CS 591: Formal Methods in Security and Privacy
Formal Proofs for Cryptography

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
Cryptographic Security

• Cryptographic schemes (e.g., encryption) and protocols (e.g., key-exchange) can be specified at a high-level using our Probabilistic While (pWhile) language.

• They generally make use of randomness, which can be modeled by random assignments from (sub-)distributions.

• When these high-level specifications are implemented, this randomness must be realized using pseudorandom number generators, whose seeds make use of randomness from the underlying operating system.

• They also often make use of primitives like pseudorandom functions (PRFs).

• These primitives must also be implemented; e.g., PRFs can be implemented using hash functions like SHA-256.
Cryptographic Security

• Our focus in this course will be at the specification level.
• But there is research that addresses how to specify and prove the security of implementations of cryptographic schemes and protocols.
pWhile in EasyCrypt

• E.g., here is a pWhile procedure that exclusive-ors two booleans chosen from the uniform distribution on booleans (each of true and false will be chosen with probability 1/2):

```plaintext
module M = {
    proc f() : bool = {
        var x, y : bool;
        x <$ {0,1}; y <$ {0,1};
        return x ^^ y;
    }
}.
```

• And here is how we can state the lemma that \(M.f() \) returns true with probability 1/2 no matter what memory it’s run in:

```plaintext
lemma M_f_true &m :
    Pr[M.f() @ &m : res] = 1%r / 2%r.
```
Building Encryption from PRF + Randomness

• Our running example will be a symmetric encryption scheme built out of a pseudorandom function plus randomness.
 • Symmetric encryption means the same key is used for both encryption and decryption.

• We’ll first define when a symmetric encryption scheme is secure under indistinguishability under chosen plaintext attack (IND-CPA).

• Next we’ll define our instance of this scheme, and informally analyze adversaries’ strategies for breaking security.

• We’ll return later in the course (in lecture and/or lab) to look at the proof in EasyCrypt of the IND-CPA security of our scheme.
Symmetric Encryption Schemes

• Our treatment of symmetric encryption schemes is parameterized by three types:

 type key. (* encryption keys, key_len bits *)
 type text. (* plaintexts, text_len bits *)
 type cipher. (* ciphertexts – scheme specific *)

• An encryption scheme is a *stateless* implementation of this module interface:

 module type ENC = {
 proc key_gen() : key (* key generation *)
 proc enc(k : key, x : text) : cipher (* encryption *)
 proc dec(k : key, c : cipher) : text (* decryption *)
 }.
Scheme Correctness

• An encryption scheme is correct if and only if the following procedure returns true with probability 1 for all arguments:

```haskell
module Cor (Enc : ENC) = {
  proc main(x : text) : bool = {
    var k : key; var c : cipher; var y : text;
    k <$> Enc.key_gen();
    c <$> Enc.enc(k, x);
    y <$> Enc.dec(k, c);
    return x = y;
  }
}.
```

• The module Cor is parameterized (may be applied to) an arbitrary encryption scheme, Enc.
Encryption Oracles

• To define IND-CPA security of encryption schemes, we need the notion of an encryption oracle, which both the adversary and IND-CPA game will interact with:

module type EO = {
 (* initialization – generates key *)
 proc * init() : unit
 (* encryption by adversary before game's encryption *)
 proc enc_pre(x : text) : cipher
 (* one-time encryption by game *)
 proc genc(x : text) : cipher
 (* encryption by adversary after game's encryption *)
 proc enc_post(x : text) : cipher
}.
Standard Encryption Oracle

- Here is the standard encryption oracle, parameterized by an encryption scheme, \texttt{Enc}:

```plaintext
module EncO (Enc : ENC) : EO = {
  var key : key
  var ctr_pre : int
  var ctr_post : int

  proc init() : unit = {
    key <- Enc.key_gen();
    ctr_pre <- 0; ctr_post <- 0;
  }
```
proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <- Enc.enc(key, x);
 } else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
Standard Encryption Oracle

```plaintext
proc genc(x : text) : cipher = {
    var c : cipher;
    c <@ Enc.enc(key, x);
    return c;
}
```
proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <-@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
Encryption Adversary

• An *encryption adversary* is parameterized by an encryption oracle:

```plaintext
module type ADV (EO : EO) = {
  (* choose a pair of plaintexts, x1/x2 *)
  proc * choose() : text * text {EO.enc_pre}

  (* given ciphertext c based on a random boolean b
     (the encryption using EO.genc of x1 if b = true,
     the encryption of x2 if b = false), try to guess b *)
  proc guess(c : cipher) : bool {EO.enc_post}
}.

• Adversaries may be probabilistic.
```
The IND-CPA Game is parameterized by an encryption scheme and an encryption adversary:

```
module INDCPA (Enc : ENC, Adv : ADV) = {
    module EO = EncO(Enc)  (* make EO from Enc *)
    module A = Adv(EO)     (* connect Adv to EO *)
    proc main() : bool = {
        var b, b' : bool; var x1, x2 : text; var c : cipher;
        EO.init();          (* initialize EO *)
        (x1, x2) <$> A.choose();  (* let A choose x1/x2 *)
        b <$> {0,1};          (* choose boolean b *)
        c <$> EO.genc(b ? x1 : x2);  (* encrypt x1 or x2 *)
        b' <$> A.guess(c);     (* let A guess b from c *)
        return b = b';        (* see if A won *)
    }
}.  
```
IND-CPA Game

Enc

EO

Adv

Game
If the value b' that Adv returns is independent of the random boolean b, then the probability that Adv wins the game will be exactly 1/2.

- E.g., if Adv always returns true, it’ll win half the time.

The question is how much better it can do—and we want to prove that it can’t do much better than win half the time.

- But this will depend upon the quality of the encryption scheme.

An adversary that wins with probability greater than 1/2 can be converted into one that loses with that probability, and vice versa. When formalizing security, it’s convenient to upper-bound the distance between the probability of the adversary winning and 1/2.
IND-CPA Security

• In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and 1/2:

```latex
\left| \Pr[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main()} @ &m : \text{res}] - \frac{1}{2} \right|
\leq \cdots \text{Adv} \cdots
```

• Ideally, we’d like the upper bound to be 0, so that the probability that Enc wins is exactly 1/2, but this won’t be possible.

• The upper bound may also be a function of the number of bits text_len in text and the encryption oracle limits limit_pre and limit_post.
IND-CPA Security

• Q: Because the adversary can call the encryption oracle with the plaintexts x_1/x_2 it goes on to choose, why isn’t it impossible to define a secure scheme?
 • A: Because encryption can (must!) involve randomness.

• Q: What is the rationale for letting the adversary call enc_pre and enc_post at all?
 • A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted.

• Q: What is the rationale for limiting the number of times enc_pre and enc_post may be called?
 • A: There will probably be some limit on the adversary’s influence on what is encrypted.
Next class: Defining an encryption scheme from a pseudorandom function and randomness, and informally analyzing adversaries’ strategies for breaking security