CS 591: Formal Methods in
Security and Privacy

Approximate probabilistic relational Hoare Logic

Marco Gaboardi
gaboardi®@bu.edu

Alley Stoughton
stough®bu.edu

Q&A

To increase interactivity, | will ask more question to
each one of you.

It is not a test, you can always answer “pass!”

Projects

Everyone should have a project now.

Please, don't hesitate in contacting us if there is
some issue with your project.

Recording

This is a reminder that we will record the class and
we will post the link on Piazza.

This is also a reminder to myself to start recording!

From the previous classes

An example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic Noninterference as a
Relational Property

c is probabilistically noninterferent if and only
if for every m+ ~jow mo :
{C}m1=P1 and {C}mz=p2 Implies P1 ~iow M2

U private private

public public
V

private private
U

public public
V

Mpr1

Mpu1

Mpr2

Mpu2

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

M7 I

l

ml@k

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
clpher := msg xor key;
return cipher
My M2 Suppose we
l can now
@k chose the key
for mz. What
could we

choose?

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

My i Suppose we
l l can Nnow

ml@k mo® (ml@k@mz) ?:FOF?S tc\?hl;?y

could we
choose?

Revisiting the example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

M7 I

Voo

mi @k mi®k

Probabilistic Relational Hoare
Quad FU p|eS Precondition

(a logical formula)

Precondition l

Program ~ Program | 0~ Ch L P = ()

Postcondition
A I I

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)

R-Coupling
Given two distributions pu1eD(A), and
u2eD(B), an R-coupling between them, for
RCAXB, is a joint distribution peD(AxB)
such that:
1) the marginal distributions of u are 1
and L2, respectively,
2) the support of u is contained in R. That
is,ifu(a,b)>0, then (a,b)eR.

Validity of Probabilistic
Hoare quadruple

We say that the quadruple ci1~c,:P=0Q Is

valid if and only if for every pair of memories
m; , my such that P (m;,m,) we have.:
{Cc1}mi=H1 and {cC2}m=H2 |mplles

Q* (M1, H2).

Consequences of Coupling
Given the following pRHL judgment

Fci~c,: True = Q
We have that:

if 0 = (R(1) < S§(2)), then Pr[c; : R] = Pr[c, : §]

if O = (R(1) = S(2)), then Pr[c; : R] < Pr[c, : S]

A sufficient condition for R-Coupling

Given two distributions pu1eD(A), and y2eD(B), and a
relation RCAXB, if there is a mapping h:A—B such

that:
1) his a bijective map between elements in

supp(H+1) and supp(u2),
2) for every aesupp(p1), (a,h(a))er

3) Prx-u1[x=a]=Prx-p2[x=h(a)]

Then, there is an R-coupling between U1 and p2.
We write h<(p1,d2) in this case.

Probabilistic Relational Hoare Logic
Random Assignment

h< ({dl}/ {dZ})
P=Vv,vesupp ({d1})
= Q[v/x1<1>,h (V) /x,<2>]

Fx1 :=S di ~ X2 :=S dy : P = O

Back to our example

h(k)=(m<l>®k®m<2>) < ({d1}, {d2})
P=vk, ke{0,1}n
= m<1>0k1<1>=m<2>0k,<2>[v/k1<1>,h (v) /ky<2>]=

m<1>@®k=m<2>® (M<1>dkdAmM<2>)

Fki:=SUniform ({0, 1}n)~ky:=SUniform ({0, 1}n):
True = m<1l>@®k<1>=mM<K<2>®kr,<2>

Back to our example

h(k)=(m<l>®k®m<2>) < ({d1}, {d2})
P=vk, ke{0,1}n
= m<1>0k1<1>=m<2>0k,<2>[v/k1<1>,h (v) /ky<2>]=

m<1>@®k=m<2>® (M<1>dkdAmM<2>)

Fki:=SUniform ({0, 1}n)~ky:=SUniform ({0, 1}n):
True = m<1l>@®k<1>=mM<K<2>®kr,<2>

Using the assignment rule, we can conclude.

