
untouched, so we are interested in N ′′. By observing that N is neither a redex
nor a value by lemma 4.2.12 we have that C1[N ] = E [C2[N ]] where C2[N ] ∈ Can .
Now by an analysis of transition rules, we have two distinct cases. If E equals
fst([•]), snd([•]) rep([•]) or absµT.τ ([•]) then we have:

Ê [N ]〈C1[N ]〉 −→ Ê [N ]〈C3[N ]〉
for some C3[◦τ ] where the computation is uniform in N because it is not a
value. Hence Ê [N ]〈C3[N ]〉 ⇓ but it is a shorter computation, hence we can
apply induction hypothesis and obtain Ê [N ′]〈C3[N ′]〉 ⇓. Since Ê [N ′]〈C1[N ′]〉 −→
Ê [N ′]〈C3[N ′]〉 we have the conclusion.
Otherwise E equals case [•] of {inlτ1,τ2(x1).M1 | inrτ1,τ2(x2).M2} or [•]M1,
and one of the rules (app tran), (cond tran inl) or (cond tran inl) apply. We
show the case E ≡ [•]M1, the others are similar. To apply (app tran) rule C2[N ]
should be of the form λx.C′[N ], M1 can contain N hence we can write it as
C′′[N ] so we have:

Ê [N ]〈(λx.C′[N ])C′′[N ]〉 −→ Ê [N ]〈(C′[N ])[C′′[N ]/x]〉
Hence Ê [N ]〈(C′[N ])[C′′[N ]/x]〉 ⇓ but it is a shorter computation, hence we
can apply the induction hypothesis to occurrences outside the reduction con-
text scope and obtain Ê [N ′]〈(C′[N ])[C′′[N ]/x]〉 ⇓. The occurrences of N in
C′′[N ] are untouched and hence computation is uniform in C′′[N ], so again
we can apply induction hypothesis to occurrences of N in C′′[N ] and obtain
Ê [N ′]〈(C′[N ])[C′′[N ′]/x]〉 ⇓. Finally consider the occurrences of N in C′[N ]. We
have two cases: either x /∈ FV (N) or x ∈ FV (N) and hence x ≡ xi for any
1 ≤ i ≤ n. If the former holds then computation is uniform in C′[N ] and hence
we obtain Ê [N ′]〈(C′[N ′])[C′′[N ′]]〉 ⇓, and since

Ê [N ′]〈(λx.C′[N ′])C′′[N ′]〉 −→ Ê [N ′]〈(C′[N ′])[C′′[N ′]/x]〉
we get the conclusion.
In the latter case Ê [N ′]〈(C′[N ])[C′′[N ′]/x]〉 ⇓ can written as C4[N [C′′[N ′]/x]] and
since C4[N [C′′[N ′]/x]] ⇓ by assumption we have for each M ′ that N [M ′/x] �τ

N [M ′/x] hence C4[N ′[C′′[N ′]/x]] ⇓ and since
Ê [N ′]〈(λx.C′[N ′])C′′[N ′]〉 −→ Ê [N ′]〈(C′[N ′])[C′′[N ′]/x]〉

the conclusion.

By the above lemmas we have that contextual equivalence is extensional
in the sense of the following corollary.

Corollary 6.4.25 (Extensionality).
For each N,N ′ ∈ Expτ (x1 : τ1, . . . , xn : τn) we have:

∀M1 ∈ Expτ1
, . . . ,Mn ∈ Expτn

(N [M1/x1, · · · ,Mn/xn] �τ N
′[M1/x1, · · · ,Mn/xn])

⇐⇒ x1 : τ1, . . . , xn : τn � N �τ N
′
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6.4.4 Recursively defined term

In chapter 4 we have shown that the derived constructor rec x.F is typable
with respect to FPC typing rules. We now show that the usual dynamic seman-
tics rules for rec x.F can be derived by our relations.

Small-step

In [Gordon, 1995] Gordon gives the following small-step rule for rec x.F .

rec x.F −→ F [rec x.F/x] (rec tran)

We want to prove that this rule is equivalent to our semantics. In the sequel we
do not consider type information only for clarity of notation. By our operational
semantics we have for each rec x.F ∈ Expτ the following transitions.

rec x.F ≡
λf.(λy.f(rep(y)y))(abs(λy.f(rep(y)y)))(λx.F ) −→
(λy.(λx.F )(rep(y)y))(abs(λy.(λx.F )(rep(y)y))) −→
λx.F (rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))) −→
F [rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))/x]

Hence we want to prove that

F [rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))/x]
∼=τ

F [rec x.F/x]

By corollary 6.4.12 and transition rules we have

rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))
∼=τ

λy.(λx.F )(rep(y)y)(abs(λy.(λx.F )(rep(y)y)))

and by lemma 6.4.18 the following

λf.(λy.f(rep(y)y))(abs(λy.f(rep(y)y)))λx.F
∼=τ

λy.(λx.F )(rep(y)y)(abs(λy.(λx.F )(rep(y)y)))

Hence by transitivity we have

rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y))) ∼=τ rec x.F

and by congruence property the conclusion follows. Thus it is clear that (rec
tran) rule involve not a single step but different steps but we can consider it
correct with respect to our small-step operational semantics, and when will be
useful we will use it as an abbreviation for the reduction of recursively defined
terms.
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Big-step

In [Winskel, 1993] Winskel gives the following big-step rule for rec x.F .

F [rec x.F/x] ⇓ C
rec x.F ⇓ C (+ rec)

We want to prove that it is equivalent to our semantics. In the sequel we do
not consider type information and we do not state convergence judgement for
canonical terms only for clarity of notation. By our operational semantics we
have for each rec x.F ∈ Expτ the following transitions.

F [rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))/x] ⇓ C
λx.F (rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))) ⇓ C

(λy.(λx.F )(rep(y)y))(abs(λy.(λx.F )(rep(y)y))) ⇓ C
rec x.F ≡ λf.(λy.f(rep(y)y))(abs(λy.f(rep(y)y)))λx.F ⇓ C

In the last paragraph we have show that

F [rep(abs(λy.(λx.F )(rep(y)y)))(abs(λy.(λx.F )(rep(y)y)))/x]
∼=τ

F [rec x.F/x]

and hence we can consider (+ rec) rule correct with respect to our big-step
operational semantics. Thus in the sequel we will use it when we need an
abbreviation for evaluation of recursively defined terms.

6.4.5 Rational completeness and syntactic continuity

We have shown how we can recursively define terms through a derived con-
structor rec x.F . Furthermore we have proved that it is possible to define an
operational semantics for rec x.F which corresponds with the usual operational
semantics of languages which provide it as basic constructor.
Now we want to prove that the term rec x.F ∈ Expτ is contextual approxi-
mated by its finite unrollings. We define recursively the n-th approximation of
rec x.F as:

rec0 x.F
def= Ωτ

recn+1 x.F
def= F [recn x.F/x]

We can now prove the following lemmas.

Lemma 6.4.26.
∀ n (recn x.F �τ recn+1 x.F )

Proof. We prove it by induction on n. The base case is trivial. As-
sume C[recn x.F ] ⇓ for C[◦τ ] ∈ Ctx τ1 . C[recn+1 x.F ] can be written as
C[F [recn x.F/x]] ≡ C1[recn x.F ], but we have that also C[F [recn−1 x.F/x]] ≡
C1[recn−1 x.F ]. By induction hypothesis C1[recn−1 x.F ] ⇓ implies that
C1[recn x.F ] ⇓ and hence the conclusion.

Lemma 6.4.27.
∀ n (recn x.F �τ rec x.F )
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Proof. For each n we want to show that for each C[◦τ ] ∈ Ctx τ1 if C[recn x.F ] ⇓
then C[rec x.F ] ⇓. We prove this by induction on n.

Base rec0 x.F
def= Ωτ hence by syntactic bottom property if C[Ωτ ] ⇓ we have

C[rec x.F ] ⇓
Induction Step Assuming ∀ C[◦τ ] ∈ Ctx τ1 C[recn x.F ] ⇓=⇒ C[rec x.F ] ⇓ we

want to show ∀ C[◦τ ] ∈ Ctx τ1 C[recn+1 x.F ] ⇓=⇒ C[rec x.F ] ⇓.
C[recn+1 x.F ] ≡ C[F [recn x.F/x]] ≡ C1[recn x.F ], if C[recn+1 x.F ] ⇓
then C1[recn x.F ] ⇓ hence by induction hypothesis C1[rec x.F ] ⇓ but this
implies that C[F [rec x.F/x]] ⇓ and so by (+ fix) C[rec x.F ] ⇓.

Lemma 6.4.28. Let C[◦τ ] ∈ Ctx τ1 then

∀ n (C[recn x.F ] �τ1 C[rec x.F ])

Proof. It follows immediately by lemma 6.4.27 and precongruence property of
�.

Lemma 6.4.29.

(C[rec x.F ] ⇓=⇒ ∃ n C[recnx.F ] ⇓)

Proof. We need to show that ∀C[◦τ ] : τ1 if C[rec x.F ] ⇓ then exists n such that
C[recn x.F ] ⇓. We prove this on the length of the computation.

Base C[rec x.F ] ⇓ C[rec x.F ] this implies that for all n C[recn x.F ] ⇓
C[recn x.F ].

Induction Step By lemma 6.2.2, we can write C[rec x.F ] uniquely as
Ê [rec x.F ]〈C1[rec x.F ]〉. Consider the next step of computation:

Ê [rec x.F ]〈C1[rec x.F ]〉 −→ Ê [rec x.F ]〈M〉
Observe that the occurences of rec x.F outside the reduction context
scope remain untouched, so we are interested in M . We have only two
possibilities:

Ê [rec x.F ]〈C1[rec x.F ]〉 −→ Ê [rec x.F ]〈C2[rec x.F ]〉
where C1 �≡ ◦τ but by induction hypothesis exists n such that
Ê [recn x.F ]〈C2[recn x.F ]〉 ⇓ and hence from

Ê [recn x.F ]〈C1[recn x.F ]〉 −→ Ê [recn x.F ]〈C2[recn x.F ]〉
we have the conclusion.
Otherwise we have

Ê [rec x.F ]〈rec x.F 〉 −→ Ê [rec x.F ]〈F [rec x.F/x]〉
hence where C1 ≡ ◦τ but by fixing the occurrences of rec x.F outside
the reduction context scope we can write Ê [rec x.F ]〈F [rec x.F/x]〉 as
Ê [rec x.F ]〈C3[rec x.F ]〉 and by induction hypothesis exists n such that
Ê [recn x.F ]〈C3[recn x.F ]〉 ⇓ and hence Ê [recn x.F ]〈F [recn x.F/x]〉 ⇓ but
this can be written as Ê [recn x.F ]〈recn+1 x.F ]〉 ⇓ and since recn x.F �τ

recn+1 x.F we have the conclusion.
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Lemma 6.4.30 (Rational Completeness).

rec x.F �τ M ⇐⇒ ∀n ∈ N (rec nx.F �τ M)

Proof.

