CS 591: Formal Methods in Security and Privacy

Approximate probabilistic relational Hoare Logic

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Q&A

To increase interactivity, I will ask more question to each one of you.

It is not a test, you can always answer "pass!"

Recording

This is a reminder that we will record the class and we will post the link on Piazza.

This is also a reminder to myself to start recording!

From the previous classes

An example

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

Probabilistic Noninterference as a Relational Property

c is probabilistically noninterferent if and only if for every $m_1 \sim_{low} m_2$: $\{c\}_{m_1=\mu_1}$ and $\{c\}_{m_2=\mu_2}$ implies $\mu_1 \sim_{low} \mu_2$


```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

How can we prove that this is noninterferent?

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

```
m_1 m_2 m_1 \oplus k
```

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```


 m_2

Suppose we can now chose the key for m₂. What could we choose?

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```


Suppose we can now chose the key for m₂. What could we choose?

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```


Coupling

Example of Our Coupling

OO 0.25O1 0.251O 0.2511 0.25

```
k = 10 \oplus k \oplus 00
```

00	0.25
01	0.25
10	0.25
11	0.25

	00	01	10	11
00			0.25	
01				0.25
10	0.25			
11		0.25		

Probabilistic Relational Hoare Quadruples

(a logical formula)

Precondition

Program₁ ~ Program₂

Postcondition

$$c_1 \sim c_2 : P \Rightarrow Q$$

Program

Program

Probabilistic Probabilistic Postcondition

R-Coupling

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, an R-coupling between them, for R AxB, is a joint distribution $\mu \in D(AxB)$ such that:

- 1) the marginal distributions of μ are μ₁ and μ₂, respectively,
- 2) the support of μ is contained in R. That is, if $\mu(a,b)>0$, then $(a,b)\in R$.

Example of Our Coupling

OO 0.25O1 0.251O 0.2511 0.25

 m_1 m_2 R (k, $10 \oplus k \oplus 00$)

OO 0.25 O1 0.25 10 0.25 11 0.25

	00	O1	10	11
00			0.25	
01				0.25
10	0.25			
11		0.25		

Relational lifting of a predicate

We say that two subdistributions $\mu_1 \subseteq D(A)$ and $\mu_2 \subseteq D(B)$ are in the relational lifting of the relation $R \subseteq AxB$, denoted $\mu_1 R * \mu_2$ if and only if there exist an R-coupling between them.

Validity of Probabilistic Hoare quadruple

```
We say that the quadruple c_1 \sim c_2 : P \Rightarrow Q is valid if and only if for every pair of memories m_1, m_2 such that P(m_1, m_2) we have: \{c_1\}_{m_1} = \mu_1 and \{c_2\}_{m_2} = \mu_2 implies Q^*(\mu_1, \mu_2).
```

Probabilistic Relational Hoare Logic Skip

To say that this is valid we need to show that for every m_1 , m_2 such that $P(m_1, m_2)$ we need to show $P*(unit(m_1), unit(m_2))$.

Probabilistic Relational Hoare Logic Composition

$$\vdash c_1 \sim c_2 : P \Rightarrow R \qquad \vdash c_1' \sim c_2' : R \Rightarrow S$$

 $\vdash c_1; c_1' \sim c_2; c_2' : P \Rightarrow S$

How about random assignment?

Today: Rand rule

approximate probabilistic noninterference

Probabilistic Relational Hoare Logic Random Assignment

```
\vdash x_1 := \$ d_1 \sim x_2 := \$ d_2 : ??
```

We would like to have:

```
P(m_1, m_2)
\Rightarrow

let a = \{d_1\}_{m_1} in unit (m_1[x_1 \leftarrow a])
Q^*

let a = \{d_2\}_{m_2} in unit (m_2[x_2 \leftarrow a])
```

$$\vdash x_1 := \$ d_1 \sim x_2 := \$ d_2 : P \Rightarrow Q$$

What is the problem with this rule?

Restricted Probabilistic Expressions

We consider a restricted set of expressions denoting probability distributions.

 $d::= f(d_1, ..., d_k)$

Where f is a distribution declaration

Some expression examples similar to the previous

```
uniform (\{0,1\}^{128}) bernoulli(.5) laplace(0,1)
```

Restricted Probabilistic Expressions

We consider a restricted set of expressions denoting probability distributions.

 $d::= f(d_1, ..., d_k)$

Where f is a distribution declaration

Some expression examples similar to the previous

