#### CS 591: Formal Methods in Security and Privacy

Approximate probabilistic relational Hoare Logic

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Q&A

To increase interactivity, I will ask more question to each one of you.

It is not a test, you can always answer "pass!"



Everyone should have a project now.

Please, don't hesitate in contacting us if there is some issue with your project.



- This is a reminder that we will record the class and we will post the link on Piazza.
- This is also a reminder to myself to start recording!

From the previous classes

### An example

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}<sup>n</sup>);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

## Probabilistic Noninterference as a Relational Property

c is probabilistically noninterferent if and only if for every  $m_1 \sim_{low} m_2$ :

 ${c}_{m1}=\mu_1 \text{ and } {c}_{m2}=\mu_2 \text{ implies } \mu_1 \sim_{low} \mu_2$ 



OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}<sup>n</sup>);
cipher := msg xor key;
return cipher



OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}<sup>n</sup>);
cipher := msg xor key;
return cipher



Suppose we can now chose the key for m<sub>2</sub>. What could we choose?

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}<sup>n</sup>);
cipher := msg xor key;
return cipher

 $\begin{array}{cccc} m_1 & m_2 & & Suppose we \\ \downarrow & \downarrow & \downarrow \\ m_1 \oplus k & m_2 \oplus (m_1 \oplus k \oplus m_2) \end{array} & \begin{array}{c} \text{Suppose we} \\ \text{can now} \\ \text{chose the key} \\ \text{for } m_2. \end{array} \\ \begin{array}{c} \text{What} \\ \text{could we} \\ \text{choose?} \end{array}$ 

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}<sup>n</sup>);
cipher := msg xor key;
return cipher





## **R-Coupling**

Given two distributions  $\mu_1 \in D(A)$ , and  $\mu_2 \in D(B)$ , an *R*-coupling between them, for  $R \subseteq AxB$ , is a joint distribution  $\mu \in D(AxB)$ such that:

- the marginal distributions of µ are µ<sub>1</sub> and µ<sub>2</sub>, respectively,
- 2) the support of  $\mu$  is contained in R. That is, if  $\mu(a,b)>0$ , then  $(a,b)\in R$ .

## Validity of Probabilistic Hoare quadruple

We say that the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is

valid if and only if for every pair of memories  $m_1, m_2$  such that  $P(m_1, m_2)$  we have:  $\{c_1\}_{m1}=\mu_1$  and  $\{c_2\}_{m2}=\mu_2$  implies  $Q^*(\mu_1, \mu_2)$ .

## **Consequences of Coupling**

Given the following pRHL judgment

$$\vdash c_1 \sim c_2 : \mathsf{True} \Rightarrow Q$$

We have that:

if  $Q \Rightarrow (R\langle 1 \rangle \iff S\langle 2 \rangle)$ , then  $\Pr[c_1 : R] = \Pr[c_2 : S]$ 

if  $Q \Rightarrow (R\langle 1 \rangle \Rightarrow S\langle 2 \rangle)$ , then  $\Pr[c_1 : R] \le \Pr[c_2 : S]$ 

#### A sufficient condition for R-Coupling

- Given two distributions  $\mu_1 \in D(A)$ , and  $\mu_2 \in D(B)$ , and a relation  $R \subseteq AxB$ , if there is a mapping h:A $\rightarrow$ B such that:
  - h is a bijective map between elements in supp(µ1) and supp(µ2),
  - 2) for every  $a \in \text{supp}(\mu_1)$ ,  $(a,h(a)) \in \mathbb{R}$

3) 
$$Pr_{x \sim \mu 1}[x=a] = Pr_{x \sim \mu 2}[x=h(a)]$$

Then, there is an R-coupling between  $\mu_1$  and  $\mu_2$ . We write  $h \triangleleft (\mu_1, \mu_2)$  in this case.

#### Probabilistic Relational Hoare Logic Random Assignment

#### h ⊲ ({d<sub>1</sub>}, {d<sub>2</sub>}) P=∀v, v∈supp({d<sub>1</sub>}) $\Rightarrow Q[v/x_1 < 1>, h(v)/x_2 < 2>]$

 $\vdash x_1 :=$   $d_1 \sim x_2 :=$   $d_2 : P \Rightarrow Q$ 

### Back to our example

h (k) = (m<1>⊕k⊕m<2>) ⊲ ({d<sub>1</sub>}, {d<sub>2</sub>}) P=∀k, k∈{0,1}<sup>n</sup>

⇒  $m < 1 > \oplus k_1 < 1 > = m < 2 > \oplus k_2 < 2 > [v/k_1 < 1 >, h(v)/k_2 < 2 >] =$ 