(=⇒) By lemma 6.4.27 and transitivity.

(⇐=) Assume ∀n ∈ N (rec nx.F �τ M). Taken C[◦τ ] ∈ Ctx τ1 such that
C[rec x.F ] ⇓ by lemma 6.4.29 we have that there exists n such that
C[rec x.F ] ⇓=⇒ C[recn x.F ] ⇓. By assumption C[recn x.F ] ⇓=⇒ C[M ] ⇓
hence since we have choosen arbitrarily C[◦τ ] we have the conclusion.

Lemma 6.4.31 (Syntactic Continuity).

C[rec x.F ] �τ M ⇐⇒ ∀ n ∈ N(C[rec nx.F ] �τ M)

Proof.

(=⇒) By lemma 6.4.28 and transitivity.

(⇐=) Assume ∀n ∈ N (C[rec nx.F ] �τ M). Take C1[◦τ ] ∈ Ctx τ1 such
that C1[C[rec x.F ]] ⇓. Hence there exists C2[◦] ≡ C1[C[◦]] such that
C2[rec x.F ] ⇓. By lemma 6.4.29 we have that there exists n such
that C2[rec x.F ] ⇓=⇒ C2[recn x.F ] ⇓. By assumption C2[recn x.F ] ≡
C1[C[recn x.F ]] ⇓=⇒ C1[M ] ⇓ hence since we have choosen arbitrarily
C1[◦τ ] we have the conclusion.

6.5 Guide to references

We have so far generalized the notion of contexts. Contexts are well known
and studied device in different fields of computer science. We have introduced
only context for FPC, but it is clear that it is possible to define a notion of con-
text in each formal framework. We have seen that our definition of context does
not preserve α-equivalence. Pitts in [Pitts, 1994] gives an alternative treatment
of contexts which do not descend below the level of abstraction of α-equivalence
classes of expressions by introducing a notion of “function variables”.
The possible generalization do not only regard contexts but also contextual
equivalence. We have already remarked that contextual equivalence is an in-
stance of observational equivalence. The genericity of the notion has caused
the proliferation of names in literature for the same equivalence, this can some-
times be misleading. Contextual equivalence was first introduced by Morris in
[Morris, 1968] with the name of extensional equivalence. Howe in [Howe, 1989]
use the name contextual congruence, Smith in [Smith, 1991] observational con-
gruence, Mason, Talcott and Smith in [Mason et al., 1996] operational equiva-
lence and Ong in [Ong, 1995], Pitts in [Pitts, 1995] observational equivalence.
It must be clear that they are different names for the same notion.
The definitions of contextual equivalence depend also from the choices of observ-
able types, for an interesting discussion on language constructors and observable
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types see [Pitts, 1995] and [McCusker, 1996a].
We have proved different properties of contextual equivalence with respect to
FPC programs and our operational semantics. In particular we have proved ra-
tional completeness and syntactic continuity which seem to be the more interest-
ing properties. Our proofs are not too elegant but they are extremely direct and
“operational”. Our proofs follow in spirit the ones by Smith in [Smith, 1991],
Mason, Talcott and Smith in [Mason et al., 1996] and by Sands in [Sands, 1997].
Pitts in [Pitts, 1995], Birkedal and Harper in [Birkedal and Harper, 1999] prove
the properties by a more general and elegant method.



Chapter 7

Other Equivalence notions

Entities are not to be multiplied beyond necessity.
Entities are not to be reduced or eliminated beyond necessity.
Properties of entities are not to be multiplied beyond necessity.
Properties of entities are not to be reduced or eliminated beyond
necessity

“Occam’s Sword”, an extension of the famous “Occam’s Razor”.

Contextual equivalence is the natural operational equivalence relation. Our for-
mulation is useful when we need to prove that two programs are different, in
fact we need only to find a context where the two programs differs. Conversely,
in order to prove the equality of two programs we need to show that the two
program behaviours are equivalent in each context. This quantification in gen-
eral is not easy to prove. For this reason, in the last years emerged different
formulations of contextual equivalence. Since these formulations are simpler
they can be used when we need to prove properties of contextual equivalence
which are difficult to prove otherwise.
In the sequel, for simplicity, we usually prefer to begin to work with contextual
equivalence restricted to closed terms, then in some cases we will show how to
extends the results to open terms. Sometimes we use different but intuitively
equivalent formulations of contextual equivalence.

7.1 Kleene Equivalence

We first introduce a simple preorder relation and its associated
equivalence. Following Pitts in [Pitts, 1995], Birkedal and Harper in
[Birkedal and Harper, 1999] we call this relation Kleene equivalence. As em-
phasized by Pitts this terminology is adopted from the logic of partially defined
expressions.

Definition 7.1.1 (Kleene preorder). For each M,M ′ ∈ Expτ :

M �kl
τ M ′ def= ∀C ∈ Canτ (M ⇓ C =⇒M ′ ⇓ C)

Definition 7.1.2 (Kleene equivalence). For each M,M ′ ∈ Expτ :

M ∼=kl
τ M ′ def= M �kl

τ M ′ & M ′ �kl
τ M

95



CHAPTER 7. OTHER EQUIVALENCE NOTIONS 96

It is easy to verify the following lemma.

Lemma 7.1.3. For each τ :

�kl
τ is a preorder and ∼=kl

τ is the induced equivalence relation on Expτ

The two following lemmas show that Kleene equivalence is contained in
contextual equivalence.

Lemma 7.1.4 (�kl⊆�). For all M,M ′ ∈ Expτ :

M �kl
τ M ′ =⇒M �τ M

′

Proof. For all M,M ′ ∈ Expτ such that M �kl
τ M ′ we have two cases: If M ⇓ C

for some C ∈ Canτ then M ′ ⇓ C. By lemma 6.4.13 we have M �τ C and by
lemma 6.4.13 C �τ M ′. By transitivity the conclusion. Otherwise M ⇑, by
lemma 6.4.17 M �τ Ωτ and by lemma 6.4.16 Ωτ �τ M ′. By transitivity the
conclusion.

Lemma 7.1.5 (∼=kl⊆∼=). For all M,M ′ ∈ Expτ :

M ∼=kl
τ M ′ =⇒M ∼=τ M

′

Clearly the converse of the above lemma is not generally true. This means
that Kleene equivalence is a notion of program equivalence which does not cap-
ture the entire observational meaning of a term. In section 6.3 we have claimed
that in the definition of contextual equivalence if we choose as observation for
our language the convergence to the same value, we obtain too strong an equiv-
alence relation. We now define a relation ∼=Can

τ ⊆ P(Exp × Exp) by observing
convergence to the same value for each M,N ∈ Exp as:

M ∼=Can
τ N ⇐⇒ ∀τ1, ∀C[◦τ ] ∈ Expτ1

(C[M ] ⇓ C ⇐⇒ C[N ] ⇓ C)

It is easy to prove the following proposition.

Proposition 7.1.6. For each M,M ′ ∈ Expτ :

M ∼=Can
τ M ′ =⇒M ∼=kl

τ M ′

Proof. By lemma 4.2.19 we have that for each M ∈ Expτ either M evaluates
to some C ∈ Can or M diverges. Since evaluation is deterministic we have
that C is unique. For each M,M ′ ∈ Expτ such that M ∼=Can

τ M ′ we have
that if M ⇓ C where C ∈ Canτ then M ′ ⇓ C, otherwise we have that context
C[◦τ ] ≡ ◦τ distinguishes beetween the two terms. If M ⇑ then also M ′ ⇑, and
hence M ∼=kl

τ M ′.

Hence the notion of equivalences where observations are on convergence to
the same value are too strong in the sense that they distinguish beetween canon-
ical form terms which can be considered operationally equivalent. We remark
that the above propositions depend on the fact that we have chosen a lazy eval-
uation and to observe convergence at every type.
Nevertheless, Kleene equivalence is useful in the formulation of program equiva-
lence notions where the language has ground types and convergence is observed
at these ground types (for example see [Birkedal and Harper, 1999]).
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7.2 Experimental Equivalence and Context

Lemma

In [Milner, 1977] Milner show that contextual equivalence, defined by ob-
serving convergence of terms in all program contexts, for a combinatory-logic
form of PCF is equivalent to the relation obtained by observing the convergences
to values of all possible applications of terms to arguments. This result is well
known as context lemma. This can be stated as:

7.2.1 (Milner Context Lemma). For any closed PCF terms M and M ′

M ∼= M ′ ⇐⇒ ∀N1, . . . , Nm (MN1, . . . , Nm ⇓=⇒M ′N1, . . . , Nm ⇓)

Milner’s context lemma is based on the fact that for the simply typed lan-
guage PCF the only type constructor is →, this means that each term has a
functional behaviour. By the well known extensionality principle for functions
we know that two functions have the same behaviour if and only if for each
arguments they compute the same value.
Hence we can restrict our attention only to contexts of the form C[◦] ≡ ◦ C1[◦].
This means to restrict our attention only to the set of contexts which are re-
ally useful to test the behavior of a term, for PCF they are called applicative
contexts. Since we are interested in a language where there are different type
constructors, we need to find a set of contexts which are useful to test FPC
terms. It is easy to verify that they are exactly the evaluation contexts, defined
before in 4.2.10.
We can define experimental preorder on closed terms as follows.

Corollary 7.2.2 (Experimental preorder). For each M,M ′ ∈ Expτ :

M �Exp
τ M ′ def= ∀�E [•τ ] ∈ Ectx τ1

�E [M ] ⇓=⇒ �E [M ′] ⇓
As usual we can now define the induced equivalence relation.

Corollary 7.2.3 (Experimental Equivalence). For each M,M ′ ∈ Expτ :

M ∼=Exp
τ M ′ def= ∀�E [•τ ] ∈ Ectx τ1

�E [M ] ⇓ ⇐⇒ �E [M ′] ⇓
We read M ∼=Exp

τ M ′ as “M is experimentally equivalent to M ′”. As for
contextual equivalence it is clear that applicative equivalence is a family of re-
lations, one for each τ ∈ Type. When we write ∼=Exp we clearly mean the entire
family.
In the language as PCF, where the only type constructor is →, the equivalent
notion of experimental equivalence is called applicative equivalence. We have
chosen, following [Gordon, 1995] and [Birkedal and Harper, 1999], the name ex-
perimental equivalence to stress that we need to test (or experiment) terms in
different contexts.
Definition 7.2.3 is intuitively coinductive. Following Gordon in [Gordon, 1995]
we now want to emphasize this fact by characterizing experimental equivalence
as the greatest fixed point of a monotone operator on the complete lattice of
relations on programs. We can now define an operator

φExp : P(Exp × Exp) → P(Exp × Exp)
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as

φExp(X) def= {(M,N)|M ⇓ ⇐⇒ N ⇓ &
∀E ∈ Exper such that E [M ], E [N ] ∈ Exp : (E [M ], E [N ]) ∈ X}

It is easy to verify that φExp is monotonic and hence it possesses a greatest fixed
point νX.φExp(X). In particular φExp is extensional, then by lemma 2.5.7 we
have that νX.φExp(X) is an equivalence relation. Furthermore we can prove
the following lemma.

