CS 591: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Feedback

Please fill out the (late) mid-semester evaluation.

Recording

This is a reminder that we will record the class and we will post the link on Piazza.

This is also a reminder to myself to start recording!

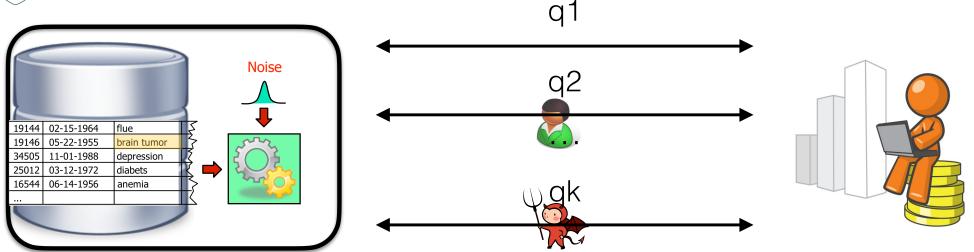
From the previous classes

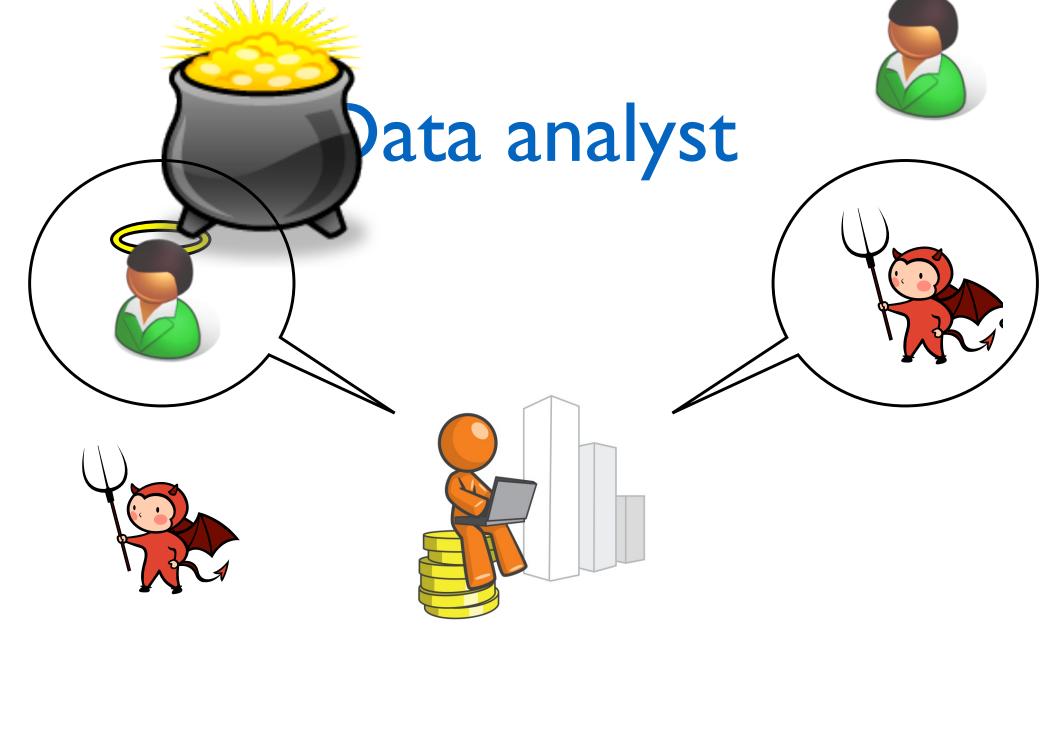
Releasing the mean of Some Data

```
Mean(d : private data) : public real
  i:=0;
  s:=0;
  while (i<size(d))
    s:=s + d[i]
    i:=i+1;
  return (s/i)</pre>
```

We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

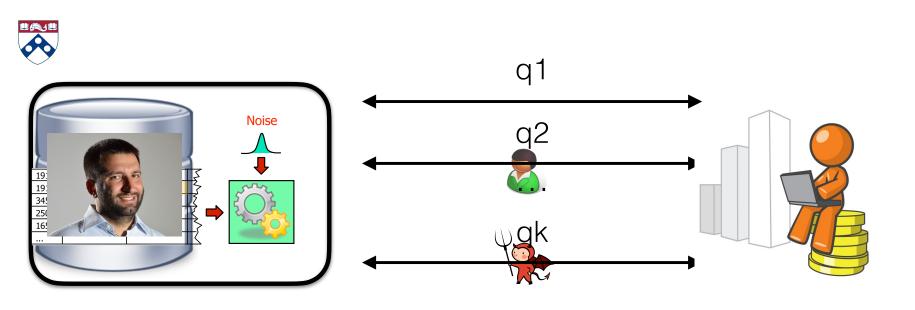
We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

