CS 591: Formal Methods in Security and Privacy
Formal Proofs for Cryptography

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
From the previous class
Building Encryption from PRF + Randomness

- Our running example will be a symmetric encryption scheme built out of a pseudorandom function plus randomness.
 - Symmetric encryption means the same key is used for both encryption and decryption.

- We’ll first define when a symmetric encryption scheme is secure under indistinguishability under chosen plaintext attack (IND-CPA).

- Next we’ll define our instance of this scheme, and informally analyze adversaries’ strategies for breaking security.

- We’ll return later in the course (in lecture and/or lab) to look at the proof in EasyCrypt of the IND-CPA security of our scheme.
Symmetric Encryption Schemes

- Our treatment of symmetric encryption schemes is parameterized by three types:

 type key. (* encryption keys, n bits *)
 type text. (* plaintexts, m bits *)
 type cipher. (* ciphertexts – scheme specific *)

- An encryption scheme is a *stateless* implementation of this module interface:

 module type ENC = {
 proc key_gen() : key (* key generation *)
 proc enc(k : key, x : text) : cipher (* encryption *)
 proc dec(k : key, c : cipher) : text (* decryption *)
 }.
Scheme Correctness

• An encryption scheme is *correct* if and only if the following procedure returns true with probability 1 for all arguments:

```plaintext
module Cor (Enc : ENC) = {
    proc main(x : text) : bool = {
        var k : key; var c : cipher; var y : text;
        k <@ Enc.key_gen();
        c <@ Enc.enc(k, x);
        y <@ Enc.dec(k, c);
        return x = y;
    }
}
```

• The module *Cor* is parameterized (may be applied to) an arbitrary encryption scheme, *Enc*.
Encryption Oracles

• To define IND-CPA security of encryption schemes, we need the notion of an *encryption oracle*, which both the adversary and IND-CPA game will interact with:

\[
\text{module type EO = {}
\text{ (* initialization - generates key *)}
\text{ proc * init() : unit}
\text{ (* encryption by adversary before game's encryption *)}
\text{ proc enc_pre(x : text) : cipher}
\text{ (* one-time encryption by game *)}
\text{ proc genc(x : text) : cipher}
\text{ (* encryption by adversary after game's encryption *)}
\text{ proc enc_post(x : text) : cipher}
\text{}}.
\]
Standard Encryption Oracle

- Here is the standard encryption oracle, parameterized by an encryption scheme, Enc:

```plaintext
module EncO (Enc : ENC) : EO = {
  var key : key
  var ctr_pre : int
  var ctr_post : int

  proc init() : unit = {
    key <-@ Enc.key_gen();
    ctr_pre <- 0; ctr_post <- 0;
  }
```

proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
Standard Encryption Oracle

proc genc(x : text) : cipher = {
 var c : cipher;
 c <- Enc.enc(key, x);
 return c;
}
proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (/* default result */)
 }
 return c;
}
Encryption Adversary

• An encryption adversary is parameterized by an encryption oracle:

```plaintext
module type ADV (EO : EO) = {
  (* choose a pair of plaintexts, x1/x2 *)
  proc * choose() : text * text {EO.enc_pre}

  (* given ciphertext c based on a random boolean b
     (the encryption using EO.genc of x1 if b = true,
     the encryption of x2 if b = false), try to guess b *)
  proc guess(c : cipher) : bool {EO.enc_post}
}.
```

• Adversaries may be probabilistic.
IND-CPA Game

• The IND-CPA Game is parameterized by an encryption scheme and an encryption adversary:

```plaintext
module INDCPA (Enc : ENC, Adv : ADV) = {
    module EO = EncO(Enc)        (* make EO from Enc *)
    module A = Adv(EO)           (* connect Adv to EO *)
    proc main() : bool = {
        var b, b' : bool; var x1, x2 : text; var c : cipher;
        EO.init();                 (* initialize EO *)
        (x1, x2) <@ A.choose();    (* let A choose x1/x2 *)
        b <$> {0,1};                (* choose boolean b *)
        c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
        b' <@ A.guess(c);          (* let A guess b from c *)
        return b = b';             (* see if A won *)
    }
}.
```
IND-CPA Game

Enc

EO

Adv

Game
IND-CPA Game

• If the value b' that Adv returns is independent of the random boolean b, then the probability that Adv wins the game will be exactly $1/2$.