Lemma 7.2.4.
∼=Exp= νX.φExp(X)

Proof. By lemmas 4.2.11 we have that each �E [•] can be decomposed uniquely
as E1[· · · [En[◦]] · · · ]. Hence clearly ∼=Exp is φExp-dense and so by coinduction
we have ∼=Exp⊆ νX.φExp(X). Now for each M,N ∈ Expτ such that (M,N) ∈
νX.φ(X), we have M ⇓ ⇐⇒ N ⇓ because, by fixpoint property, we have
φ(νX.φ(X)) = νX.φ(X). Take any �E [◦τ ] such that �E [M ], �E [N ] ∈ Expτ1 and
�E [M ] ⇓. Again by fixpoint property we have (�E [M ], �E [N ]) ∈ νX.φ(X) hence
by induction on the structure of �E [◦] and lemma 4.2.11 we have �E [M ] ⇓ ⇐⇒
�E [M ′] ⇓.

It is easy to verify that the rules are deterministic hence we can characterize
experimental equivalence as:

⋂
n∈N

φn
Exp(Exp) = νX.φExp(X)

Hence we have characterized coinductively experimental equivalence. Further-
more we have that it can be costructively defined with respect to ⊆ and with
bases Exp. This permits to reason coinductively to prove that two programs
are experimental equivalence.

Lemma 7.2.5. For each X ⊆ Exp × Exp we have

X ⊆ φExp(X) =⇒ X ⊆∼=Exp

This can be view as stating that for each M,N ∈ Exp, if there exists a
relation S ⊆ Exp × Exp such that {(M,N)|M ⇓ ⇐⇒ N ⇓} ⊆ S and M S N
and for each E ∈ Exper such that E [M ], E [N ] ∈ Exp we have E [M ] S E [N ] then
M ∼=Exp N .
To be an attractive equivalence relation, experimental equivalence must satisfies
the following lemma which can be seen as a version for FPC of Milner context
lemma. We now consider a definition of contextual equivalence where the ob-
servation are at any type. It is clear that it is equivalent to the one defined in
6.4.3. The proof is an evolution of the proof due to Berry in [Berry, 1981].

Lemma 7.2.6 (Context Lemma for Closed Terms).

M ∼=Exp
τ N ⇐⇒ M ∼=τ N
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Proof. Clearly since Ectx ⊆ Ctx if M ∼=τ N then M ∼=Exp
τ N . Now to prove

the reverse implication assume for some C[◦τ ] ∈ Ctx τ1 , C[M ] ⇓. We proceed by
induction on the length of the computation.
For the base case C[M ] either is a value and it depends from C[◦τ ] and so also
C[N ] is a value or C[◦τ ] ≡ ◦τ and hence M ⇓M but hence since M ∼=app

τ N we
have N ⇓ N .
Now assume the lemma valid for shorter computation. By lemma 6.2.2, C[M ]
can be written uniquely as Ê [M ]〈C1[M ]〉 where C1[M ] is a redex. Consider the
next step of computation:

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈M ′〉
Observe that the occurences of M outside the reduction context scope remain
untouched, so we are interested in M ′. By lemma 6.2.3, since M ∈ Expτ we
have three distinct cases depending on the structure of M ′:

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C2[M ]〉
for some C1[◦τ ] �≡ ◦τ and C1[◦τ ] �≡ E [◦τ ]. By assumption Ê [M ]〈C2[M ]〉 ⇓ but it
is a shorter computation hence we can apply induction hypothesis and obtain
Ê [N ]〈C2[N ]〉 ⇓. Since Ê [N ]〈C1[N ]〉 −→ Ê [N ]〈C2[N ]〉 we have the conclusion.
Now consider

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C1[M ′]〉
for some M ′ where C1[◦τ ] ≡ ◦τ . Hence Ê [M ]〈M ′〉 ⇓ and fixed M ′ by induction
hypothesis Ê [N ]〈M ′〉 ⇓. Then since reduction is deterministic we have:

Ê [N ]〈M〉 −→ Ê [N ]〈M ′〉
But now we have Ê [N ]〈M〉 ≡ E〈M〉 and �E [M ] ⇓ hence since M ∼=Exp

τ N we have
�E [N ] ⇓ and so C[N ] ⇓
Finally consider

Ê [M ]〈C1[M ]〉 −→ Ê [M ]〈C3[M ]〉
for some C3 where C1[◦τ ] ≡ E [◦τ ]. Hence Ê [M ]〈C3[M ]〉 ⇓ and fixed C3[M ] by
induction hypothesis Ê [N ]〈C3[M ]〉 ⇓. Then since reduction is deterministic we
have:

Ê [N ]〈E [M ]〉 −→ Ê [N ]〈C3[M ]〉
But now we have Ê [N ]〈E [M ]〉 ≡ E ′〈M〉 and �E ′[M ] ⇓ hence since M ∼=Exp

τ N we
have �E ′[N ] ⇓ and so C[N ] ⇓

Hence in order to prove that two programs are contextually equivalent we
have a proof principle which we call Experimental coinduction defined as
follows.

Lemma 7.2.7 (Experimental Coinduction). For each M,N ∈ Expτ and
S ⊆ Exp×Exp such that {(M,N)|M ⇓ ⇐⇒ N ⇓} ⊆ S and for each E ∈ Exper
such that E [M ], E [N ] ∈ Exp

M S N & E [M ] S E [N ] =⇒M ∼=τ N

In [Gordon, 1995] Gordon shows how it is possible to improve this coin-
ductive principle with strong coinduction. It is easy to extend experimental
equivalence to open terms.

Definition 7.2.8. An expression substitution γ for a type environment Γ
is a finite map γ : dom(Γ) → Exp with the following properties:

(i) dom(γ) = dom(Γ)



CHAPTER 7. OTHER EQUIVALENCE NOTIONS 100

(ii) ∀x ∈ dom(Γ) : ∅ � γ(x) : Γ(x)

It is clear that an expression substitution γ for a type environment x1 :
τ1, . . . , xn : τn applied to a term M ∈ Expτ (x1 : τ1, . . . , xn : τn) such that
γ(x1) = M1, . . . , γ(xn) = Mn can be written as M [M1/x1, . . . ,Mn/xn].

Definition 7.2.9 (Open Experimental Preorder). Let M,N ∈ Expτ (Γ) for
some Γ ∈ TEnv , τ ∈ Type. We say that M experimentally approximates
N , written Γ � M �Exp

τ N if and only if for each expression substitution γ for
Γ we have:

γ(M) �Exp
τ γ(N)

Analougusly we can define define experimental equivalence.

Definition 7.2.10 (Open Experimental Equivalence). Let M,N ∈
Expτ (Γ) for some Γ ∈ TEnv , τ ∈ Type. We say that M is experimentally
equivalent to N , written Γ � M ∼=Exp

τ N if and only if for each expression
substitution γ for Γ we have:

γ(M) ∼=Exp
τ γ(N)

It is easy to verify the following:

Lemma 7.2.11 (Context Lemma for Open Terms).

Γ �M ∼=Exp
τ N ⇐⇒ Γ �M ∼=τ N

Proof. Clearly by definition Γ � M ∼=τ N implies Γ � M ∼=Exp
τ N . For the

reverse implication consider Γ �M ∼=Exp
τ N this means that for each expression

substitution γ for Γ we have γ(M) ∼=Exp
τ γ(N) but if Γ = {x1 : τ1, . . . , xn : τn}

this means that for each M1 ∈ Expτ1
, . . . ,Mn ∈ Expτn

we have:

N [M1/x1, · · · ,Mn/xn] ∼=Exp
τ N ′[M1/x1, · · · ,Mn/xn]

but by context lemma 7.2.6 we have

N [M1/x1, · · · ,Mn/xn] ∼=τ N
′[M1/x1, · · · ,Mn/xn]

and by extensionality property

x1 : τ1, . . . , xn : τn � N ∼=τ N
′

Another interesting notion closed related to Experimental equivalence is CIU
equivalence introduced by Mason and Talcott in [Mason and Talcott, 1991],
where CIU means Closed Instances of all Uses. Birkedal and Harper in
[Birkedal and Harper, 1999] define experimental equivalence using a notion of
approximation on value substitution. They have chosen that definition for a
technical reason, but they prove that their formulation is equivalent to our.
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7.3 Similarity and Bisimilarity

Another interesting notion of programs equivalence derives by works of Mil-
ner [Milner, 1989] and Park [Park, 1981] in the field of concurrency. This
is the notion of bisimilarity. By quoting Gordon in the introduction of
[Gordon, 1995]:

Bisimilarity is based on the intuition that a derivation tree represents
the behaviour of a program. We say two programs are bisimilar
if their derivation trees are the same when one ignores the syntac-
tic structure at the nodes. Hence bisimilarity is a way to compare
behaviour, represented by actions, whilst discarding syntactic struc-
ture.

In the last years bisimilarity has been applied to different determin-
istic functional languages. Abramsky and Ong in [Abramsky, 1990],
[Ong and Abramsky, 1993] used a version of bisimilarity, based on evaluation
relation, for a lazy version of lambda calculus. They called it applicative
bisimulation. Howe in [Howe, 1989] used a version of bisimilarity generalized
to a lazy computation system. Gordon in [Gordon, 1995] defined first a labelled
transition system for PCF and then bisimilarity exactly as in CCS. Pitts in
[Pitts, 1995] used a version of bisimilarity, based on evaluation relation, for his
language PCFL.
Bisimilarity can be easily defined coinductively hence it makes possible to rea-
son coinductively about program relations. Furthermore we must prove that
bisimilarity coincides with contextual equivalence in order to reason coinduc-
tively on program equivalence.
We first should define the notion of simulation and bisimulation for FPC.

For this reason we define two operators on the complete lattice of program rela-
tion 〈 〉 : P(Exp×Exp) → P(Exp×Exp) and [ ] : P(Exp×Exp) → P(Exp×Exp).
They are defined in table 7.1 and 7.2 respectively. It is easy to verify that for
each R ∈ P(Exp × Exp) we can define [R] exactly as 〈R〉 ∩ 〈Rop〉op . Further-
more both [ ] and 〈 〉 are monotonic hence they possess greatest fixed points
νX.〈X〉 and νX.[X ] respectively.