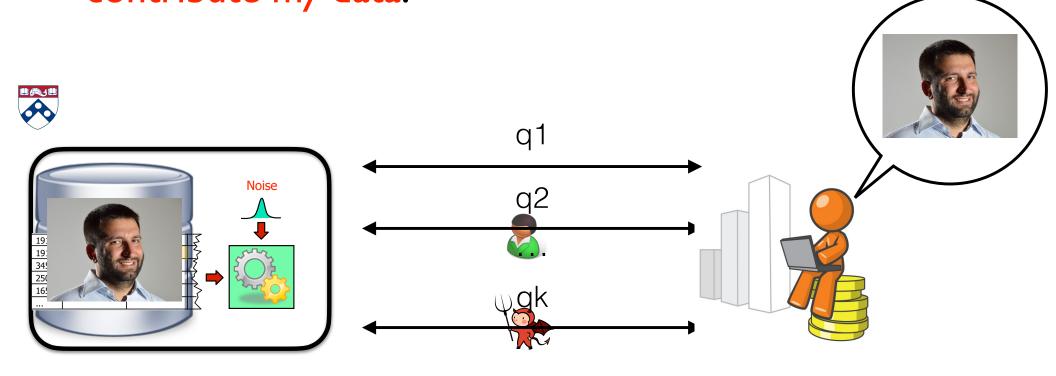


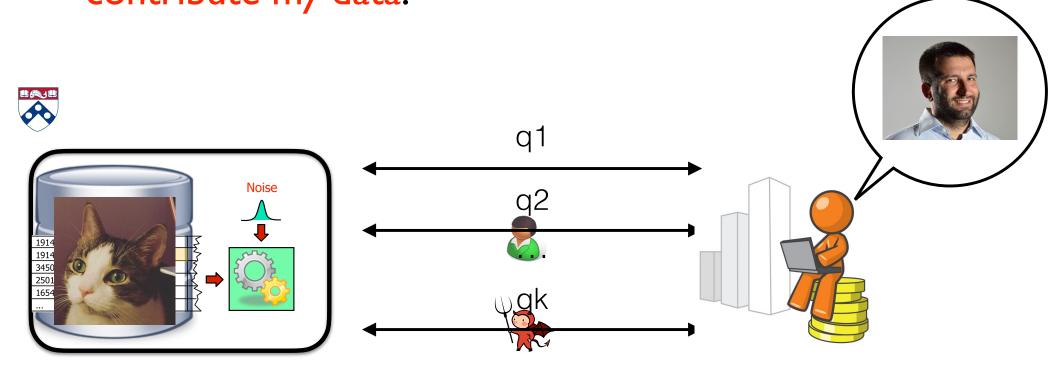


Quantitative notions of Privacy

- The impossibility results discussed above suggest a quantitative notion of privacy,
- a notion where the privacy loss depends on the number of queries that are allowed,
- and on the accuracy with which we answer them.







Adjacent databases

- We can formalize the concept of contributing my data or not in terms of a notion of distance between datasets.
- Given two datasets D, D'∈DB, their distance is defined as:

$$D\Delta D'=|\{k\leq n\mid D(k)\neq D'(k)\}|$$

• We will call two datasets adjacent when $D\Delta D'=1$ and we will write $D\sim D'$.

Privacy Loss

In general we can think about the following quantity as the privacy loss incurred by observing r on the databases D and D'.