• E.g., if Adv always returns true, it’ll win half the time.

• The question is how much better it can do—and we want to prove that it can’t do much better than win half the time.

• But this will depend upon the quality of the encryption scheme.

• An adversary that wins with probability greater than $1/2$ can be converted into one that loses with that probability, and vice versa. When formalizing security, it’s convenient to upper-bound the distance between the probability of the adversary winning and $1/2$.
IND-CPA Security

• In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and $1/2$:

$|\Pr[\text{INDCPA}(Enc, Adv).\text{main}(\text{m : res})] - 1/2| \leq \ldots Adv \ldots$

• Ideally, we’d like the upper bound to be 0, so that the probability that Enc wins is exactly $1/2$, but this won’t be possible.

• The upper bound may also be a function of the number of bits m in $text$ and the encryption oracles limits limit_pre and limit_post.
IND-CPA Security

• Q: Because the adversary can call the encryption oracle with the plaintexts x_1/x_2 it goes on to choose, why isn’t it impossible to define a secure scheme?
 • A: Because encryption can (must!) involve randomness.

• Q: What is the rationale for letting the adversary call enc_pre and enc_post at all?
 • A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted.

• Q: What is the rationale for limiting the number of times enc_pre and enc_post may be called?
 • A: There will probably be some limit on the adversary’s influence on what is encrypted.
Next: Encryption from PRFs
Pseudorandom Functions

• Our pseudorandom function (PRF) is an operator F with this type:

$$\text{op } F : \text{key} \rightarrow \text{text} \rightarrow \text{text}.$$

• For each value k of type key, $(F \ k)$ is a function from text to text.

• Since key is a bitstring of length n, then there are at most 2^n of these functions.

• If we wanted, we could try to spell out the code for F, but we choose to keep F abstract.

• How do we know if F is a “good” PRF?
Pseudorandom Functions

• We will assume that \texttt{dtext (dkey)} is a sub-distribution on \texttt{text (key)} that is a distribution (is “lossless”), and where every element of \texttt{text (key)} has the same non-zero value:

\[
\text{op dtext : text distr.}
\]
\[
\text{op dkey : key distr.}
\]

• A \textit{random function} is a module with the following interface:

\[
\text{module type RF = }
\]
\[
\{ (* initialization *) \]
\[
\text{proc } \ast \text{ init() : unit}
\]
\[
\text{proc } \ast \text{ f(x : text) : text}
\]
\[
\}.
\]
Pseudorandom Functions

• Here is a random function made from our PRF F:

```latex
define module PRF : RF = {
    var key : key
    proc init() : unit = {
        key <$ dkey;
    }
    proc f(x : text) : text = {
        var y : text;
        y <- F key x;
        return y;
    }
}.```

Pseudorandom Functions

• Here is a random function made from true randomness:

```ocaml
module TRF : RF = {
 (* mp is a finite map associating texts with texts *)
 var mp : (text, text) fmap
proc init() : unit = {
 mp <- empty; (* empty map *)
}
proc f(x : text) : text = {
 var y : text;
 if (! x \in mp) { (* give x a random value in *)
 y <$ dtext; (* mp if not already in mp's domain *)
 mp.[x] <- y;
 }
 return oget mp.[x]; (* return value of x in mp *)
}
}.
```
Pseudorandom Functions

• A *random function adversary* is parameterized by a random function module:

```plaintext
module type RFA (RF : RF) = {
 proc * main() : bool {RF.f}
}.
```
Pseudorandom Functions

• Here is the random function game:

```plaintext
module GRF (RF : RF, RFA : RFA) = {
 module A = RFA(RF)
 proc main() : bool = {
 var b : bool;
 RF.init();
 b <= A.main();
 return b;
 }
}
```

• A random function adversary RFA tries to tell the PRF and true random functions apart, by returning true with different probabilities.
Pseudorandom Functions

• Our PRF F is “good” if and only if the following is small, whenever RFA is limited in the amount of computation it may do (maybe we say it runs in polynomial time):

\[
|\Pr[\text{GRF(F, RFA).main()} @ &m : \text{res}] - \\
\Pr[\text{GRF(TRF, RFA).main()} @ &m : \text{res}]|
\]

• **RFA** must be limited, because there will typically be many more true random functions than functions of the form \((F \ k)\), where \(k\) is a key (there are at most \(2^n\) such functions).

• Since \(m\) is the number of bits in \text{text}, then there will be \(2^m \times 2^m\) distinct maps from \text{text} to \text{text}.

• Thus, with enough running time, **RFA** may be able to tell with reasonable probability if it’s interacting with a PRF random function or a true random function.
Our Symmetric Encryption Scheme

• We construct our encryption scheme Enc out of $F$:

$\oplus^$: text $\rightarrow$ text $\rightarrow$ text (* bitwise exclusive or *)

type cipher = text * text. (* ciphertexts *)

module Enc : ENC = {
  proc key_gen() : key = {
    var k : key;
    k <$ dkey;
    return k;
  }
}
Our Symmetric Encryption Scheme

```plaintext
proc enc(k : key, x : text) : cipher = {
 var u : text;
 u <$ dtext;
 return (u, x ^\ F k u);
}

proc dec(k : key, c : cipher) : text = {
 var u, v : text;
 (u, v) <- c;
 return v ^\ F k u;
}
```

Correctness

- Suppose that $\text{enc}(k, x)$ returns $c = (u, x +^ F k u)$, where $u$ is randomly chosen.
- Then $\text{dec}(k, c)$ returns $(x +^ F k u) +^ F k u = x$. 
Adversarial Attack Strategy

- Before picking its pair of plaintexts, the adversary can call \texttt{enc\_pre} some number of times with the same argument, \texttt{zeros} (the bitstring of length \(m\) all of whose bits are 0).

- This gives us ..., \((u_i, \text{zeros} +^ F \text{ key } u_i)\), ..., i.e., ..., \((u_i, \text{F key } u_i)\), ...

- Then, when \texttt{genc} encrypts one of \(x_1/x_2\), it \textit{may happen} that we get a pair \((u_i, x_j +^ F \text{ key } u_i)\) for one of them, where \(u_i\) appeared in the results of calling \texttt{enc\_pre}.

- But then
  \[
  \text{F key } u_i +^ (x_j +^ F \text{ key } u_i) = \text{zeros} +^ x_j = x_j
  \]
Adversarial Attack Strategy

• Similarly, when calling `enc_post`, before returning its boolean judgement $b$ to the game, a collision with the left-side of the cipher text passed from the game to the adversary will allow it to break security.

• Suppose, again, that the adversary repeatedly encrypts zeros using `enc_pre`, getting ..., $(u_i, F\text{ key } u_i)$, ... 

• Then by *experimenting directly* with $F$ with different keys, it may learn enough to guess, with reasonable probability, key itself.

• This will enable it to decrypt the cipher text $c$ given it by the game, also breaking security.

• Thus we must assume some bounds on how much work the adversary can do (we can’t tell if it’s running $F$).
IND-CPA Security for Our Scheme

- Our security upper bound

\[ \left| \Pr[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main}() @ \&m : \text{res}] - 1%r / 2%r \right| \leq \ldots \]

will be a function of:

1. the ability of a random function adversary constructed from Adv to tell the PRF random function from the true random function; and
2. the number of bits \( m \) in text and the encryption oracles limits limit_pre and limit_post.

- Q: Why doesn’t the upper bound also involve \( n \), the number of bits in key?

- A: that’s part of (1).
IND-CPA Security for Our Scheme

• Later in the course, in lecture and/or lab, we’ll survey the proof of IND-CPA security.

• Before then, you can look at all the definitions and the proofs on GitHub:

  https://github.com/alleystoughton/EasyTeach/tree/master/encryption
If you are interested in doing a course project on the security of cryptographic schemes or protocols, Marco and I can make suggestions.