CS 591: Formal Methods in Security and Privacy Probabilistic computations

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

From the previous classes

Information Flow Control

We want to guarantee that confidential inputs do not flow to nonconfidential outputs.

Noninterference as a Relational Property In symbols, c is noninterferent if and only if for every $m_1 \sim_{low} m_2$:

- 1) {c}_{m1}= \perp iff {c}_{m2}= \perp
- 2) {c}_{m1}=m₁' and {c}_{m2}=m₂' implies $m_1' \sim_{low} m_2'$

Soundness

If we can derive $\vdash c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic, then the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid.

Relative Completeness

If a quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid, and we have an oracle to derive all the true statements of the form $P \Rightarrow S$ and of the form $R \Rightarrow Q$, then we can derive $\vdash c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic.

Soundness and completeness with respect to Hoare Logic

 $\vdash_{\text{RHL}} C_1 \sim C_2 : P \Rightarrow Q$ iff $\vdash_{\text{HL}} C_1; C_2 : P \Rightarrow Q$

Soundness and completeness with respect to Hoare Logic

 $\vdash_{\text{RHL}} C_1 \sim C_2 : P \Rightarrow Q$ iff $\vdash_{\text{HL}} C_1; C_2 : P \Rightarrow Q$

Under the assumption that we can partition the memory adequately, and that we have termination.

Today: Probabilistic Language

An example

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

Probabilistic While (PWhile)

c::= abort
 | skip
 | x:= e
 | x:=\$ d
 | c;c
 | if e then c else c
 | while e do c

d_1 , d_2 , ... probabilistic expressions

Probabilistic Subdistributions

A discrete subdistribution over a set A is a function $\mu : A \rightarrow [0, 1]$ such that the mass of μ , $|\mu| = \sum_{a \in A} \mu(a)$ verifies $|\mu| \le 1$.

The support of a discrete subdistribution μ , supp(μ) = {a \in A | μ (a) > 0} is necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by D(A), and say that μ is of type D(A) denoted μ :D(A) if $\mu \in D(A)$.

Probabilistic Subdistributions

We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event $E \subseteq A$ with respect to the subdistribution $\mu:D(A)$ as

$$\mathbb{P}_{\mu}[E] = \sum_{a \in E} \mu(a)$$

Probabilistic Subdistributions

Let's consider $\mu \in D(A)$, and $E \subseteq A$, we have the following properties

 $\mathbb{P}_{\mu}[\emptyset] = 0$ $\mathbb{P}_{\mu}[A] \le 1$ $0 \le \mathbb{P}_{\mu}[E] \le 1$

 $\mathsf{E} \subseteq \mathsf{F} \subseteq \mathsf{A} \text{ implies } \mathbb{P}_{\mu}[E] \leq \mathbb{P}_{\mu}[F]$

 $E \subseteq A \text{ and } F \subseteq A \text{ implies } \mathbb{P}_{\mu}[E \cup F] \leq \mathbb{P}_{\mu}[E] + \mathbb{P}_{\mu}[F] - \mathbb{P}_{\mu}[E \cap F]$

We will denote by \mathbf{O} the subdistribution μ defined as constant 0.

Operations over Probabilistic Subdistributions

Let's consider an arbitrary $a \in A$, we will often use the distribution unit(a) defined as:

$$\mathbb{P}_{\text{unit}(a)}[\{b\}] = \begin{cases} 1 \text{ if } a=b \\ 0 \text{ otherwise} \end{cases}$$

We can think about unit as a function of type unit: $A \rightarrow D(A)$

Operations over Probabilistic Subdistributions

Let's consider a distribution $\mu \in D(A)$, and a function M:A $\rightarrow D(B)$ then we can define their composition by means of an expression let a = μ in M a defined as:

$$\mathbb{P} \text{let a =} \mu \text{ in M a}^{[E]} = \sum_{a \in \text{supp}(\mu)} \mathbb{P}_{\mu}[\{a\}] \cdot \mathbb{P}_{(Ma)}[E]$$

Semantics of Probabilistic Expressions - revisited

We would like to define it on the structure:

 $\{f(e_1, ..., e_n, d_1, ..., d_k)\}_m = \{f\}(\{e_1\}_m, ..., \{e_n\}_m, \{d_1\}_m, ..., \{d_k\}_m)$

With input a memory m and output a subdistribution $\mu \in D(A)$ over the corresponding type A. E.g.