$$L_{D,D'}(r) = log \frac{Pr[Q(D)=r]}{Pr[Q(D')=r]}$$

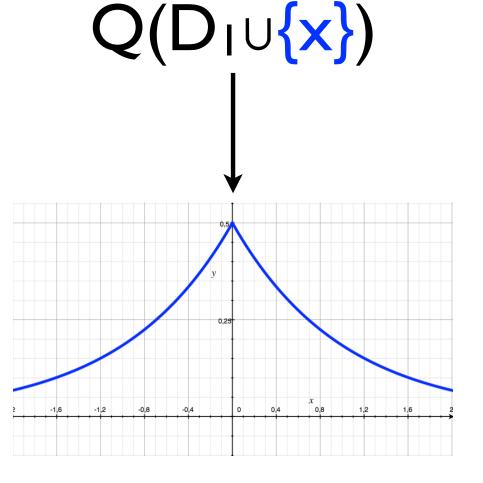
(ε,δ)-Differential Privacy

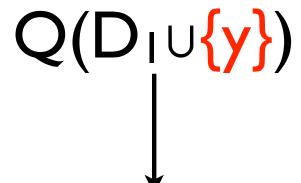
Definition

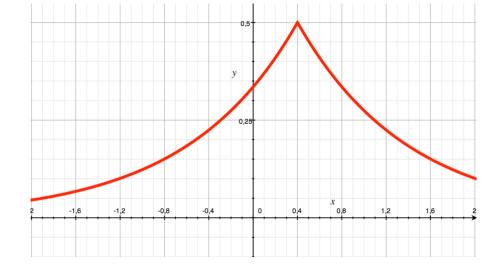
Given $\varepsilon, \delta \geq 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ) -differentially private iff for all adjacent database D, D and for every $S \subseteq R$: $Pr[Q(D) \in S] \leq exp(\varepsilon)Pr[Q(D') \in S] + \delta$

Differential Privacy

Q:db => R probabilistic

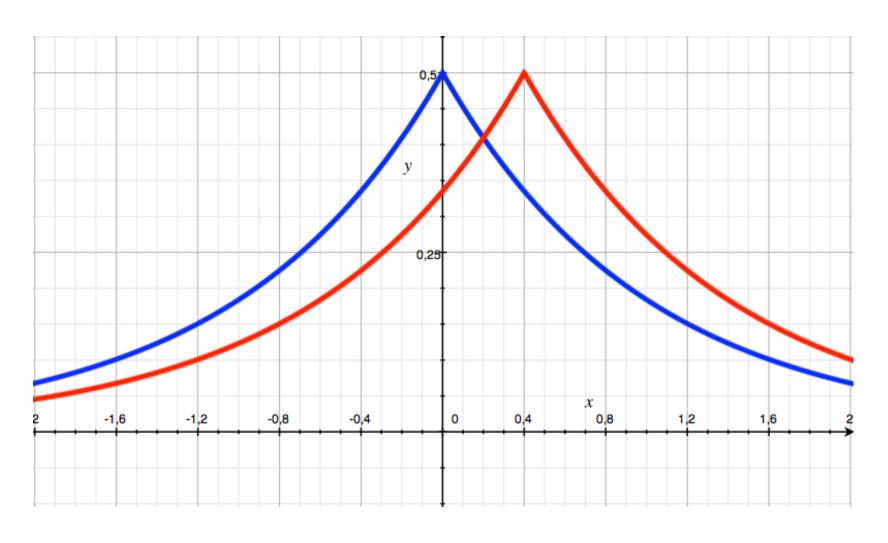






Differential Privacy

 $d(Q(D_1 \cup \{x\}), Q(D_1 \cup \{y\})) \le \mathcal{E}$ with probability $1-\delta$



(ε,δ)-Differential Privacy

log	$\frac{\Pr[Q(D)=r]}{\Pr[Q(D')=r]} \leq \varepsilon$	with probability 1-δ ε
		3-

Today: Achieving Differential Privacy

(ϵ, δ) -indistinguishability

When we defined statistical distance:

$$\Delta(\mu_1,\mu_2)=\max_{E\subseteq A}|\mu_1(E)-\mu_2(E)|=\delta$$

we also used a notion of δ -indistinguishability.

We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at δ -indistinguishable if:

$$\Delta(\mu 1, \mu 2) \leq \delta$$

(ϵ, δ) -indistinguishability

We can define a ε -skewed version of statistical distance. We call this notion ε -distance.

$$\Delta_{\epsilon}(\mu 1, \mu 2) = \sup_{E \subseteq A} \max(\mu_1(E) - e^{\epsilon}\mu_2(E), \mu_2(E) - e^{\epsilon}\mu_1(E), 0)$$