```
uniform (\{0,1\}^{128}) bernoulli(.5) laplace(0,1)
```

Notice that we don't need a memory anymore to interpret them

A sufficient condition for R-Coupling

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, and a relation $R \subseteq AxB$, if there is a mapping $h:A \rightarrow B$ such that:

- h is a bijective map between elements in supp(µ₁) and supp(µ₂),
- 2) for every $a \in \text{supp}(\mu_1)$, $(a,h(a)) \in \mathbb{R}$
- 3) $Pr_{x\sim \mu 1}[x=a] = Pr_{x\sim \mu 2}[x=h(a)]$

Then, there is an R-coupling between μ_1 and μ_2 . We write $h \triangleleft (\mu_1, \mu_2)$ in this case.

Probabilistic Relational Hoare Logic Random Assignment

```
h \triangleleft (\{d_1\}, \{d_2\})

P = \forall v, v \in supp (\{d_1\})

\Rightarrow Q[v/x_1 < 1>, h(v)/x_2 < 2>]
```

 $-x_1 :=$ \$ $d_1 \sim x_2 :=$ \$ $d_2 : P \Rightarrow Q$

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}<sup>n</sup>);
  cipher := msg xor key;
  return cipher
```

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}<sup>n</sup>);
  cipher := msg xor key;
  return cipher
```

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}<sup>n</sup>);
  cipher := msg xor key;
  return cipher
```

 m_1 m_2

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```



```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```



```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

```
d_1=Uniform(\{0,1\}^n) d_2=Uniform(\{0,1\}^n)
```

Is this a good map?

$$h(k) = (m<1> \oplus k \oplus m<2>)$$

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

```
d_1=Uniform(\{0,1\}^n)
```

 $d_2=Uniform(\{0,1\}^n)$

Is this a good map?

$$h(k) = (m<1> \oplus k \oplus m<2>)$$

What is the relation?

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

```
d_1=Uniform(\{0,1\}^n)
```

 $d_2=Uniform(\{0,1\}^n)$

Is this a good map?

$$h(k) = (m<1> \oplus k \oplus m<2>)$$

What is the relation?

$$m<1>\oplus k<1>=m<2>\oplus k<2>$$

```
d_1=Uniform(\{0,1\}^n) d_2=Uniform(\{0,1\}^n)
```

Is this a good map?

$$h(k) = (m<1> \oplus k \oplus m<2>)$$

- 1) it is bijective between elements in the support of {d₁} and {d₂}
- 2) for every $k \in \text{supp}(\{d_1\})$, $m < 1 > \oplus k = m < 2 > \oplus (m < 1 > \oplus k \oplus m < 2 >)$
- 3) $Pr_{x\sim\{d1\}}[x=v]=Pr_{x\sim\{d2\}}[x=v]$

```
d_1=Uniform(\{0,1\}^n) d_2=Uniform(\{0,1\}^n)
```

Is this a good map?

$$h(k) = (m<1> \oplus k \oplus m<2>)$$

- 1) it is bijective between elements in the support of {d₁} and {d₂}
- 2) for every $k \in \text{supp}(\{d_1\})$, $m < 1 > \oplus k = m < 2 > \oplus (m < 1 > \oplus k \oplus m < 2 >)$
- 3) $Pr_{x\sim\{d1\}}[x=v]=Pr_{x\sim\{d2\}}[x=v]$

It is a good map!

```
h (k) = (m<1>⊕k⊕m<2>) \triangleleft ({d<sub>1</sub>}, {d<sub>2</sub>})

P=\forallk, k∈{0,1}<sup>n</sup>

⇒ m<1>⊕k<sub>1</sub><1>=m<2>⊕k<sub>2</sub><2>[v/k<sub>1</sub><1>, h (v) /k<sub>2</sub><2>] =

m<1>⊕k=m<2>⊕ (m<1>⊕k⊕m<2>)
```

```
\vdash k_1 := \$Uniform(\{0,1\}^n) \sim k_2 := \$Uniform(\{0,1\}^n) :
True \Rightarrow m < 1 > \oplus k_1 < 1 > = m < 2 > \oplus k_2 < 2 >
```

```
h (k) = (m<1>⊕k⊕m<2>) \triangleleft ({d<sub>1</sub>}, {d<sub>2</sub>})

P=\forallk, k∈{0,1}<sup>n</sup>

⇒ m<1>⊕k<sub>1</sub><1>=m<2>⊕k<sub>2</sub><2>[v/k<sub>1</sub><1>, h (v) /k<sub>2</sub><2>] =

m<1>⊕k=m<2>⊕ (m<1>⊕k⊕m<2>)
```

```
\vdash k_1 := \$Uniform(\{0,1\}^n) \sim k_2 := \$Uniform(\{0,1\}^n) :
True \Rightarrow m < 1 > \oplus k_1 < 1 > = m < 2 > \oplus k_2 < 2 >
```

Using the assignment rule, we can conclude.

Soundness

If we can derive $\vdash c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic, then the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid.

Completeness?