Definition 7.3.1. Given a family of relation S ∈ P(Exp × Exp) we say that
it is an FPC simulation if S ⊆ 〈S〉; furthermore we say that it is an FPC
bisimulation if S ⊆ [S].

Definition 7.3.2 (Similarity). For each M,N ∈ Expτ we say that they are
similar, written M �bis

τ N if and only if (M,N) are in the greatest fixed point
of 〈 〉τ . Hence we have:

�bis def= νX.〈X〉
Definition 7.3.3 (Bisimilarity). For each M,N ∈ Expτ we say that they are
bisimilar, written M ∼=bis

τ N if and only if (M,N) are in the greatest fixed
point of [ ]τ . Hence we have:

∼=bis def= νX.[X ]

It is easy to verify that 〈 〉 is pre-extensional hence by lemma 2.5.5 we
have that νX.〈X〉 is a preorder on Exp. Furthermore [ ] is extensional hence



CHAPTER 7. OTHER EQUIVALENCE NOTIONS 102

M
〈R

〉 τ→
τ
1
N

d
e
f

⇐⇒
(M

⇓
λ
x
.M

′ =
⇒

∃λ
x
.N

′ (
N

⇓
λ
x
.N

′
&

∀A
∈

E
xp

τ
(M

[A
/
x
]R

τ
1
N

[A
/
x
])
))

(s
im

fu
n)

M
〈R

〉 τ 1
×

τ
2
N

d
e
f

⇐⇒
(M

⇓
〈M

1
,M

2
〉=

⇒
∃〈
N

1
,N

2
〉(N

⇓
〈N

1
,N

2
〉&

(M
1
R τ

1
N

1
&
M

2
R τ

2
N

2
))

)
(s

im
pa

ir
)

M
〈R

〉 τ 1
+

τ
2
N

d
e
f

⇐⇒
(M

⇓
in

l(
M

1
)
=
⇒

∃N
1
(N

⇓
in

l(
N

1
)

&
(M

1
R τ

1
N

1
))

)
(s

im
su

m
in

l)

M
〈R

〉 τ 1
+

τ
2
N

d
e
f

⇐⇒
(M

⇓
in

r(
M

1
)
=
⇒

∃N
1
(N

⇓
in

r(
N

1
)

&
(M

1
R τ

2
N

1
))

)
(s

im
su

m
in

r)

M
〈R

〉 µT
.τ
N

d
e
f

⇐⇒
(M

⇓
ab

s µ
T

.τ
(C

)
=
⇒

∃C
1
(N

⇓
ab

s(
C

1
)

&
C
R τ

[µ
T

.τ
/
T

]C
1
))

(s
im

re
p)

T
ab

le
7.

1:
de

fin
it

io
n

of
〈〉

M
[R

] τ
→

τ
1
N

d
e
f

⇐⇒
(M

⇓
λ
x
.M

′ =
⇒

∃λ
x
.N

′ (
N

⇓
λ
x
.N

′
&

∀A
∈

E
xp

τ
(M

[A
/
x
]R

τ
1
N

[A
/
x
])
))

&
(b

is
fu

n)
(N

⇓
λ
x
.N

′ =
⇒

∃λ
x
.M

′ (
M

⇓
λ
x
.M

′
&

∀A
∈

E
xp

τ
(M

[A
/
x
]R

τ
1
N

[A
/
x
])
))

M
[R

] τ
1
×

τ
2
N

d
e
f

⇐⇒
(M

⇓
〈M

1
,M

2
〉=

⇒
∃〈
N

1
,N

2
〉(N

⇓
〈N

1
,N

2
〉&

(M
1
R τ

1
N

1
&
M

2
R τ

2
N

2
))

)
&

(b
is

pa
ir

)
(N

⇓
〈N

1
,N

2
〉=

⇒
∃〈
M

1
,M

2
〉(M

⇓
〈M

1
,M

2
〉&

(M
1
R τ

1
N

1
&
M

2
R τ

2
N

2
))

)

M
[R

] τ
1
+

τ
2
N

d
e
f

⇐⇒
(M

⇓
in

l(
M

1
)
=
⇒

∃N
1
(N

⇓
in

l(
N

1
)

&
(M

1
R τ

1
N

1
))

)
&

(b
is

su
m

in
l)

(N
⇓

in
l(
N

1
)
=
⇒

∃M
1
(M

⇓
in

l(
M

1
)

&
(M

1
R τ

1
N

1
))

)

M
[R

] τ
1
+

τ
2
N

d
e
f

⇐⇒
(M

⇓
in

r(
M

1
)
=
⇒

∃N
1
(N

⇓
in

r(
N

1
)

&
(M

1
R τ

2
N

1
))

)
&

(b
is

su
m

in
r)

(N
⇓

in
r(
N

1
)
=
⇒

∃M
1
(N

⇓
in

r(
M

1
)

&
(M

1
R τ

2
N

1
))

)

M
[R

] µ
T

.τ
N

d
e
f

⇐⇒
(M

⇓
ab

s µ
T

.τ
(C

)
=
⇒

∃C
1
(N

⇓
ab

s(
C

1
)

&
C
R τ

[µ
T

.τ
/
T

]C
1
))

&
(b

is
re

p)
(N

⇓
ab

s µ
T

.τ
(C

1
)
=
⇒

∃C
(M

⇓
ab

s(
C

)
&
C
R τ

[µ
T

.τ
/
T

]C
1
))

T
ab

le
7.

2:
de

fin
it

io
n

of
[]



CHAPTER 7. OTHER EQUIVALENCE NOTIONS 103

by lemma 2.5.7 we have that νX.[X ] is an equivalence relation on Exp.
Since we have coinductively defined similarity and bisimilarity, associated with
them we have two different coinductive proof principles.

Definition 7.3.4 (Similarity Coinduction).
For each M,N ∈ Expτ and S ⊆ P(Exp × Exp)

S ⊆ 〈S〉 & M S N =⇒M �bis
τ N

Definition 7.3.5 (Bisimilarity Coinduction).
For each M,N ∈ Expτ and B ⊆ P(Exp × Exp)

B ⊆ [B] & M B N =⇒M ∼=bis
τ N

We have claimed that bisimilarity is an equivalence relations on Exp we now
want to prove the following theorem which gives us an alternative coinductive
characterization of contextual equivalence.

Theorem 7.3.6 (Bisimilarity equals contextual equivalence).

M ∼=bis
τ N ⇐⇒ M ∼=τ N

Proof.

(⇐=) We only need to show that ∼=Exp⊆ [∼=]. Assume M ∼=τ N ; by lemma 4.2.19
we have either that M ⇑ or M ⇓ and if M ⇑ by property 6.4.17 we have
N ⇑ and hence M ∼=bis

τ N . Now consider the case M ⇓ and consider the
different cases for τ .

M ∼=τ1→τ2 N Suppose M ⇓ λx.M ′ then N ⇓ and since it is well typed we
have that there exists λy.N ′ such that N ⇓ λy.N ′. By congruence
property 6.4.7 we have (λx.M)A ∼=τ2 (λy.N)A and by beta reduction
property 6.4.18 M [A/x] ∼=τ2 N [A/x].

M ∼=τ1×τ2 N Suppose M ⇓ 〈M1,M2〉 then also N ⇓ and since N is well
typed we have that there exists 〈N1, N2〉 such that N ⇓ 〈N1, N2〉. By
congruence property 6.4.7 we have fst(〈M1,M2〉) ∼=τ2 fst(〈N1, N2〉)
and snd(〈M1,M2〉) ∼=τ2 snd(〈N1, N2〉). By beta reduction property
6.4.19 M1

∼=τ1 N1 and M2
∼=τ2 N2 follow.

M ∼=τ1+τ2 N We have two different cases.
– Suppose M ⇓ inl(M1) then also N ⇓ and since N is

well typed we have that there exists N1 such that N ⇓
inl(N1) otherwise N ⇓ inr(N1) contraddicts the hypoth-
esis that M ∼=τ N . By congruence property 6.4.7 we
have case inl(M1) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} ∼=τ1

case inl(N1) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} and by beta
reduction property 6.4.20 M1

∼=τ1 N1.
– Suppose M ⇓ inr(M1) then also N ⇓ and since N is

well typed we have that there exists N1 such that N ⇓
inr(N1) otherwise N ⇓ inl(N1) contraddicts the hypoth-
esis that M ∼=τ N . By congruence property 6.4.7 we
have case inr(M1) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} ∼=τ2

case inr(N1) of {inlτ1,τ2(x1).x1 | inrτ1,τ2(x2).x2} and by beta
reduction property 6.4.20 M1

∼=τ2 N1.



CHAPTER 7. OTHER EQUIVALENCE NOTIONS 104

M ∼=µT.τ1 N Suppose M ⇓ absµT.τ1(C) then also N ⇓ and since
N is well typed we have that there exists C1 such that
N ⇓ absµT.τ1(C1). By congruence property 6.4.7 we have
rep(absµT.τ1(C)) ∼=τ1[µT.τ1/x] rep(absµT.τ1(C1)) and by beta reduc-
tion property 6.4.21 C ∼=τ1[µT.τ1/T ] C1.

(=⇒) It follows immediately by definition of bisimilarity and experimental coin-
duction 7.2.7.

By the above result we can reformulate our coinduction proof principle.

Definition 7.3.7 (Bisimilarity Coinduction).
For each M,N ∈ Expτ and B ⊆ P(Exp × Exp)

B ⊆ [B] & M B N =⇒M ∼=τ N

Finally we can extends our results to open terms. We can extends as usual
the preorder on closed terms to open terms by using expression substitution.

Definition 7.3.8 (Open Similarity). Let M,N ∈ Expτ (Γ) for some Γ ∈
TEnv , τ ∈ Type. We say that M is similar to N , written Γ � M �Bis

τ N if
and only if for each expression substitution γ for Γ we have:

γ(M) �Bis
τ γ(N)

Analougusly we can define define open bisimilarity equivalence.

Definition 7.3.9 (Open Bisimilarity). Let M,N ∈ Expτ (Γ) for some Γ ∈
TEnv , τ ∈ Type. We say that M and N are bisimilar, written Γ �M ∼=Bis

τ N
if and only if for each expression substitution γ for Γ we have:

γ(M) ∼=Bis
τ γ(N)

It is easy to verify the following:

Lemma 7.3.10 (Open Bisimilarity equals Contextual Equivalence).