 $m < 1 > \oplus k = m < 2 > \oplus (m < 1 > \oplus k \oplus m < 2 >)$ 

 $\vdash k_1 := \$Uniform(\{0,1\}^n) \sim k_2 := \$Uniform(\{0,1\}^n) :$ True  $\Rightarrow$  m<1> $\oplus k_1 < 1 >= m<2> \oplus k_2 < 2>$ 

### Back to our example

h (k) = (m<1>⊕k⊕m<2>) ⊲ ({d<sub>1</sub>}, {d<sub>2</sub>}) P=∀k, k∈{0,1}<sup>n</sup>

⇒  $m < 1 > \oplus k_1 < 1 > = m < 2 > \oplus k_2 < 2 > [v/k_1 < 1 >, h(v)/k_2 < 2 >] =$ 

 $m < 1 > \bigoplus k = m < 2 > \bigoplus (m < 1 > \bigoplus k \oplus m < 2 >)$ 

 $\vdash k_1 := \$ \text{Uniform} (\{0, 1\}^n) \sim k_2 := \$ \text{Uniform} (\{0, 1\}^n) :$ True  $\Rightarrow m < 1 > \bigoplus k_1 < 1 > = m < 2 > \bigoplus k_2 < 2 >$ 

Using the assignment rule, we can conclude.

#### Soundness

If we can derive  $\vdash c_1 \sim c_2 : P \Rightarrow Q$  through the rules of the logic, then the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is valid. **Completeness?** 

Today: approximate probabilistic noninterference

## One time pad

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}<sup>n</sup>);
cipher := msg xor key;
return cipher

What are the drawbacks of one time pads?

## A more realistic example

StreamCipher(m : private msg[n]) : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}\*));
 cipher := msg xor pkey;
 return cipher

What guarantees do we want from a PRG?

## **Properties of PRG**

We would like the PRG to increase the number of random bits but also to guarantee the result to be (almost) random.

We can express this as:

PRG: 
$$\{0,1\}^k \rightarrow \{0,1\}^n$$
 for  $n > k$ 

 $PRG(Uniform(\{0,1\}^k) \approx Uniform(\{0,1\}^n)$ 

How can we measure the similarity between the result of PRG and the uniform distribution?

### Statistical distance

We say that two distributions  $\mu_1, \mu_2 \in D(A)$ , are at statistical distance  $\delta$  if and only if:

 $\Delta(\mu 1, \mu 2) = \max_{E \subseteq A} | Pr_{x \sim \mu 1}[x \in E] - Pr_{x \sim \mu 2}[x \in E] | = \delta$ 

## **Properties of PRG**

We would like the PRG to increase the number of random bits but also to guarantee the result to be (almost) random.

We can express this as:

PRG:  $\{0,1\}^k \rightarrow \{0,1\}^n$  for n > k

 $\Delta(\mathsf{PRG}(\mathsf{Uniform}(\{0,1\}^k),\mathsf{Uniform}(\{0,1\}^n) \le 2^{-n})$ 

In fact this is a too strong requirement - usually we require that every polynomial time adversary cannot distinguish the two distributions in statistical distance

```
OneTimePad(m : private msg[n])
          : public msg[n]
          key :=$ Uniform({0,1}<sup>n</sup>);
          cipher := msg xor key;
          return cipher
```

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

| <b>OneTimePad</b> (m : private msg[n])          |  |  |
|-------------------------------------------------|--|--|
| : public msg[n]                                 |  |  |
| <pre>key :=\$ Uniform({0,1}<sup>n</sup>);</pre> |  |  |
| cipher := msg xor key;                          |  |  |
| return cipher                                   |  |  |

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

M

m

| C | <pre>DneTimePad(m : private msg[n])</pre>       |  |  |
|---|-------------------------------------------------|--|--|
|   | : public msg[n]                                 |  |  |
|   | <pre>key :=\$ Uniform({0,1}<sup>n</sup>);</pre> |  |  |
|   | cipher := msg xor key;                          |  |  |
|   | return cipher                                   |  |  |

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

m



| <b>OneTimePad</b> (m | : private msg[n])            |
|----------------------|------------------------------|
| : p                  | oublic msg[n]                |
| key :=\$ Ur          | niform({0,1} <sup>n</sup> ); |
| cipher :=            | msg xor key;                 |
| return cip           | oher                         |

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher







StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher





How to reason formally about this formally?

### Approximate Probabilistic Relational Hoare Logic



How can we define validity?

## Validity of Probabilistic Hoare quadruple

We say that the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is

valid if and only if for every pair of memories  $m_1, m_2$  such that  $P(m_1, m_2)$  we have:  $\{c_1\}_{m1}=\mu_1$  and  $\{c_2\}_{m2}=\mu_2$  implies  $Q^*(\mu_1, \mu_2)$ .