
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Approximate probabilistic relational Hoare Logic

Q&A

To increase interactivity, I will ask more question to
each one of you.

It is not a test, you can always answer “pass!”

Projects

Everyone should have a project now.

Please, don’t hesitate in contacting us if there is
some issue with your project.

Recording
This is a reminder that we will record the class and
we will post the link on Piazza.

This is also a reminder to myself to start recording!

From the previous classes

An example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic Noninterference as a
Relational Property

c is probabilistically noninterferent if and only
if for every m1 ~low m2 :
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2

public

private private

C public

public

private private

C public

V

V

U

U µpr1

µpu2

µpr2

µpu1

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Suppose we
can now
chose the key
for m2. What
could we
choose?

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Suppose we
can now
chose the key
for m2. What
could we
choose?

m1 m2

m1⊕k m2⊕(m1⊕k⊕m2)

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

m1 m2

m1⊕k m1⊕k

Probabilistic Relational Hoare
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

R-Coupling
Given two distributions µ1∈D(A), and
µ2∈D(B), an R-coupling between them, for
R⊆AxB, is a joint distribution µ∈D(AxB)
such that:
1) the marginal distributions of µ are µ1

and µ2, respectively,
2) the support of µ is contained in R. That

is, if μ(a,b)>0, then (a,b)∈R.

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q*(μ1,μ2).

Consequences of Coupling

⊢ c1 ∼ c2 : True ⇒ Q
Given the following pRHL judgment

We have that:

if , then Q ⇒ (R⟨1⟩ ⟺ S⟨2⟩) Pr[c1 : R] = Pr[c2 : S]

if , then Q ⇒ (R⟨1⟩ ⇒ S⟨2⟩) Pr[c1 : R] ≤ Pr[c2 : S]

A sufficient condition for R-Coupling
Given two distributions µ1∈D(A), and µ2∈D(B), and a
relation R⊆AxB, if there is a mapping h:A→B such
that:

1) h is a bijective map between elements in
supp(µ1) and supp(µ2),

2) for every a∈supp(µ1), (a,h(a))∈R
3) Prx~µ1[x=a]=Prx~µ2[x=h(a)]

Then, there is an R-coupling between µ1 and µ2.
We write h⊲(µ1,µ2) in this case.

⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

h⊲({d1},{d2})
P=∀v,v∈supp({d1})
⇒ Q[v/x1<1>,h(v)/x2<2>]

Probabilistic Relational Hoare Logic
Random Assignment

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n):
 True ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=(m<1>⊕k⊕m<2>)⊲({d1},{d2})
P=∀k,k∈{0,1}n
⇒ m<1>⊕k1<1>=m<2>⊕k2<2>[v/k1<1>,h(v)/k2<2>]=

 m<1>⊕k=m<2>⊕(m<1>⊕k⊕m<2>)

Back to our example

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n):
 True ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=(m<1>⊕k⊕m<2>)⊲({d1},{d2})
P=∀k,k∈{0,1}n
⇒ m<1>⊕k1<1>=m<2>⊕k2<2>[v/k1<1>,h(v)/k2<2>]=

 m<1>⊕k=m<2>⊕(m<1>⊕k⊕m<2>)

Back to our example

Using the assignment rule, we can conclude.

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Completeness?

Today:
approximate probabilistic

noninterference

One time pad
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

What are the drawbacks of one time pads?

A more realistic example
StreamCipher(m : private msg[n]) : public msg[n]
 pkey :=$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

What guarantees do we
want from a PRG?

Properties of PRG
We would like the PRG to increase the number of
random bits but also to guarantee the result to be
(almost) random.

PRG: {0,1}k → {0,1}n for n>k

PRG(Uniform({0,1}k) ≋ Uniform({0,1}n

We can express this as:

How can we measure the similarity between the
result of PRG and the uniform distribution?

Statistical distance
We say that two distributions µ1, µ2 ∈D(A), are at
statistical distance δ if and only if:

Δ(µ1,µ2)=maxE⊆A | Prx~µ1[x∈E]-Prx~µ2[x∈E] | = δ

Properties of PRG
We would like the PRG to increase the number of
random bits but also to guarantee the result to be
(almost) random.

PRG: {0,1}k → {0,1}n for n>k

Δ(PRG(Uniform({0,1}k),Uniform({0,1}n) ≤ 2-n

We can express this as:

In fact this is a too strong requirement - usually we
require that every polynomial time adversary cannot
distinguish the two distributions in statistical distance

How can we prove this
secure?

StreamCipher(m : private msg[n])

 : public msg[n]

 pkey :=$ PRG(Uniform({0,1}k));

 cipher := msg xor pkey;

 return cipher

OneTimePad(m : private msg[n])

 : public msg[n]

 key :=$ Uniform({0,1}n);

 cipher := msg xor key;

 return cipher

~

How can we prove this
secure?

StreamCipher(m : private msg[n])

 : public msg[n]

 pkey :=$ PRG(Uniform({0,1}k));

 cipher := msg xor pkey;

 return cipher

OneTimePad(m : private msg[n])

 : public msg[n]

 key :=$ Uniform({0,1}n);

 cipher := msg xor key;

 return cipher

~

m m

How can we prove this
secure?

StreamCipher(m : private msg[n])

 : public msg[n]

 pkey :=$ PRG(Uniform({0,1}k));

 cipher := msg xor pkey;

 return cipher

OneTimePad(m : private msg[n])

 : public msg[n]

 key :=$ Uniform({0,1}n);

 cipher := msg xor key;

 return cipher

~

m m

m⊕k

How can we prove this
secure?

StreamCipher(m : private msg[n])

 : public msg[n]

 pkey :=$ PRG(Uniform({0,1}k));

 cipher := msg xor pkey;

 return cipher

OneTimePad(m : private msg[n])

 : public msg[n]

 key :=$ Uniform({0,1}n);

 cipher := msg xor key;

 return cipher

~

m m

m⊕k m⊕pk

How can we prove this
secure?

StreamCipher(m : private msg[n])

 : public msg[n]

 pkey :=$ PRG(Uniform({0,1}k));

 cipher := msg xor pkey;

 return cipher

OneTimePad(m : private msg[n])

 : public msg[n]

 key :=$ Uniform({0,1}n);

 cipher := msg xor key;

 return cipher

~

m m

m⊕k m⊕pkΔ(), ≤ δ

How to reason formally about
this formally?

Approximate Probabilistic
Relational Hoare Logic

⊢δ c1 ∼ c2 : P ⇒ Q
Probabilistic

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

Indistinguishability
parameter

How can we define validity?

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q*(μ1,μ2).