Γ �M ∼=Bis
τ N ⇐⇒ Γ �M ∼=τ N

Proof. Clearly by definition Γ � M ∼=τ N implies Γ � M ∼=Bis
τ N . For the

reverse implication consider Γ �M ∼=Bis
τ N this means that for each expression

substitution γ for Γ we have γ(M) ∼=Bis
τ γ(N) but if Γ = {x1 : τ1, . . . , xn : τn}

this means that for each M1 ∈ Expτ1
, . . . ,Mn ∈ Expτn

we have:

N [M1/x1, · · · ,Mn/xn] ∼=Bis
τ N ′[M1/x1, · · · ,Mn/xn]

but by lemma 7.3.6 we have

N [M1/x1, · · · ,Mn/xn] ∼=τ N
′[M1/x1, · · · ,Mn/xn]

and by extensionality property

x1 : τ1, . . . , xn : τn � N ∼=τ N
′
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We have proved lemmas 7.3.6 and 7.3.10 by using results proved in chapter
6. Howe in [Howe, 1989] invented a powerful method to prove the same results.
Moreover Howe in [Howe, 1996] generalized the method to languages whose
semantics follows a certain natural form of structured operational semantics. We
prefer to use a more concrete approach but we stress that our results includes
all the intermediate results of Howe method.



Chapter 8

FPC Constructions

Our language may be seen as an ancient city: a maze of little streets
and squares, of old and new houses, and of houses with additions
from various periods; and this surrounded by a moltitude of new
boroughs with straight regular streets and uniform houses.

Ludwig Wittgenstein. “Philosophical Investigations”

We now give some examples of how FPC can be effectively used as a functional
language. Gordon in [Gordon, 1995] use a version of FPC with two ground
types: the Boolean type and the Integer type. Usually, functional programming
languages have Boolean and Integer as built-in types. If a language does not
provide them as built-in types it must allow to define them as derived types.
As one expects in FPC it is possible to derive Boolean and Integer only using
constructors defined in chapter 3 and 4. We now show this. Furthermore in the
sequel we will show how to derive types which allow more interesting structure.
We first define a divergent type:

0 def= µt.t

A simple example of object of type 0 which will be useful in the sequel is Ω0.
Naturally Ω0 is not the only term of type 0, for example rec x.x where x : 0
is a different term but it is easy to verify that they have the same behaviour.
Indeed for each M,N ∈ Exp0 we have M ∼=0 N . Hence we can consider the
equivalence class Exp0/

∼=0 as comprising a unique element Ω0.

8.1 Booleans

We now want to define the simple Boolean type. We can easily do it as:

B def= 0 + 0

the above definition depends on our choice of sum constructor, in fact we have
a separated sum. We can use the above remark to define the boolean term true
and false in a natural way as:

tt def= inl0,0(Ω0)

ff def= inr0,0(Ω0)

106
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Clearly tt and ff are both canonical terms. It is easy to verify that for each
M ∈ ExpB we have three distincts possibilities: either M ∼=B tt or M ∼=B f or
M ∼=B ΩB. This means that the quotient ExpB/

∼=B has three elements. We
can graphically represents ExpB/

∼=B as:

tt ff

ΩB

�

�

where at each node we have an equivalence class and each line through nodes
represents the relation of contextual approximation.
Now we can define some functions with the help of boolean type. A useful
function is for example the conditional function. Given x : B, y : τ , z : τ , we
define a family of conditional functions, Condτ : (B → (τ → (τ → τ)) one for
each type τ .

Condτ = λx.λy.λz.case x of {inl0,0(x1).y | inr0,0(x2).z}
Now we can use the conditional function to define other functions. For example
we can define Not : B → B as:

Not = λx.(((Cond x)ff )tt)

as one expects Not tt ⇓ ff and Not ff ⇓ tt. We show an example:

Not tt ≡ λx.(((Cond x)ff )tt) −→ (((Cond tt)ff)tt) ≡
(((λx.λy.λz.case x of {inl0,0(x1).y | inr0,0(x2).z} tt)ff)tt) −→
((λy.λz.case tt of {inl0,0(x1).y | inr0,0(x2).z} ff)tt) −→
(λz.case tt of {inl0,0(x1).ff | inr0,0(x2).z} tt) −→
case tt of {inl0,0(x1).ff | inr0,0(x2).tt} −→ ff

It is easy to extend the above method to other boolean functions. By our
definition of Cond we can define the usual if constructor for closed terms B ∈ B
and M1,M2 ∈ Expτ as follows.

if B then M1 else M2 = Cond BM1M2

8.2 Natural numbers

We can now define a type N which represents the natural numbers, as follows.

N def= µT.(0 + T )

It is well known that, in order to define natural numbers, we need a constant
function which represents the number 0 and a unary function which represents
the successor function. We can define in FPC the constant 0 as:

0 def= absN(inl0,N(Ω0))

Analogously we can define the successor function Succ : N → N as follows.

Succ def= λx.absN(inr0,N(x))
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We can define the n−th iterate of Succ applied to 0 by the following schema,
for n ≥ 0:

Succn0 def= Succ Succ · · ·Succ︸ ︷︷ ︸
n times

0

Hence we can define natural numbers as the canonical form obtained by applying
the successor function to 0.

0 def= absN(inl0,N(Ω0))
1 def= absN(inr0,N(0)) = absN(inr0,N(absN(inl0,N(Ω0))))
2 def= absN(inr0,N(1)) = absN(inr0,N(absN(inr0,N(0))))
...
n

def= absN(inr0,N(n− 1)) = absN(inr0,N(· · · (absN(inr0,N︸ ︷︷ ︸
n times

(0))) · · · ))

In particular we have that:

Succ n ∼=N absN(inr0,N(n)) ∼=N Succn+10

Since we have Succ n −→ n + 1 then Succ n ∼=N n + 1 hence we sometimes
write n + 1 for Succ n. It must be clear that when we write +1 we mean a
metaoperation instead of one belonging to our language FPC.
To define natural numbers we have applied Succ to 0, unfortunately Succ can
be applied also to ΩN obtaining canonical forms which have different behaviour
with respect to natural numbers. Following Winskel in [Winskel, 1993] we
call these numbers partial numbers. This means that the equivalence class
ExpN/

∼=N is too large, in the sense that it contains elements which have dif-
ferent behaviour with respects to natural numbers and ΩN. We can graphically
represent ExpN/

∼=N as:

Succ · · ·Succ 0 rec x.Succ x

Succ 0 Succ · · ·Succ ΩN

�
�

0 Succ ΩN

�
�

ΩN

�
�

In the sequel it will be useful to consider only a subset of ExpN. Hence we can
define inductively the set of natural complete numbers Nat ⊆ ExpN as:

Nat def= {M ∈ ExpN|M ∼=N 0 or ∃N ∈ Nat(M ∼=N Succ N)}
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When is clear what do we mean we identify natural numbers with natural com-
plete numbers. We can represents graphically Nat/ ∼=N as:

0 1 2 · · · n · · ·
We now want to define some useful functions on N. As a simple example we
can define a test for zero isZero : N → B as:

isZero def= λx.case rep(x) of {inl0,N(x1).tt | inr0,N(x2).ff}
As one expects the computation of the function isZero appllied to 0 converges
to tt

isZero 0 ≡ λx.case rep(x) of {inl0,N(x1).tt | inr0,N(x2).ff} 0 −→
case rep(0) of {inl0,N(x1).tt | inr0,N(x2).ff} ≡
case rep(absN(inl0,N(Ω0))) of {inl0,N(x1).tt | inr0,N(x2).ff} −→
case inl0,N(Ω0) of {inl0,N(x1).tt | inr0,N(x2).ff} −→ tt

and the computation of the function isZero apllied to any n ∈ N converge to ff

isZero n ≡ λx.case rep(x) of {inl0,N(x1).tt | inr0,N(x2).ff} n −→
case rep(n) of {inl0,N(x1).tt | inr0,N(x2).ff} ≡
case rep(absN(inr0,N(n− 1))) of {inl0,N(x1).tt | inr0,N(x2).ff} −→
case inr0,N(n− 1) of {inl0,N(x1).tt | inr0,N(x2).ff} −→ ff

As one expects isZero ΩN ⇑.
In the sequel will be useful a predecessor function Pred : N → N defined as

Pred def= λx.case rep(x) of {inl0,N(x1).ΩN | inr0,N(x2).x2}
Since Pred n −→ (n−1) and Pred 0 −→ ΩN as one expects we have Pred n ∼=N

n − 1 and Pred 0 ∼=N ΩN hence we sometimes write n − 1 instead of Pred n
where n �∼=N 0. We prove the following:

Proposition 8.2.1. For each N ∈ ExpN we have:

Pred(Succ(N)) ∼=N N

Proof. Pred(Succ(N)) ≡
λx.case rep(x) of {inl0,N(x1).ΩN | inr0,N(x2).x2}Succ(N) −→
case rep(Succ(N)) of {inl0,N(x1).ΩN | inr0,N(x2).x2} ≡
case rep(λx.absN(inr0,N(x))N) of {inl0,N(x1).ΩN | inr0,N(x2).x2} −→
case rep(absN(inr0,N(N))) of {inl0,N(x1).ΩN | inr0,N(x2).x2} −→
case inr0,N(N) of {inl0,N(x1).ΩN | inr0,N(x2).x2} −→ N
By lemma 6.4.12 the conclusion follows.

8.2.1 Coinduction at N

In chapter 6 we have defined ∼=bis as the greatest fixed point of [ ], hence we
have that ∼=bis= [∼=bis ]. In particular lemma 7.3.6 shows that ∼== [∼=] and hence
that ∼= is the largest bisimulation. Furthermore 7.3.7 shows that associated
with ∼=bis we have a coinductive proof principle at each type. We now want
to reformulate the coinductive proof principle at N. We have defined N as
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µT.(0+T ). Since ∼= is a bisimulation and by definition of bisimulation we have
that:

N ∼=N N1 ⇐⇒
((N ⇓ absN(C) ⇐⇒ N1 ⇓ absN(C1)) & C ∼=0+N C1)

And again since ∼= is a bisimulation and by definition of bisimulation we have
that:

C ∼=0+N C1 ⇐⇒
((C ⇓ inl0,N(M) ⇐⇒ C1 ⇓ inl0,N(M1) & M ∼=0 M1) or
(C ⇓ inr0,N(M) ⇐⇒ C1 ⇓ inr0,N(M1) & M ∼=N M1))

We know that for each M,M1 ∈ Exp0 we have M ∼=0 M1
∼=0 Ω0 hence we can

rewrite the above as

C ∼=0+N C1 ⇐⇒
((C ⇓ inl0,N(M) ⇐⇒ C1 ⇓ inl0,N(M1)) or

(C ⇓ inr0,N(M) ⇐⇒ C1 ⇓ inr0,N(M1) & M ∼=N M1))

Furthermore since evaluation is deterministic and for each C ∈ Can we have
C ⇓ C we have:

N ∼=N N1 ⇐⇒
((N ⇓ absN(inl0,N(M)) ⇐⇒ N1 ⇓ absN(inl0,N(M1))) or

((N ⇓ absN(inr0,N(M)) ⇐⇒ N1 ⇓ absN(inr0,N(M1))) & M ∼=N M1))

Definition 8.2.2 (Bisimulation at N). B ⊆ ExpN × ExpN is a N-
bisimulation if whenever N B N1 we have:

(i) (N ⇓ absN(inl0,N(M)) ⇐⇒ N1 ⇓ absN(inl0,N(M1)))

(ii) ((N ⇓ absN(inr0,N(M)) ⇐⇒ N1 ⇓ absN(inr0,N(M1))) & M B M1)

Finally we have the following proof principle.