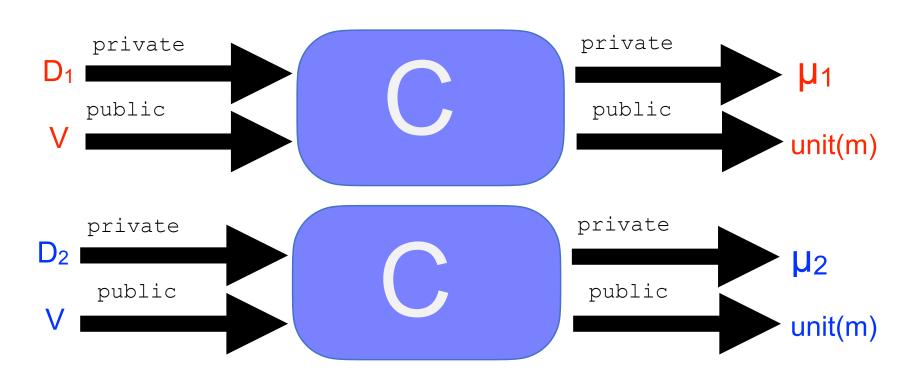
We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at (ϵ, δ) -indistinguishable if:

$$\Delta_{\varepsilon}(\mu 1, \mu 2) \leq \delta$$

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

 $\{c\}_{m_1}=\mu_1 \text{ and } \{c\}_{m_2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$



Releasing the mean of Some Data

```
Mean(d : private data) : public real
  i:=0;
  s:=0;
  while (i<size(d))
      s:=s + d[i]
      i:=i+1;
  return (s/i)</pre>
```

Adding Noise

Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon,0)$ -DP?

Adding Noise

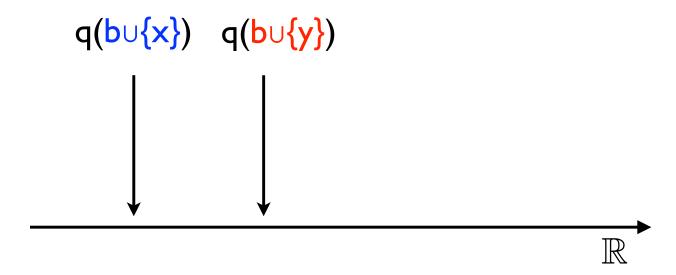
Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon,0)$ -DP?

Intuitive answer: it should depend on ϵ or the accuracy we want to achieve, and on the scale that a change of an individual can have on the output.

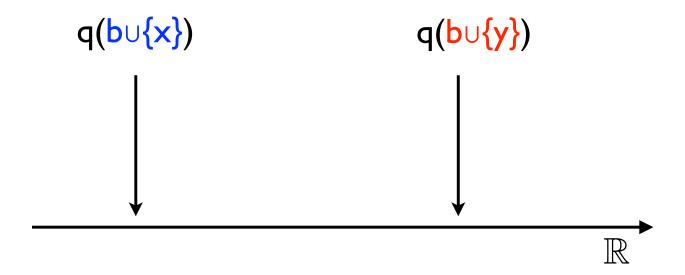
$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$

$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$

$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



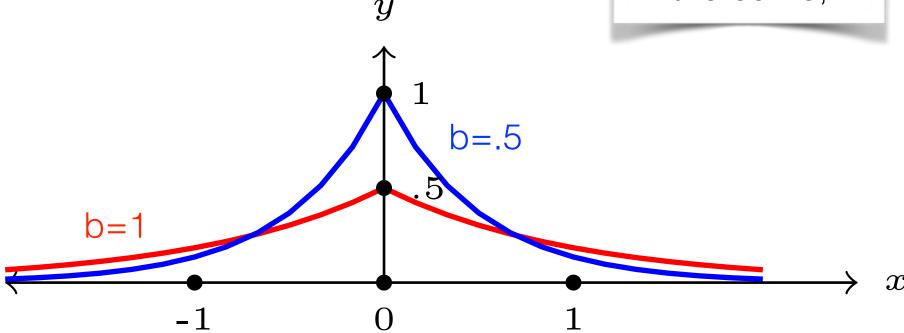
$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



Laplace Distribution

$$\mathsf{Lap}(b,\mu)(X) = \frac{1}{2b} \exp\left(-\frac{|\mu - X|}{b}\right)$$

b regulates the skewness of the curve,



Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
z:=$ Laplace(sens/eps,0)
z:= (s/i)+z
return z</pre>
```

Laplace Mechanism

```
Lap(d : priv data) (f: data -> real)
    (e:real) : pub real
    z:=$ Laplace(GS<sub>f</sub>/e,0)
    z:= f(d)+z
    return z
```

Laplace Mechanism

