CS 591: Formal Methods in Security and Privacy
Formal Proofs for Cryptography

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
From the previous class
Building Encryption from PRF + Randomness

• Our running example will be a symmetric encryption scheme built out of a pseudorandom function plus randomness.
 • Symmetric encryption means the same key is used for both encryption and decryption.
 • We’ll first define when a symmetric encryption scheme is secure under indistinguishability under chosen plaintext attack (IND-CPA).
 • Next we’ll define our instance of this scheme, and informally analyze adversaries’ strategies for breaking security.
 • We’ll return later in the course (in lecture and/or lab) to look at the proof in EasyCrypt of the IND-CPA security of our scheme.
Symmetric Encryption Schemes

• Our treatment of symmetric encryption schemes is parameterized by three types:

 type key. (* encryption keys, n bits *)
 type text. (* plaintexts, m bits *)
 type cipher. (* ciphertexts – scheme specific *)

• An encryption scheme is a *stateless* implementation of this module interface:

```ocaml
type key. (* encryption keys, n bits *)
type text. (* plaintexts, m bits *)
type cipher. (* ciphertexts – scheme specific *)

module type ENC = {
  proc key_gen() : key  (* key generation *)
  proc enc(k : key, x : text) : cipher  (* encryption *)
  proc dec(k : key, c : cipher) : text  (* decryption *)
}.
```
Scheme Correctness

• An encryption scheme is *correct* if and only if the following procedure returns true with probability 1 for all arguments:

```plaintext
module Cor (Enc : ENC) = {
    proc main(x : text) : bool = {
        var k : key; var c : cipher; var y : text;
        k <@ Enc.key_gen();
        c <@ Enc.enc(k, x);
        y <@ Enc.dec(k, c);
        return x = y;
    }
}
```

• The module `Cor` is parameterized (may be applied to) an arbitrary encryption scheme, `Enc`.
Encryption Oracles

• To define IND-CPA security of encryption schemes, we need the notion of an *encryption oracle*, which both the adversary and IND-CPA game will interact with:

```ml
module type EO = {
  (* initialization - generates key *)
  proc * init() : unit
  (* encryption by adversary before game's encryption *)
  proc enc_pre(x : text) : cipher
  (* one-time encryption by game *)
  proc genc(x : text) : cipher
  (* encryption by adversary after game's encryption *)
  proc enc_post(x : text) : cipher
}.
```
Standard Encryption Oracle

• Here is the standard encryption oracle, parameterized by an encryption scheme, \(\texttt{Enc} \):

```plaintext
module EncO (Enc : ENC) : EO = {
  var key : key
  var ctr_pre : int
  var ctr_post : int

  proc init() : unit = {
    key <- @ Enc.key_gen();
    ctr_pre <- 0; ctr_post <- 0;
  }
```

Standard Encryption Oracle

```plaintext
proc enc_pre(x : text) : cipher = {
    var c : cipher;
    if (ctr_pre < limit_pre) {
        ctr_pre <- ctr_pre + 1;
        c <@ Enc.enc(key, x);
    }
    else {
        c <- ciph_def; (* default result *)
    }
    return c;
}
```
Standard Encryption Oracle

```plaintext
proc genc(x : text) : cipher = {
    var c : cipher;
    c <@ Enc.enc(key, x);
    return c;
}
```
Standard Encryption Oracle

proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <$> Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
").
Encryption Adversary

• An encryption adversary is parameterized by an encryption oracle:

```ml
module type ADV (EO : EO) = {
  (* choose a pair of plaintexts, x1/x2 *)
  proc * choose() : text * text {EO.enc_pre}

  (* given ciphertext c based on a random boolean b
     (the encryption using EO.genc of x1 if b = true,
      the encryption of x2 if b = false), try to guess b *)
  proc guess(c : cipher) : bool {EO.enc_post}
}.

• Adversaries may be probabilistic.
```
IND-CPA Game

• The IND-CPA Game is parameterized by an encryption scheme and an encryption adversary:

```plaintext
module INDCPA (Enc : ENC, Adv : ADV) = {
    module EO = EncO(Enc)               (* make EO from Enc *)
    module A = Adv(EO)                  (* connect Adv to EO *)
    proc main() : bool = {
        var b, b' : bool; var x1, x2 : text; var c : cipher;
        EO.init();                             (* initialize EO *)
        (x1, x2) <@ A.choose();               (* let A choose x1/x2 *)
        b <$ {0,1};                           (* choose boolean b *)
        c <@ EO.genc(b ? x1 : x2);            (* encrypt x1 or x2 *)
        b' <@ A.guess(c);                    (* let A guess b from c *)
        return b = b';                       (* see if A won *)
    }
}
```

IND-CPA Game

- Enc
- EO
- Adv
- Game
IND-CPA Game

• If the value b' that Adv returns is independent of the random boolean b, then the probability that Adv wins the game will be exactly 1/2.