Definition 8.2.3 (Coinduction at N). For each N,N1 ∈ ExpN if there exists
a N-bisimulation B such that N B N1 then N ∼=N N1.

8.3 List type

As a last example we define a type which allows interesting possibly infinite
structures. For each τ ∈ Type we can define Lτ as follows.

Lτ
def= µT.(0 + (τ × T ))

Lτ represents the type of possibly infinite lists of object of type τ . For example
we can define the type of the lists of natural numbers as:

LN
def= µT.(0 + (N× T ))

Intuitively we can build lists through a constant function of type list and a
concatenation operation. First we define the empty list as follows.

ε
def= absLτ (inl0,τ×Lτ (Ω0))
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Since for each M,N ∈ Exp0 we have M ∼=0 N , it is easy to verify that:

∀M ∈ Exp0(absLτ (inl0,τ×Lτ (M)) ∼=Lτ ε

The canonical terms of the right part of the sum have the form:

absLτ (inr0,τ×Lτ (P ))

where P ∈ Expτ×Lτ
. As natural more interesting objects of type list have the

form:
absLτ (inr0,τ×Lτ (〈M,N〉))

where M : τ can be considered the head and N : Lτ the tail of the lists.
We sometimes write M :: N instead of absLτ (inr0,τ×Lτ (〈M,N〉)). By this
observation we can define the function Cons : τ → Lτ → Lτ as:

Cons def= λx.λy.absLτ (inr0,τ×Lτ (〈x, y〉))

where x : τ and y : Lτ . As obvious we have:

Cons H T ∼=Lτ absLτ (inr0,τ×Lτ (〈H,T 〉)) ≡ H :: T

We have claimed that Lτ represents all (possibly infinite) lists of objects of type
τ . An example of infinite lists of type Lτ is:

rec l.Cons A l

which is the infinite list of object A : τ . Unfortunately ExpLτ
is sometimes

too large because contains objects which, analogously to partial number, can
be considered partial lists, e.g. absLτ (inr0,τ×Lτ (〈H,ΩLτ 〉)). Hence we want to
isolate a set of complete lists. We define an operator φL : P(ExpLτ

) → P(ExpLτ
)

as:

φL(X) def= {L | L ∼=Lτ ε} ∪ {L | L ∼=Lτ Cons N L′ &N ∈ Expτ & L′ ∈ X}

Since φL is monotone it possesses a greatest fixed point, νX.φL(X) which is the
greatest φL-dense set. Hence we can define Listτ ⊆ L as:

Listτ
def= νX.φL(X)

In particular in the sequel will be useful to consider an operator φNat :
P(ExpLN

) → P(ExpLN
) defined as:

φNat (X) def= {L | L ∼=LN ε} ∪ {L | L ∼=LN Cons N L′ &N ∈ ExpN & L′ ∈ X}

And since φNat is monotone it possesses a greatest fixed point, νX.φNat (X)
which is the greatest φNat -dense set. Hence we can define ListNat ⊆ L as:

ListNat
def= νX.φNat (X)
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8.3.1 Coinduction at List type

It is useful as for N to reformulate the coinduction proof principle to prove
properties about objects of type Lτ . Since we have ∼== [∼=] we have that ∼= is a
bisimulation, in particular it is the largest. Hence since Lτ = µT.(0 + (τ × T ))
we have that:

L ∼=Lτ L
′ ⇐⇒

((L ⇓ absLτ (C) ⇐⇒ L′ ⇓ absLτ (C1)) & C ∼=0+(τ×Lτ) C1)

and again by the fact that ∼= is a bisimulation and the fact that we have only
one object of type 0 we have that:

C ∼=0+(τ×Lτ) C1 ⇐⇒
((C ⇓ inl0,(τ×Lτ)(M) ⇐⇒ C1 ⇓ inl0,(τ×Lτ)(M1)) or

(C ⇓ inr0,(τ×Lτ)(M) ⇐⇒ C1 ⇓ inr0,(τ×Lτ)(M1) & M ∼=(τ×Lτ ) M1))

Furthermore we have:

M ∼=(τ×Lτ) N ⇐⇒
((M ⇓ 〈M1,M2〉 ⇐⇒ N ⇓ 〈N1, N2〉) & M1

∼=τ N1 & M2
∼=Lτ N2)

Hence since evaluation is deterministic and C and C1 are in canonical form we
have:

L ∼=Lτ L
′ ⇐⇒

((L ⇓ absLτ (inl0,(τ×Lτ)(M)) ⇐⇒ L′ ⇓ absLτ (inl0,(τ×Lτ)(N))) or
((L ⇓ absLτ (inr0,(τ×Lτ)(M)) ⇐⇒ L′ ⇓ absLτ (inr0,(τ×Lτ)(N))) &
((M ⇓ 〈M1,M2〉 ⇐⇒ N ⇓ 〈N1, N2〉) & M1

∼=τ N1 & M2
∼=Lτ N2))

Definition 8.3.1 (Bisimulation at Lτ ). B ⊆ ExpLτ
× ExpLτ

is a Lτ -
bisimulation if whenever L B L1 we have:

(i) L ⇓ absLτ (inl0,(τ×Lτ)(M)) ⇐⇒ L′ ⇓ absLτ (inl0,(τ×Lτ)(N))

(ii) (L ⇓ absLτ (inr0,(τ×Lτ)(M)) ⇐⇒ L′ ⇓ absLτ (inr0,(τ×Lτ)(N)))
& ((M ⇓ 〈M1,M2〉 ⇐⇒ N ⇓ 〈N1, N2〉) & M1

∼=τ N1 & M2 B N2)

Finally we have the following proof principle.

Definition 8.3.2 (Coinduction at Lτ ). For each L,L1 ∈ ExpLτ
if there

exists a Lτ -bisimulation B such that L B L1 then L ∼=Lτ L1.

8.3.2 Take Lemma

We now show a classical example where is useful to reason coinductively.
For each τ we define a function Take : τ → (Lτ → Lτ ) as:

Take def= rec f.λx.λl.if isZero(x) then ε else
case rep(l) of {inl0,τ×Lτ (x1).absLτ (inl0,(τ×Lτ)(x1)) |

inr0,τ×Lτ (x2).Cons fst(x2)(f (x − 1) snd(x2))}
An important result for Lists which was first informally discussed by Bird and
Wadler in [Bird and Wadler, 1988] is the following proposition.
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Proposition 8.3.3 (Take lemma). For each L,L′ ∈ ExpLτ
we have:

∀N ∈ ExpN(Take N L ∼=Lτ Take N L′) =⇒ (L ∼=Lτ L
′)

Unfortunately in general the take lemma for FPC and our definition of Expτ

fails. For example for each N ∈ ExpN we have:

Take N ΩLτ ∼=Lτ Take N absLτ (inr0,(τ×Lτ)(Ωτ×Lτ ))

but
ΩLτ �∼=Lτ absLτ (inr0,(τ×Lτ)(Ωτ×Lτ ))

Nevertheless we can prove the following restriction of Take lemma. Our proof
is an adaptation to the one of Pitts in [Pitts, 1995].

Proposition 8.3.4 (Restricted Take lemma). For each L,L′ ∈ ListNat we
have:

∀N ∈ Nat(Take N L ∼=LN Take N L′) =⇒ (L ∼=LN L′)

Proof. Define R ⊆ ListNat × ListNat as

R def= {(L,L′)|∀N ∈ Nat(Take N L ∼=LN Take N L′)}
we note that:

Take N + 1 L ⇓ absLN(inl0,(N×LN)(M)) ⇐⇒ L ⇓ absLN(inl0,(N×LN)(M))
(8.1)

and

Take N + 1 L ⇓ absLN(inr0,(N×LN)(P )) & P ⇓ 〈H,T 〉 ⇐⇒ ∃P ′

(L ⇓ absLN(inr0,(N×LN)(P ′)) & P ′ ⇓ 〈H,T ′〉 & T ≡ Take (N + 1) − 1 T ′)
(8.2)

Now assume L R L′ and suppose L ⇓. We have two possibilities: either L ⇓
absLN(inl0,(N×LN)(M)) where M : 0 or L ⇓ absLN(inr0,(N×LN)(P )) where
P : (N× LN).
If L ⇓ absLN(inl0,(N×LN)(M)) then by 8.1 for each N ∈ N we have that
Take N + 1 L ⇓ absLN(inl0,(N×LN)(M)). Since L R L′ we have Take N +
1 L ∼=LN Take N + 1 L′, hence since ∼=LN is a LN-bisimulation there exists
M1 such that Take N + 1 L′ ⇓ absLN(inl0,(N×LN)(M1)) thus by 8.1 L′ ⇓
absLN(inl0,(N×LN)(M1)).
Now suppose L ⇓ absLN(inr0,(N×LN)(P )). Since L ∈ ListNat we have that
there exists H ∈ Nat , L1 ∈ ListNat such that L ∼=LN Cons H L1. In particular
from this follows that P ⇓.
Hence suppose L ⇓ absLN(inr0,(N×LN)(P )) and P ⇓ 〈H,T 〉, then by 8.2 for
each N ∈ N we have that Take N + 1 L ⇓ absLN(inr0,(N×LN)(P ′)) and P ′ ⇓
〈H,Take (N+1)−1 T 〉. Since LR L′ we have Take N+1 L ∼=LN Take N+1 L′,
hence since ∼=LN is a LN-bisimulation there exists P ′′ such that Take N+1 L′ ⇓
absLN(inr0,(N×LN)(P ′′)) and P ′′ ⇓ 〈H ′, T ′〉 where H ′ ∼=N H and T ′ ∼=LN

Take (N +1)−1 T . Furthermore by 8.2 we have that there exists P ′′′ such that
L′ ⇓ absLN(inr0,(N×LN)(P ′′′)) and P ′′′ ⇓ 〈H ′, T ′′〉 where T ′ ≡ Take (N + 1) −
1 T ′′. Hence we have:

Take (N + 1) − 1 T ′′ ∼=LN Take (N + 1) − 1 T
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and by proposition 8.2.1 we have:

Take N T ′′ ∼=LN Take N T

so T ′′ R T . Hence R is a LN-bisimulation and by coinduction 8.3.2, the con-
clusion follows.

