CS 591: Formal Methods in
Security and Privacy

Probabilistic computations

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough®bu.edu

From the previous classes

Information Flow Control

We want to guarantee that confidential inputs
do not flow to nonconfidential outputs.

private private

— —_

Noninterference as a Relational Property

In symbols, ¢ is noninterferent if and only if
for every m+ ~jow mz :

1) {C}m1=_L iff {C}m2=_L

2) {C}m1=m+" and {C}m2=m2’ implies m1 ~jow M2

private private
lJﬂ----"b <:::; I......*"»Ch

public public
\/I......."» ----*')»VV

private private

U2|-------.'> <:::’ ----"»(32
public public

\/I----"P ----*'b»VV

Relational Hoare Quadruples

Precondition
(a logical formula)

Precondition l

Program ~ Program | o~ Cy 1 P = ()

Postcondition I I I

Program Program Postcondition
(a logical formula)

Soundness

If we can derive —C1~C» : P=0 through
the rules of the logic, then the quadruple

Cc1~Co:P=0 Iisvalid.

Relative Completeness

If a quadruple ci1~c»,:P=0 is valid, and we

have an oracle to derive all the true statements
of the form P=S5 and of the form R=0Q , then

we can derive —Cc1~C»: P=0 through

the rules of the logic.

Soundness and completeness
with respect to Hoare Logic

—rur, C1~C2: P=0
Iff
1, C1:C2:P=0

Soundness and completeness
with respect to Hoare Logic

gy, C1~Co: P=0
Iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

Today:
Probabllistic Language

An example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic While (PWhile)

c::= abort

skip

X:= e

x:=S d

C;C

1f e then ¢ else c
while e do ¢

di, dz,.. probabilistic expressions

Probabilistic Subdistributions

A discrete subdistribution over a set A is a function
u:A— [0, 1]
such that the mass of y,

ul =) ua

acA
verifies |u| < 1.

The support of a discrete subdistribution p,

supp(u) ={a €A u(a) > 0;
IS necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by D(A),
and say that u is of type D(A) denoted pu:D(A) if u € D(A).

Probabilistic Subdistributions

We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event ECA with respect to
the subdistribution y:D(A) as

PJE] =) u(a)

acek

Probabilistic Subdistributions

Let’s consider yeD(A), and ECA, we have the following
properties

P.[@]=0
P,A] < 1
0<P,IE]< 1

ECFcAimplies P,IE] <P,[F]
EcAand FcAimplies PJIEVF] <P [E]+P,I[F]-P,/JENF]

We will denote by O the subdistribution y defined as constant O.

Operations over
Probabilistic Subdistributions

Let’'s consider an arbitrary acA, we will often use the
distribution unit(a) defined as:

1 if a=b
Punitl b1l =

O otherwise

We can think about unit as a function of type unit:A — D(A)

Operations over
Probabilistic Subdistributions

Let’'s consider a distribution ueD(A), and a function

M:A — D(B) then we can define their composition by means
of an expression leta =p in M a defined as:

Plet a =J in M alE] = Z Plta}] - PosglE]
aeSUPP(M)

Semantics of Probabillistic
EXxpressions - revisited

We would like to define it on the structure:
{f (elr---r Sny dlr---r dk) }m = {f} ({el}mru-r {en}mr {dl}mrmr {dk}m)

With input a memory m and output a subdistribution peD(A) over
the corresponding type A. E.q.

{uniform ({0,1}n) }neD ({0,1}n)

{gaussian(k, o) }neD (Real)

Today:
Probabilistic Language

Semantics of PWhile
Commands

What is the meaning of the following command?

k:=S uniform({0,1}n); z:= x mod k;

Semantics of PWhile
Commands

What is the meaning of the following command?

k:=S uniform({0,1}n); z:= x mod k;

We can give the semantics as a function between command,
memories and subdistributions over memories.

Cmd * Mem — D (Mem)

We will denote this relation as:

{C}m:U

Semantics of Commands

This is defined on the structure of commands:

Semantics of Commands

This is defined on the structure of commands:

{abort}, = O

Semantics of Commands

This is defined on the structure of commands:

{abort}, = O

{skip}mn = unit (m)

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O
{skip}mn = unit (m)

{x:=e}p = unit(m{x—{eln])

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O

{skip}mn = unit (m)

{x:=e}p = unit(m{x—{eln])

{c;c’ }tp=let m"={c}n 1n {c’ }w

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O

{skip}mn = unit (m)

{x:=e}p = unit(m{x—{eln])

{c;c’ }tp=let m"={c}n 1n {c’ }w

{if e then ct else celpg={Ctlnlf{e} =true

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O

{skip}mn = unit (m)

