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Probabilistic computations



From the previous classes



Information Flow Control
We want to guarantee that  confidential inputs 
do not flow to nonconfidential outputs.
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Noninterference as a Relational Property
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Quadruples

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Today:  
Probabilistic Language



An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Probabilistic While (PWhile)
c::= abort                   
   | skip                 
   | x:= e 
   | x:=$ d 
   | c;c 
   | if e then c else c  
   | while e do c 

d1,d2,… probabilistic expressions



Probabilistic Subdistributions
A discrete subdistribution over a set A is a function  
µ : A → [0, 1]  
such that the mass of µ, 

  

verifies |µ| ≤ 1.  

The support of a discrete subdistribution µ, 
supp(µ) = {a ∈ A | µ(a) > 0}  
is necessarily countable, i.e. finite or countably infinite.  

We will denote the set of sub-distributions over A by D(A), 
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).  

|μ | = ∑
a∈A

μ(a)



Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution. 

We define the probability of an event E⊆A with respect to 
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)



Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following 
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.



Operations over  
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the 
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)



Operations over  
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function  
M:A → D(B) then we can define their composition by means 
of an expression  let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]



Semantics of Probabilistic 
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over 
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)



Today:  
Probabilistic Language



Semantics of PWhile 
Commands

What is the meaning of the following command?

k:=$ uniform({0,1}n); z:= x mod k;



Semantics of PWhile 
Commands

What is the meaning of the following command?

We can give the semantics as a function between command, 
memories and subdistributions over memories.

We will denote this relation as:

Cmd * Mem → D(Mem)

{c}m=µ

k:=$ uniform({0,1}n); z:= x mod k;



Semantics of Commands
This is defined on the structure of commands:
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Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
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Semantics of While
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How did we handle the deterministic case?



Semantics of While

What about while

{while e do c}m = ???

How did we handle the deterministic case?



Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn = 
let m’={(whilen e do c)}m in {if e then abort}m’
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Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn = 
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Is this well defined?
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Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 

How do we formalize this?



Probabilistic Noninterference

A program prog is probabilistically 
noninterferent if and only if, whenever 
we run it on two low equivalent 
memories m1 and m2 we have that the 
probabilistic distributions we get as 
outputs are the same on public outputs. 



Noninterference as a Relational Property
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Revisiting the example
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 key :=$ Uniform({0,1}n); 
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return cipher  

How can we prove that this is noninterferent?
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Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Suppose we can now chose the key 
for m2. What could we choose?

m1 m2

m1⊕k m2⊕(m1⊕k⊕m2)



Properties of xor
c⊕(a⊕c)=a



Properties of xor

Example:

c⊕(a⊕c)=a

100⊕(101⊕100)=

100⊕001=101



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Applying the property above

m1 m2

m1⊕k m1⊕k



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2



Coupling
𝜇1 𝜇2
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Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25
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11 0.25



Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25



Coupling formally
Given two distributions µ1∈D(A), and 
µ2∈D(B), a coupling between them is a joint 
distribution µ∈D(AxB) whose marginal 
distributions are µ1 and µ2, respectively.

π2(μ)(b) = ∑
a

μ(a, b)π1(μ)(a) = ∑
b

μ(a, b)


