
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Probabilistic computations

From the previous classes

Information Flow Control
We want to guarantee that confidential inputs
do not flow to nonconfidential outputs.

public public

private private

Noninterference as a Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Quadruples

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Relative Completeness

If a quadruple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

Today:
Probabilistic Language

An example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic While (PWhile)
c::= abort
 | skip
 | x:= e
 | x:=$ d
 | c;c
 | if e then c else c
 | while e do c

d1,d2,… probabilistic expressions

Probabilistic Subdistributions
A discrete subdistribution over a set A is a function
µ : A → [0, 1]
such that the mass of µ,

verifies |µ| ≤ 1.

The support of a discrete subdistribution µ,
supp(µ) = {a ∈ A | µ(a) > 0}
is necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by D(A),
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).

|μ | = ∑
a∈A

μ(a)

Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event E⊆A with respect to
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)

Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.

Operations over
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)

Operations over
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function
M:A → D(B) then we can define their composition by means
of an expression let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]

Semantics of Probabilistic
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)

Today:
Probabilistic Language

Semantics of PWhile
Commands

What is the meaning of the following command?

k:=$ uniform({0,1}n); z:= x mod k;

Semantics of PWhile
Commands

What is the meaning of the following command?

We can give the semantics as a function between command,
memories and subdistributions over memories.

We will denote this relation as:

Cmd * Mem → D(Mem)

{c}m=µ

k:=$ uniform({0,1}n); z:= x mod k;

Semantics of Commands
This is defined on the structure of commands:

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{x:=e}m = unit(m[x←{e}m])

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

Semantics of While

What about while

How did we handle the deterministic case?

Semantics of While

What about while

{while e do c}m = ???

How did we handle the deterministic case?

Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Is this well defined?

Semantics of Commands
This is defined on the structure of commands:

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{x:=e}m = unit(m[x←{e}m])

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf
{if e then ct else cf}m = {cf}m {e}m=falseIf
{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf
{if e then ct else cf}m = {cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically
noninterferent if and only if, whenever
we run it on two low equivalent
memories m1 and m2 we have that the
probabilistic distributions we get as
outputs are the same on public outputs.

Noninterference as a Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

How can we prove that this is noninterferent?

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

m1 m2

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Suppose we can now chose the key
for m2. What could we choose?

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Suppose we can now chose the key
for m2. What could we choose?

m1 m2

m1⊕k m2⊕(m1⊕k⊕m2)

Properties of xor
c⊕(a⊕c)=a

Properties of xor

Example:

c⊕(a⊕c)=a

100⊕(101⊕100)=

100⊕001=101

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Applying the property above

m1 m2

m1⊕k m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

Coupling
𝜇1 𝜇2

Coupling
𝜇1 𝜇2

Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25

Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25

Coupling formally
Given two distributions µ1∈D(A), and
µ2∈D(B), a coupling between them is a joint
distribution µ∈D(AxB) whose marginal
distributions are µ1 and µ2, respectively.

π2(μ)(b) = ∑
a

μ(a, b)π1(μ)(a) = ∑
b

μ(a, b)