{x:=e}p = unit(m{x—{eln])

{c;c’ tn=let m"={c}ln1in {c’}w
{if e then ct else celpg={Ctlnlf{e} =true

{1f e then ct else csln={celnlf{e}l=false

Semantics of Commands

This is defined on the structure of commands:

{abort}n= 0
{skipl}mw = unit (m)
{x:=el}y,= unit (m[x—{elnl)
{x:=S5 d}, =let a={d}, 1n unit (m[x<al)
{c;c’ tn=let m"={c}tn 1n {c’ }uw
{1f e then ct else crln={Ctlnlf {e}rn=true

{1f e then ct else csln={celnlf{e}l=false

Semantics of While

What about while

How did we handle the deterministic case?

Semantics of While

What about while

{while e do c}lnp= 27?27

How did we handle the deterministic case?

Semantics of While

We defined it as
{while e do c}n =SUPnenat Mn
Where

Mn =
let m"={ (whiler e do ¢) }yn 1n {1f e then abort},

Semantics of While

We defined it as

{while e do c}n =SUPnenat Mn
Where

Mn =
let m"={ (whiler e do ¢) }yn 1n {1f e then abort},

Is this well defined?

Semantics of Commands

This is defined on the structure of commands:

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:

{abort}, = O

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:

{abort},= O
{skip}mn = unit (m)

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O
{skip}mn = unit (m)

{x:=e}pn = unit(m{x—{eln])

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O
{skip}mn = unit (m)

{x:=e}pn = unit(m{x—{eln])

{c;c’ }n=let m"={c}n1in {c’ }uw

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:
{abort}, = O
{skip}mn = unit (m)

{x:=e}pn = unit(m{x—{eln])

{c;c’ tn=let m"={c}tn1in {c’}w
{if e then ct else Celpg =1Ctinlf {e}yg=true

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:

{abort},= O
{skip}mn = unit (m)

{x:=e}pn = unit(m{x—{eln])

{c;c’ tn=let m"={c}tn1in {c’}w
{if e then ct else Celpg =1Ctinlf {e}yg=true
{if e then ct else csly =1{Celnlf {e} ,=false

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Semantics of Commands

This is defined on the structure of commands:

{abort}n, = O
{skip}mn = unit (m)
{x:=el}y= unit(m[x—{elnl])
{x:=S5 d}, =let a={d}, 1n unit (m[x<al)
{c;c’tp=let m"={c}lpn 1n {c’ }uw
{1f e then ct else csln =1{Ctlnlf {e}p=true

{if e then ct else csly =1{Celnlf {e} ,=false

{while e do C}n =SUDPnenat Mn

Mn =
let m"={ (whiler e do ¢) }n 1n {1f e then abort},

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog Is probabilistically
noninterferent if and only if, whenever
we run it on two low equivalent
memories m+1 and mz2 we have that the
probabilistic distributions we get as
outputs are the same on public outputs.

Noninterference as a Relational Property

In symbols, ¢ is noninterferent if and only if
for every m+ ~jow mz :
{C}m1=P1 and {C}mz=p2 Implies P1 ~iow M2

private private
lJﬂ----"b <:::; I......*"»Ch

public public
\/I......."» ----*')»VV

private private

U2|-------.'> <:::’ ----"»(32
public public

\/I----"P ----*'b»VV

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

How can we prove that this is noninterferent?

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

mi Mo

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

mi Mo

l

ml@k

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

mi Mo
ml@k

Suppose we can now chose the key
for mz. What could we choose?

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

mi Mo
ml@k m2® (ml@k@mz)

Suppose we can now chose the key
for mz. What could we choose?

Properties of xor

C® (ad®c) =a

Properties of xor
c® (ad®c)=a

Example:

100@ (101@100) =
100@0001=101

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

mi Mo
l |
m; @k m®k

Applying the property above

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

private

private

private private

-08

04

04

Tos

Coupling

-0,8

-04

04

Tos

H1

Coupling

i

AN

Example of Our Coupling

00 0.25 00 0.25
O1 0.25 O1 0.25

10 0.25 k — :I_O@k@OO 10 0.25

11 0.25 11 0.25

Example of Our Coupling

00 0.25 00 0.25
O1 0.25 O1 0.25
10 0.25 — 10 0.25
11 0.25 k lO@k@OO 11 0.25

o0 O1 10 1M
0]0) 0.25
O1 0.25
10 0.25
11 0.25

Coupling formally

Given two distributions p1eD(A), and
u2eD(B), a coupling between them is a joint
distribution peD(AxB) whose marginal
distributions are U1 and [z, respectively.

m(u)a) =) u(a,b) m(u)(b) =) u(a,b)
b a