 • E.g., if Adv always returns true, it’ll win half the time.

• The question is how much better it can do—and we want to prove that it can’t do much better than win half the time.

 • But this will depend upon the quality of the encryption scheme.

• An adversary that wins with probability greater than 1/2 can be converted into one that loses with that probability, and vice versa. When formalizing security, it’s convenient to upper-bound the distance between the probability of the adversary winning and 1/2.
IND-CPA Security

• In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and 1/2:

\[|\Pr[\text{INDCPA} (\text{Enc}, \text{Adv}).\text{main}() @ \&m : \text{res}] - 1/2| \leq \ldots \text{Adv} \ldots \]

• Ideally, we’d like the upper bound to be 0, so that the probability that Enc wins is exactly 1/2, but this won’t be possible.

• The upper bound may also be a function of the number of bits m in text and the encryption oracles limits $\text{limit}_{\text{pre}}$ and $\text{limit}_{\text{post}}$.
IND-CPA Security

Q: Because the adversary can call the encryption oracle with the plaintexts x_1/x_2 it goes on to choose, why isn’t it impossible to define a secure scheme?

A: Because encryption can (must!) involve randomness.

Q: What is the rationale for letting the adversary call `enc_pre` and `enc_post` at all?

A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted.

Q: What is the rationale for limiting the number of times `enc_pre` and `enc_post` may be called?

A: There will probably be some limit on the adversary’s influence on what is encrypted.
Next: Encryption from PRFs
Pseudorandom Functions

• Our pseudorandom function (PRF) is an operator F with this type:

$$\text{op } F : \text{key} \rightarrow \text{text} \rightarrow \text{text}.$$

• For each value k of type key, $(F \ k)$ is a function from text to text.

• Since key is a bitstring of length n, then there are at most 2^n of these functions.

• If we wanted, we could try to spell out the code for F, but we choose to keep F abstract.

• How do we know if F is a “good” PRF?
Pseudorandom Functions

• We will assume that \texttt{dtext} (\texttt{dkey}) is a sub-distribution on \texttt{text} (\texttt{key}) that is a distribution (is “lossless”), and where every element of \texttt{text} (\texttt{key}) has the same non-zero value:

\begin{verbatim}
 op dtext : text distr.
 op dkey : key distr.
\end{verbatim}

• A random function is a module with the following interface:

\begin{verbatim}
module type RF = {
 (* initialization *)
 proc * init() : unit

 (* application to a text *)
 proc f(x : text) : text
}.
\end{verbatim}
Pseudorandom Functions

• Here is a random function made from our PRF F:

```plaintext
module PRF : RF = {
    var key : key
    proc init() : unit = {
        key <$ dkey;
    }
    proc f(x : text) : text = {
        var y : text;
        y <- F key x;
        return y;
    }
}.
```
Pseudorandom Functions

• Here is a random function made from true randomness:

```ocaml
module TRF : RF = {
  (* mp is a finite map associating texts with texts *)
  var mp : (text, text) fmap
  proc init() : unit = {
    mp <- empty;  (* empty map *)
  }
  proc f(x : text) : text = {
    if (! x \in mp) {  (* if not in map’s domain *)
      mp.[x] <$ dtext;  (* map x to random answer *)
    }
    return oget mp.[x];  (* return value of x in mp *)
  }
}.
```
Pseudorandom Functions

- A *random function adversary* is parameterized by a random function module:

```plaintext
module type RFA (RF : RF) = {
  proc * main() : bool {RF.f}
}.
```
Pseudorandom Functions

• Here is the random function game:

```plaintext
module GRF (RF : RF, RFA : RFA) = {
  module A = RFA(RF)
  proc main() : bool = {
    var b : bool;
    RF.init();
    b <@ A.main();
    return b;
  }
}
```