We have shown some interesting examples of construction in FPC language.
Clearly it is possible to extends these constructions: for example one can define
other numerals, trees and many other construction. The last interesting example
which we only mention is the following:

Λ def= µX.(X → X)

which can be considered the type of the lazy lambda calculus. See [Winskel, 1993]
for an extensive study of this type.



Chapter 9

Conclusions and Future
Work

“And at last we’ve got to the end of this ideal race-course! Now that
you accept A and B and C and D, OF COURSE you accept Z.”
“Do I?” said the Tortoise innocently. “Lets make that quite clear.
I accept A and B and C and D. Suppose I STILL refused to accept
Z?”
“Then Logic would take you by the throat, and FORCE you to do
it!” Achilles triumphantly replied. “Logic would tell you, ‘You can’t
help yourself. Now that you’ve accepted A and B and C and D, you
MUST accept Z.’ So you’ve no choice, you see.”
“Whatever LOGIC is good enough to tell me is worth WRITING
DOWN,” said the Tortoise. “So enter it in your book, please”

Lewis Carroll -“What the Tortoise said to Achilles” - Mind, 1895

We have so far introduced (co)inductive definitions and (co)induction as a proof
principle and we have shown how they can be studied from a set-theoretic point
of view. These notions are useful to define our language FPC and relations which
capture the computational meaning of FPC constructs. We have shown that the
different relations we have introduced capture the same meaning and how they
can be strictly related. Then we have defined contextual equivalence, the natural
notion of equivalence for FPC programs; furthermore we have proved many
interesting properties of the language with respect to it, in particular rational
completeness and syntactic continuity. We have introduced different notions of
equivalence for FPC programs, having the advantage that they come equipped
with coinductive proof principles. We have proved that they are equivalent to
contextual equivalence. Finally we have defined some standard constructions
within FPC.
We think that our development of an operational theory of functional programs
can be seen as a first attempt to provide a basic formal treatment of FPC in
the spirit of the following remark, due to [Pitts, 1998]:

operational semantics can (sometimes—we are still learning how)
be presented at a sufficient ‘level of abstraction’ to support quite
palatable methods of reasoning, calculation and design.
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We have introduced induction and coinduction as natural notions in operational
theories and we have used them to define properties that capture the computa-
tional meaning of our language FPC; these relations can be used in calculating.
Furthermore we have shown that in our theory we can derive notions analogous
to the order-theoretic notions of domain theory and that we can derive proof
principle to reason either inductively and coinductively about the properties of
functional language. Finally we have designed some constructions to show how
to use FPC as a real programming language.
A critique that can be made to our approach is that it seems too syntactic and
at a ‘low level of abstraction’. We remark that we have chosen to follow this
approach in order to have a concrete base for future developments. We think
that the results in the present work will make easy the future job of analyzing
operational theory at a higher level of abstraction.
A necessary remark is that our work is not intended to show that operational
semantics can take the place of the other approaches in the analysis of func-
tional programming languages, but only that it can be widely used to study
some fields that are usually investigated with other approach. In particular we
think that the limits of operational approach must be investigated in relation to
those of the denotational approach; or again to describe exactly our positions
by the words of Pitts in [Pitts, 1995]:

I believe that any serious attempt to develop a useful theory for
verification of program properties has to involve both operational
and denotational techniques.

We finally try to point out some interesting directions which seem to need fur-
ther investigations.
We have shown how induction and coinduction can be effectively used as tech-
niques to reason about program’s properties. In particular induction is useful
when one wants to prove that a set inductively defined has certain properties;
analogously, coinduction is useful when one wants to prove that certain objects
belong to a coinductively defined set. Furthermore we have seen that under cer-
tain assumptions we can “constructively” characterize inductive and coinductive
definitions. This permits to reason “in an inductive manner” for coinductively
defined set. This shows that the relations beetween the two concepts are not
completely all clear. We think that it will be interesting to investigate in more
depth the relations beetween the two notions. Coquand’s work [Coquand, 1994]
and especially his “guarded induction principle” can be considered a starting
point for future works in this direction.
We have developed an operational theory of programs without any reference
to denotational models. Nevertheless we think that in order to make a serious
analysis of functional programs one needs to show how the operational model
is related to the denotational one. In particular it can be useful, following the
approach of [Bloom, 1990], [Bloom and Riecke, 1989], [Cosmadakis, 1989] and
[Jim and Meyer, 1991], to show the consequences on the denotational model of
the particular properties of the operational semantics. We think that an anal-
ysis in this direction can clarify the limits of the two models.
We have already admitted that our analysis is at a quite-low-level of abstrac-
tion. This can be considered a basic approach. To make an analysis at an higher
level it is necessary to study more abstract proof methods Many steps in this
direction have already been taken by Howe, Pitts, Smith etc.
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We have studied operational semantics of a functional programming language.
Operational semantics is also widely used to study process algebras, it can be
interesting to relate the two area of study through an analysis of the difference
and similarities based on operational semantics, and also to experiment the ap-
plication of operational methods to other programming paradigms.
The recent works [Turi, 1996], [Turi and Plotkin, 1997] and [Power, 2003] have
shown that it is possible to analyze the concepts of operational semantics in
an abstract categorical framework. Because of the generality and the power of
category theory this direction needs to be studied in depth.
Finally we think that it is challenging to study the operational approach
in an abstract way like what happens in the theory of term rewriting sys-
tem with various notions of abstract rewriting. This is a direction which to
our knowledge hasn’t been pursued systematically (but see, for example, the
many studies of the various formats for labelled transition systems surveyed in
[Aceto et al., 1999]).



Appendix A

A brief historical account

The aim of this brief historical discussion is to show how, with mindsight,
the operational approach (even, to some extent, the structural one) was al-
ready present in the background of the early discussions on the foundations of
computer science and how its concepts are “intellectually” related to the deno-
tational approach.
The idea of “computability”, introduced by Alan M. Turing in [Turing, 1936]
as the common property of functions which can be calculated by a machine, is
clearly operational in nature. Turing in [Turing, 1936] wrote:

The possible behaviour of the machine at any moment is determined
by the m-configuration qn and the scanned symbol S(r). This pair
qn,S(r) will be called the “configuration”: thus the configuration
determines the possible behaviour of the machine.

The machine introduced by Turing which is nowadays well known as “Turing
Machine” was the first abstract machine which was designed to capture all the
computable functions.
In the development of the first programming languages the attention of com-
puter scientists was centered on the efficency and expressive power of languages
with little or no interest for the definitions of the meanings of commands. For
example in the FORTRAN manuals [Backus et al., 1956] the command DO was
explained as follows:

The DO statement is a command to “Do the statements which fol-
low, to and including the statement with statement number n, re-
peatedly, the first time with i = m1 and with i increased by m3

for each succeding time; after they have been done with i equal to
the highest of this sequence of values which does not exceed m2 let
control reach the statement following the statement with statement
number n”.
The range of a DO is the set of statements which will be executed
repeatedly; it is the sequence of consecutive statements immediately
following the DO, to and including the statement numbered n.
The index of a DO is the fixed point variable i, which is controlled
by the DO in such a way that its value begins at m1 and is in-
creased each time by m8 until it is about to exceed m2. Throughout
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the range it is available for computation, either as an ordinary fixed
point variable or as the variable of a subscript. During the last
execution of the range, the Do is said to be satisfied.

The number of programming languages grew quickly in the ’50 and ’60 and early
emerged the difficulties of dealing with notions that were not stated formally.
At this period we can date back the first attempts to give formal foundations
to computer science.
A first step in this direction was due to John McCarthy. In his early works
[McCarthy, 1962] ,[McCarthy, 1963] he tried to establish a mathematical science
of computation, this also to give answer to questions like “What does a program
mean?”. In [McCarthy, 1962] we read:

Programs are symbolic expressions representing procedures. The
same procedure may be represented by different programs in differ-
ent programming languages. We shall discuss the problem of defining
a programming language semantically by stating what procedures
the programs represent.

The contributes of McCarthy to the theory of computer science are not limited to
the above, for more information see [Cardone and Hindley, 2004], in particular it
is more interesting for our discussion the fact that McCarthy in [McCarthy, 1960]
defined the meaning of his LISP through the explaination of how a function
apply, ‘evaluates’ the expressions of the language, or by using McCarthy words:

we describe the universal S-function apply which plays the theoret-
ical role of a universal Turing machine and the practical role of an
interpreter.

Furthermore McCarthy in [McCarthy, 1963] clarified the limits of Turing Ma-
chines as formal model of computation for real programming, and the necessity
of new abstract models that capture computational meaning:

Turing machines are not conceptually different from the automatic
computers in general use, but they are very poor in their control
structure. Any programmer who has also had to write down Turing
machines to compute functions will observe that one has to invent a
few artifies and that constructing Turing machines is like program-
ming. Of course, most of the theory of computability deals with
questions which are not concerned with the particular ways compu-
tations are represented. It is sufficient that computable functions be
represented somehow by symbolic expressions.

Finally in [McCarthy, 1963] he goes a step forward and defines what is the
meaning of a program:

We can go farther and describe the meaning of a program in a pro-
gramming language as follows: The meaning of a program is defined
by its effect on the state vector.

The ideas of McCarthy were the basis for all the following developments of the-
ories of computation.
At about the same time, Christopher Strachey was indipendently investigat-
ing how to formalize the fundamental concept of programming language. In



APPENDIX A. A BRIEF HISTORICAL ACCOUNT 120

the introduction to [Strachey, 1967] he clarified which were the objects of his
investigations:

Any discussion on the foundations of computing runs into severe
problems right at the start. The difficulty is that although we all
use words such as ‘name’, ‘value’, ‘program’, ‘expression’ or ‘com-
mand’ which we think we understand, it often turns out on closer
investigation that in point of fact we all mean different things by
these words, so that communication is at best precarious. [. . . ].
An investigation of the meanings of these basic terms is undoubtedly
an exercise in mathematical logic and neither to the taste nor within
the field of competence of many people who work on programming
languages.

In particular a collaborator of Strachey, Peter Landin in [Landin, 1965], inspired
by the works of McCarthy and those of Alonzo Church on the lambda calculus,
realized that λ-terms could be used to code constructs of the programming
language Algol 60. The main advantage of a formal treatment of Algol-like
language was argued by Landin as follows:

It seems possible that the correspondence might form the basis of
a formal description of the semantics of ALGOL 60. As presented
here it reduces the problem of specifying ALGOL 60 semantics to
that of specifying the semantics of a structurally simpler language.