 $\{uniform(\{0,1\}^n)\}_m \in D(\{0,1\}^n)\}$

{gaussian(k, σ)}_m \in D(Real)

Today: Probabilistic Language

Semantics of PWhile Commands

What is the meaning of the following command?

k:=\$ uniform({0,1}ⁿ); $z:= x \mod k$;

Semantics of PWhile Commands

What is the meaning of the following command?

k := uniform ({0,1}ⁿ); $z := x \mod k$;

We can give the semantics as a function between command, memories and subdistributions over memories.

Cmd * Mem
$$\rightarrow$$
 D(Mem)

We will denote this relation as:

$$\{c\}_m = \mu$$

This is defined on the structure of commands:

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{0}$

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{O}$ $\{skip\}_m = unit(m)$

This is defined on the structure of commands:

{abort}_m = \mathbf{O} {skip}_m = unit(m) {x:=e}_m = unit(m[x+{e}_m])

This is defined on the structure of commands:

{abort}_m = \mathbf{O} {skip}_m = unit(m) {x:=e}_m = unit(m[x+{e}_m])

 $\{c; c'\}_{m} = let m' = \{c\}_{m} in \{c'\}_{m'}$

This is defined on the structure of commands:

{abort}_m = **O**{skip}_m = unit(m)
{x:=e}_m = unit(m[x←{e}_m])
{c;c'}_m = let m' = {c}_m in {c'}_{m'}

{if e then c_t else c_f }_m = { c_t }_m If {e}_m=true

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{0}$ $\{skip\}_m = unit(m)$ $\{x := e\}_m = unit(m[x \leftarrow \{e\}_m])$ $\{c; c'\}_{m} = let m' = \{c\}_{m} in \{c'\}_{m'}$ {if e then c_t else c_f }_m = { c_t }_m If {e}_m=true {if e then c_t else $c_f\}_m = \{c_f\}_m$ If $\{e\}_m = false$

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{0}$ $\{skip\}_m = unit(m)$ $\{x := e\}_m = unit(m[x \leftarrow \{e\}_m])$ $\{x:= d\}_m = let a = \{d\}_m in unit(m[x \leftarrow a])$ $\{c; c'\}_{m} = let m' = \{c\}_{m} in \{c'\}_{m'}$ {if e then c_t else c_f }_m = { c_t }_m If {e}_m=true {if e then c_t else $c_f\}_m = \{c_f\}_m$ If $\{e\}_m = false$

What about while

How did we handle the deterministic case?

What about while

$$\{\text{while e do c}\}_{m} = ???$$

How did we handle the deterministic case?

- We defined it as
- {while e do c}_m = sup_{n∈Nat} μ_n
- Where

```
\mu_n =
let m' = { (while<sup>n</sup> e do c) }<sub>m</sub> in {if e then abort}<sub>m'</sub>
```

- We defined it as
- {while $e do c}_m = \sup_{n \in Nat} \mu_n$
- Where

```
\mu_n =
let m'={(while<sup>n</sup> e do c)}<sub>m</sub> in {if e then abort}<sub>m'</sub>
```

Is this well defined?

This is defined on the structure of commands:

 $\{ while e do c \}_m = sup_{n \in Nat} \mu_n$ $\mu_n =$ $let m' = \{ (while^n e do c) \}_m in \{ if e then abort \}_{m'}$

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{O}$

 $\{ while e do c \}_m = sup_{n \in Nat} \mu_n \\ \mu_n = \\ let m' = \{ (while^n e do c) \}_m in \{ if e then abort \}_{m'}$

This is defined on the structure of commands:

$${abort}_m = \mathbf{O}$$

 ${skip}_m = unit(m)$

 $\{ while e do c \}_m = sup_{n \in Nat} \mu_n$ $\mu_n =$ $let m' = \{ (while^n e do c) \}_m in \{ if e then abort \}_{m'}$

This is defined on the structure of commands:

$$\{abort\}_{m} = \mathbf{O}$$
$$\{skip\}_{m} = unit(m)$$
$$\{x:=e\}_{m} = unit(m[x\leftarrow \{e\}_{m}])$$

 $\{ while e do c \}_m = sup_{n \in Nat} \mu_n$ $\mu_n =$ $let m' = \{ (while^n e do c) \}_m in \{ if e then abort \}_{m'}$

This is defined on the structure of commands:

$$\{abort\}_{m} = \mathbf{O}$$
$$\{skip\}_{m} = unit(m)$$
$$\{x:=e\}_{m} = unit(m[x\leftarrow \{e\}_{m}])$$