• A random function adversary RFA tries to tell the PRF and true random functions apart, by returning true with different probabilities.
Pseudorandom Functions

• Our PRF F is “good” if and only if the following is small, whenever RFA is limited in the amount of computation it may do (maybe we say it runs in polynomial time):

\[
\left| \Pr[\text{GRF(PRF, RFA).main()} @ &m : \text{res}] - \Pr[\text{GRF(TRF, RFA).main()} @ &m : \text{res}] \right|
\]

• RFA must be limited, because there will typically be many more true random functions than functions of the form \((F \ k)\), where \(k\) is a key (there are at most \(2^n\) such functions).

• Since \(m\) is the number of bits in \text{text}, then there will be \(2^m \cdot 2^m \) distinct maps from \text{text} to \text{text}.

• Thus, with enough running time, RFA may be able to tell with reasonable probability if it’s interacting with a PRF random function or a true random function.
Our Symmetric Encryption Scheme

• We construct our encryption scheme Enc out of F:

\((+^) : \text{text} \rightarrow \text{text} \rightarrow \text{text} \quad (\ast \text{bitwise exclusive or or } \ast)\)

type cipher = text * text. \((\ast \text{ciphertexts } \ast)\)

module Enc : ENC = {
 proc key_gen() : key = {
 var k : key;
 k <$> dkey;
 return k;
 }
}
Our Symmetric Encryption Scheme

```plaintext
proc enc(k : key, x : text) : cipher = {
    var u : text;
    u <$ dtext;
    return (u, x +^ F k u);
}

proc dec(k : key, c : cipher) : text = {
    var u, v : text;
    (u, v) <- c;
    return v +^ F k u;
}
```
Correctness

• Suppose that $\text{enc}(k, x)$ returns $c = (u, x +^ F k u)$, where u is randomly chosen.

• Then $\text{dec}(k, c)$ returns $(x +^ F k u) +^ F k u = x$.
Adversarial Attack Strategy

• Before picking its pair of plaintexts, the adversary can call \texttt{enc_pre} some number of times with the same argument, \texttt{zeros} (the bitstring of length \(m\) all of whose bits are 0).

• This gives us ..., \((u_i, \texttt{zeros} \oplus \texttt{F key } u_i)\), ..., i.e., ..., \((u_i, \texttt{F key } u_i)\), ...

• Then, when \texttt{genc} encrypts one of \(x_1/x_2\), it may happen that we get a pair \((u_i, x_j \oplus \texttt{F key } u_i)\) for one of them, where \(u_i\) appeared in the results of calling \texttt{enc_pre}.

• But then

\[
\texttt{F key } u_i \oplus (x_j \oplus \texttt{F key } u_i) = \texttt{zeros} \oplus x_j = x_j
\]
Adversarial Attack Strategy

- Similarly, when calling `enc_post`, before returning its boolean judgement b to the game, a collision with the left-side of the cipher text passed from the game to the adversary will allow it to break security.

- Suppose, again, that the adversary repeatedly encrypts zeros using `enc_pre`, getting ..., $(u_i, F \text{ key } u_i)$, ...

- Then by *experimenting directly* with F with different keys, it may learn enough to guess, with reasonable probability, key itself.

- This will enable it to decrypt the cipher text c given it by the game, also breaking security.

- Thus we must assume some bounds on how much work the adversary can do (we can’t tell if it’s running F).
IND-CPA Security for Our Scheme

• Our security upper bound

\[|\Pr[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main()} @ &m : \text{res}] - 1^r / 2^r| \leq \ldots\]

will be a function of:

(1) the ability of a random function adversary constructed from \text{Adv} to tell the PRF random function from the true random function; and

(2) the number of bits \(m\) in \text{text} and the encryption oracles limits \text{limit_pre} and \text{limit_post}.

• Q: Why doesn’t the upper bound also involve \(n\), the number of bits in \text{key}?

• A: that’s part of (1).
IND-CPA Security for Our Scheme

• Later in the course, in lecture and/or lab, we’ll survey the proof of IND-CPA security.

• Before then, you can look at all the definitions and the proofs on GitHub:

 https://github.com/alleystoughton/EasyTeach/tree/master/encryption
If you are interested in doing a course project on the security of cryptographic schemes or protocols, Marco and I can make suggestions.