Soundness

If we can derive —C1~C» : P=0 through
the rules of the logic, then the quadruple

Cc1~Co:P=0 Iisvalid.

Completeness?

Today:
approximate probabilistic
noninterference

One time pad

OneTimePad (m

private msqg)

key :=$ Uniform({0,1}n);

cilpher :=

msg xXor key;

return cipher

public msqg

What are the drawbacks of one time pads?

A more realistic example

StreamCipher (m : private msg[n]) : public msg[n]
pkey :=5 PRG(Uniform ({0,1}%));
cilpher := msg xor pkey;

return cipher

What guarantees do we
want from a PRG?

Properties of PRG

We would like the PRG to increase the number of

random bits but also to guarantee the result to be
(almost) random.

We can express this as:

PRG: {0,1} — {0,1} for n>k

PRG(Uniform({0,1}%) = Uniform({0,1}n

How can we measure the similarity between the
result of PRG and the uniform distribution?

Statistical distance

We say that two distributions 1, y2 €D(A), are at
statistical distance 0 if and only if:

A(u1,u2)=maxeca | Pre~u1[XeE]-Prx~u2[xeE] | = 0

Properties of PRG

We would like the PRG to increase the number of

random bits but also to guarantee the result to be
(almost) random.

We can express this as:

PRG: {0,1} — {0,1}" for n>k

A(PRG(Uniform({0,1}k),Uniform({0,1}n) < 2

In fact this is a too strong requirement - usually we
require that every polynomial time adversary cannot
distinguish the two distributions in statistical distance

How can we prove this
secure?

OneTimePad (m : private msg[n]) StreamCipher (m : private msgl[n])
public msg[n] : public msg[n]
key :=$ Uniform({0,1}n); ~ pkey :=$ PRG(Uniform({0,1}k));
cipher := msg xor key; cipher := msg xor pkey;
return cipher return cipher

How can we prove this
secure?

OneTimePad (m : private msg[n]) StreamCipher (m : private msgl[n])
public msg[n] : public msg[n]
key :=$ Uniform({0,1}n); ~ pkey :=$ PRG(Uniform({0,1}k));
cipher := msg xor key; cipher := msg xor pkey;
return cipher return cipher

m m

How can we prove this
secure?

OneTimePad (m : private msg[n]) StreamCipher (m : private msgl[n])
: public msg[n] : public msg[n]
key :=$ Uniform({0,1}n); ~ pkey :=$ PRG(Uniform({0,1}k));
cipher := msg xor key; cipher := msg xor pkey;
return cipher return cipher

m m

me® k

How can we prove this
secure?

OneTimePad (m : private msg[n]) StreamCipher (m : private msgl[n])
: public msg[n] : public msg[n]
key :=$ Uniform({0,1}n); ~ pkey :=$ PRG(Uniform({0,1}k));
cipher := msg xor key; cipher := msg xor pkey;
return cipher return cipher

m m

m® k me®pk

How can we prove this
secure?

OneTimePad (m : private msg[n]) StreamCipher (m : private msgl[n])
: public msg[n] : public msg[n]
key :=$ Uniform({0,1}n); ~ pkey :=$ PRG(Uniform({0,1}k));
cipher := msg xor key; cipher := msg xor pkey;
return cipher return cipher

m m

Al M@k , me@pk) <0

How to reason formally about
this formally?

Approximate Probabilistic
Relational Hoare Logic

Indistinguishability Precondition
parameter (a logical formula)

FgﬁlNﬁz:Pl:Q]

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)

How can we define validity?

Validity of Probabilistic
Hoare quadruple

We say that the quadruple ci1~c,:P=0Q Is

valid if and only if for every pair of memories
m; , my such that P (m;,m,) we have.:
{Cc1}mi=H1 and {cC2}m=H2 |mplles

Q* (M1, H2).