 $\{c; c'\}_{m} = let m' = \{c\}_{m} in \{c'\}_{m'}$

 $\{ while e do c \}_m = sup_{n \in Nat} \mu_n \\ \mu_n = \\ let m' = \{ (while^n e do c) \}_m in \{ if e then abort \}_{m'}$

This is defined on the structure of commands:

$$\{abort\}_{m} = \mathbf{O}$$
$$\{skip\}_{m} = unit(m)$$
$$\{x:=e\}_{m} = unit(m[x\leftarrow \{e\}_{m}])$$

 ${c;c'}_m = let m' = {c}_m in {c'}_{m'}$ {if e then c_t else $c_f}_m = {c_t}_m lf {e}_m = true$

 $\{ while e do c \}_m = sup_{n \in Nat} \mu_n \\ \mu_n = \\ let m' = \{ (while^n e do c) \}_m in \{ if e then abort \}_{m'}$

This is defined on the structure of commands:

$$\{abort\}_{m} = \mathbf{O}$$
$$\{skip\}_{m} = unit(m)$$
$$\{x:=e\}_{m} = unit(m[x\leftarrow \{e\}_{m}])$$

{c;c'}_m =let m' = {c}_m in {c'}_m'
{if e then c_t else c_f }_m = { c_t }_m If {e}_m=true
{if e then c_t else c_f }_m = { c_f }_m If {e}_m=false
{while e do c}_m = sup_{n \in Nat} \mu_n
\mu_n =
let m' = {(whileⁿ e do c)}_m in {if e then abort}_m'

This is defined on the structure of commands:

$$\{abort\}_{m} = \mathbf{O}$$

$$\{skip\}_{m} = unit(m)$$

$$\{x:=e\}_{m} = unit(m[x\leftarrow \{e\}_{m}])$$

$$\{x:=\$ \ d\}_{m} = let \ a=\{d\}_{m} \text{ in } unit(m[x\leftarrow a])$$

$$\{c;c'\}_{m} = let \ m'=\{c\}_{m} \text{ in } \{c'\}_{m'}$$

$$\{if \ e \ then \ c_{t} \ else \ c_{f}\}_{m} = \{C_{t}\}_{m} \ \text{If } \{e\}_{m}=true$$

$$\{if \ e \ then \ c_{t} \ else \ c_{f}\}_{m} = \{C_{f}\}_{m} \ \text{If } \{e\}_{m}=false$$

$$\{while \ e \ do \ c\}_{m} = sup_{n\in Nat} \ \mu_{n}$$

$$\mu_{n} =$$

$$let \ m'=\{(while^{n} \ e \ do \ c)\}_{m} \text{ in } \{if \ e \ then \ abort\}_{m'}$$

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically noninterferent if and only if, whenever we run it on two low equivalent memories m_1 and m_2 we have that the probabilistic distributions we get as outputs are the same on public outputs. Noninterference as a Relational Property In symbols, c is noninterferent if and only if for every $m_1 \sim_{low} m_2$: {C}m_1=\mu_1 and {C}m_2=\mu_2 implies $\mu_1 \sim_{low} \mu_2$

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

How can we prove that this is noninterferent?

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

 m_1

 m_2

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

Suppose we can now chose the key for m₂. What could we choose?

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

Suppose we can now chose the key for m₂. What could we choose?

Properties of xor

 $C \oplus (a \oplus C) = a$

Properties of xor

 $C \oplus (a \oplus C) = a$

Example:

 $100 \oplus (101 \oplus 100) =$ $100 \oplus 001 = 101$

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := msg xor key;
 return cipher

Coupling

Coupling

Example of Our Coupling

00	0.25		00	0.25
O1	0.25		01	0.25
10	0.25	$k = 10 \oplus k \oplus 00$	10	0.25
11	0.25		11	0.25

Example of Our Coupling

00	0.25
01	0.25
10	0.25
11	0.25

 $k = 10 \oplus k \oplus 00$

OO 0.25O1 0.2510 0.2511 0.25

	00	01	10	11
00			0.25	
O1				0.25
10	0.25			
11		0.25		

Coupling formally

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, a coupling between them is a joint distribution $\mu \in D(AxB)$ whose marginal distributions are μ_1 and μ_2 , respectively.

$$\pi_1(\mu)(a) = \sum_b \mu(a, b) \qquad \pi_2(\mu)(b) = \sum_a \mu(a, b)$$