Furthermore in his earlier work [Landin, 1964], Landin had already introduced
an abstract machine for evaluating λ-expressions considered as programs, the
SECD-Machine. This consisted of a transition system whose states were made
of four components: Stack, Environment, Control and Dump. In [Landin, 1964]
it is described how λ-expressions can be evaluated in a simple manner:

We now describe a “mechanization” of evaluation in the following
sense. We define a class of constructed objects, called “states”, con-
structed of applicative expressions and their values; and we define a
“transition” rule whose successive application starting at a “state”
that contains an environment E and an applicative expression X
(in a certain arrangement), leads eventually to a “state” that con-
tains (in a certain position) either valEX or a closure representing
valEX .

and furthermore, in the spirit of “abstraction”:

It was earlier observed that the mechanization in terms of SECD-
states is only one of many ways of mechanizing evaluation. Likewise,
given a particular mechanization, there may be many ways of rep-
resenting it with a digital computer.

It is clear that the above description of how “evaluation” works is closely related
to relations that are normally used to define operational semantics, or more
precisely, as noted in [Cardone and Hindley, 2004]:

While the design of the SECD-machine was influenced by similar
earlier devices for the interpretation of programming languages, no-
tably the LISP interpreter by Paul Gilmore, it was however the first
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to be presented in a formal way, and may fairly be said to have
opened the way to the study of the formal operational sematics of
λ-calculus considered as a programming language, that would find a
systematic exposition a decade later starting with Gordon Plotkin’s
[Plotkin, 1981].

In the same period the IBM Vienna group was engaged in the big project of try-
ing to describe formally the language PL/I. As noted by Jones in [Jones, 2003]:

The IBM Vienna group list McCarthy (along with Cal Elgot and
Peter Landin) as a major influence on their ambitious attempt to
define PL/I using an abstract interpreter.

The work of the Vienna group converged in what is now called Vienna Definition
Language(VDL). This descriptive style was considered an abstract interpreter
for different language. For this reason it was a further step in the direction of
operational semantics.
VDL was used by the IBM Vienna group to clarify some aspects of PL/I and
other languages and, as argued by Jones, the descriptions of those languages
were used “as a basis from which compiler designs could be justified.” Unfortu-
nately these good results came with some disadvantages. Jones in [Jones, 2003]
clearly states these difficulties.

VDL definitions tended to use huge states which included control
trees that coped with both abnormal sequencing and concurrency.
These “grand states” presented gratuitous difficulties in proofs about
VDL descriptions. One of the measures considered here of the use-
fulness of semantic descriptions is the extent to which they make
reasoning straightforward.

Nevertheless these developments, with those studied by Landin and several other
computer scientists, were the basis for the fundamental work [Plotkin, 1981]
that Gordon Plotkin in 1981 wrote for a course at Aarhus University. We do
not describe neither it’s historical developments (on this, see [Plotkin, 2003]
where he has described his “personal intellectual context in which the notes
arose”) nor the consequences of this systematic exposition because they belong
to recent history.
We now focus our attention on the relations beetween the operational and the
denotational approach. It is worth noting what Plotkin wrote in [Plotkin, 1981]
about the origin of the term ‘operational semantics’:

It would be interesting to know the origins of the term ‘operational
semantics’; an early use is in a paper of Dana’s [64, 65] written in the
context of discussions with Christopher Strachey where they came
up with the denotational/operational distinction.

It is well known that Strachey, that we have already seen to be one of the
main promoters of formal semantics, was the pioneer with Dana Scott of the
approach to program semantics nowadays well known as denotational semantics.
Furthermore Plotkin in his discussion clearly stated that there exists a strict
relation between his development and the Strachey-Scott denotational approach:

In fact ideas from denotational semantics pervade SOS.
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Furthermore it seems that there exists also a converse relation. Strachey in
[Strachey, 1967] wrote:

all concept of sequencing appears to have vanished. It is, in fact,
replaced by the partially ordered sequence of function applications
which is specified by λ-expressions.

and again

the ultimative machine required (and all methods of describing se-
mantics come to a machine ultimately) is in no way specialised.
Its only requirement is that it should be able to evaluate pure λ-
expressions.

Mosses in [Mosses, 2000] about the above wrote:

Finally, the reader should not be disconcerted by Stracheys opera-
tional interpretation of λ-expressions: the paper was written a full
two years before Scott provided a model for the λ-calculus and estab-
lished the domain theory that forms the mathematical foundations
of denotational semantics

In opposition to Mosses’ remark we think that Strachey’s sentence above are
not to be considered as Strachey’s “defense” of an operational interpretation
of a language but only as the sign that was already clear to Strachey himself
that the development of an abstract mathematical semantics must be strictly
related with a more concrete operational one. The two approaches are both
necessaries and complementary. This was confirmed by a similar argument by
Scott in [Scott, 1970]:

It is all very well to aim for a more ‘abstract’ and a ‘cleaner’ ap-
proach to semantics, but if the plan is to be any good, the oper-
ational aspects cannot be completely ignored. The reason is obvi-
ous: in the end the program still must be run on a machine – a
machine which does not possess the benefit of ‘abstract’ human un-
derstanding, a machine that must operate with finite configurations.
Therefore, a mathematical semantics, which will represent the first
major segment of the complete, rigourous definition of a program-
ming language, must lead naturally to an operational simulation of
the abstract entities, which – if done properly – will establish the
practicality of the language, and which is necessary for a full pre-
sentation.
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Göteborg, Sweden.

[Morris, 1968] Morris, J. H. (1968). Lambda-Calculus Models of Programming
Languages. Ph.D. thesis, MIT, Cambridge, MA.

[Mosses, 2000] Mosses, P. D. (2000). A foreword to ‘fundamental concepts in
programming languages’. Higher-Order and Symbolic Computation, 13(1–
2):7–9.



BIBLIOGRAPHY 127

[Ong, 1995] Ong, C.-H. L. (1995). Correspondence between operational and
denotational semantics. In Abramsky, S., Gabbay, D., and Maibaum, T.
S. E., editors, Handbook of Logic in Computer Science, Vol 4, pages 269–356.
Oxford University Press.

[Ong and Abramsky, 1993] Ong, C.-H. L. and Abramsky, S. (1993). Full ab-
straction in the lazy lambda calculus. Information and Computation, 105:159–
267.

[Park, 1981] Park, D. (1981). Concurrency and automata on infinite sequences.
In Theoretical Computer Science, 5th GI-Conf., LNCS 104, pages 167–183.
Springer-Verlag, Karlsruhe.

[Pitts, 1994] Pitts, A. M. (1994). Some notes on inductive and co-inductive
techniques in the semantics of functional programs. Notes Series BRICS-NS-
94-5, BRICS, Department of Computer Science, University of Aarhus. vi+135
pp, draft version.

[Pitts, 1995] Pitts, A. M. (1995). Operationally-based theories of program
equivalence. In Dybjer, P. and Pitts, A. M., editors, Semantics and Log-
ics of Computation. Cambridge University Press. Based on lectures given
at the CLICS-II Summer School on Semantics and Logics of Computation,
Isaac Newton Institute for Mathematical Sciences, Cambridge UK, September
1995.

[Pitts, 1998] Pitts, A. M. (1998). Operational versus denotational methods in
the semantics of higher order languages (tutorial). In Palamidessi, C., Glaser,
H., and Meinke, K., editors, Principles of Declarative Programming, 10th Int.
Symp., PLILP’98, volume 1490 of Lecture Notes in Computer Science, pages
282–283. Springer-Verlag, Berlin.

[Pitts, 2002] Pitts, A. M. (2002). Operational semantics and program equiva-
lence. Lecture Notes in Computer Science, 2395:378–411.

[Pitts and Stark, 1998] Pitts, A. M. and Stark, I. D. B. (1998). Operational
reasoning for functions with local state. In Gordon, A. D. and Pitts, A. M.,
editors, Higher Order Operational Techniques in Semantics, Publications of
the Newton Institute, pages 227–273. Cambridge University Press.

[Plotkin, 1981] Plotkin, G. D. (1981). A structural approach to operational
semantics. Technical Report DAIMI FN-19, Aarhus University.

[Plotkin, 1985] Plotkin, G. D. (1985). Denotational semantics with partial func-
tions. Lecture notes, C.S.L.I. Summer School, Stanford.

[Plotkin, 2003] Plotkin, G. D. (2003). The Origins of Structural Operational
Semantics. Unpublished.

[Power, 2003] Power, J. (2003). Towards a theory of mathematical operational
semantics. In Gumm, H. P., editor, Electronic Notes in Theoretical Computer
Science, volume 82. Elsevier.



BIBLIOGRAPHY 128

[Rutten, 2001] Rutten, J. J. M. M. (2001). Elements of stream calculus (an
extensive exercise in coinduction). In Brookes, S. and Mislove, M., editors,
Proc. of 17th Conf. on Mathematical Foundations of Programming Seman-
tics, Aarhus, Denmark, 23–26 May 2001, volume 45 of Electronic Notes in
Theoretical Computer Science. Elsevier, Amsterdam.

[Sands, 1997] Sands, D. (1997). From SOS rules to proof principles: An op-
erational metatheory for functional languages. In Conference Record of
POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 428–441, Paris.

[Scott, 1970] Scott, D. (1970). Outline of a mathematical theory of computa-
tion. In Proc. Fourth Annual Princeton Conference on Information Sciences
and Systems, pages 169–176. Princeton University.

[Scott and Strachey, 1971] Scott, D. and Strachey, C. (1971). Towards a math-
ematical semantics for computer languages. Technical Report PRG-6, Oxford
University Computer Laboratory.

[Smith, 1991] Smith, S. F. (1991). From Operational to Denotational Seman-
tics. In Main, M. et al., editors, Mathematical Foundation of Programming
Semantics’91, volume 598 of LNCS, pages 54–76. Springer-Verlag.

[Strachey, 1967] Strachey, C. (1967). Fundamental concepts in programming
languages. Lecture Notes, International Summer School in Computer Pro-
gramming, Copenhagen. Reprinted in Higher-Order and Symbolic Computa-
tion, 13(1/2), pp. 1–49, 2000.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretic fixpoint theorem and its
applications. Pacific Journal of Mathematics, 5(2):285–309.

[Turi, 1996] Turi, D. (1996). Functorial Operational Semantics and Its Deno-
tational Dual. PhD thesis, Free University, Amsterdam.

[Turi and Plotkin, 1997] Turi, D. and Plotkin, G. D. (1997). Towards a mathe-
matical operational semantics. In Proc. of 12th Ann. IEEE Symp. on Logic in
Computer Science, LICS’97, Warsaw, Poland, 29 June – 2 July 1997, pages
280–291. IEEE Computer Society Press, Los Alamitos, CA.

[Turing, 1936] Turing, A. M. (1936). On computable numbers with an applica-
tion to the Entscheidungsproblem. Proceedings of the London Mathematical
Society Series 2, 42:230–265.

[Winskel, 1993] Winskel, G. (1993). The Formal Semantics of Programming
Languages: An Introduction. Foundation of Computing Series. The MIT
Press, Cambridge, MA.