```
Lap(d : priv data)(f: data -> real)
   (e:real) : pub real
   z:=$ Laplace(GS<sub>f</sub>/e,0)
   z:= f(d)+z
   return z
```

It turns out that we could also write it as:

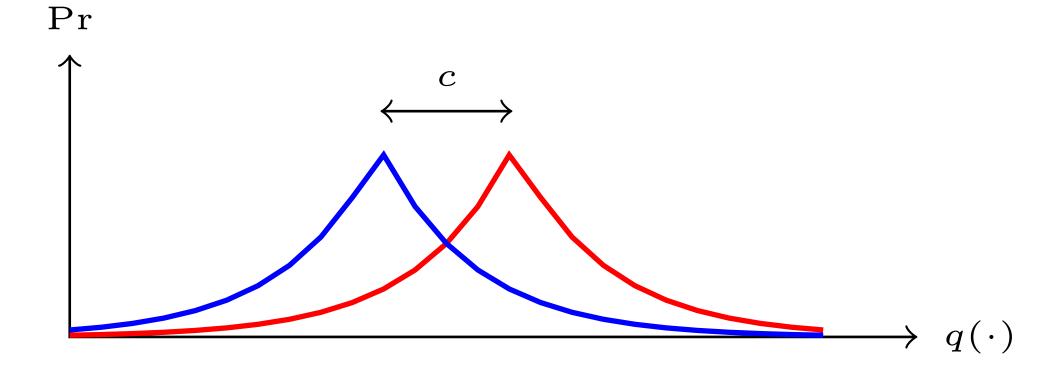
```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,f(d))
  return z
```

Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon,0)$ -differentially private.

Proof: Intuitively



Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon,0)$ -differentially private.

Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon,0)$ -differentially private.

Laplace Mechanism

Question: How accurate is the answer that we get from the Laplace Mechanism?

Properties of Differential Privacy

Some important properties

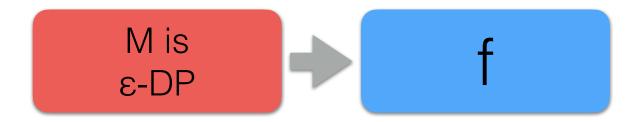
- Resilience to post-processing
- Group privacy
- Composition

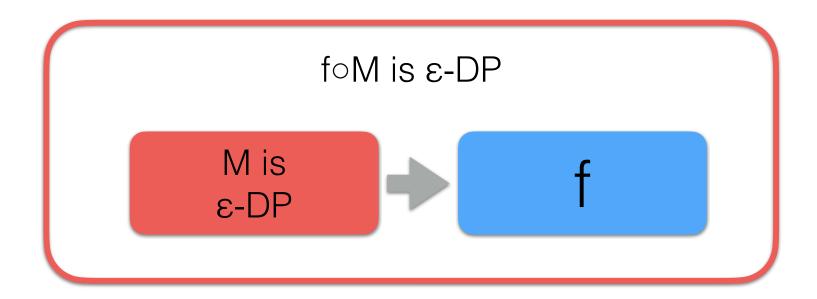
Some important properties

- Resilience to post-processing
- Group privacy
- Composition

We will look at them in the context of $(\varepsilon,0)$ -differential privacy.

M is ε-DP

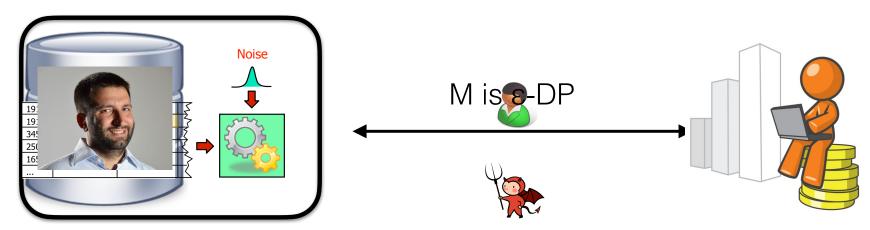




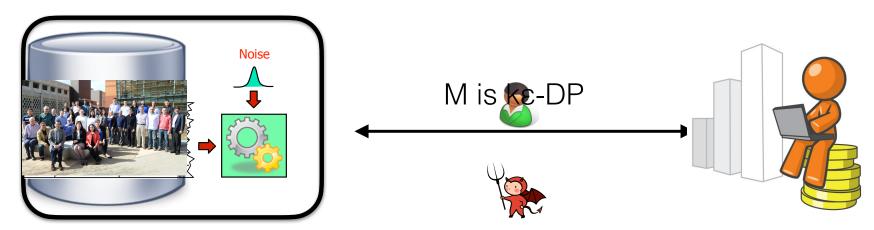
Question: Why is resilience to post-processing important?

Question: Why is resilience to post-processing important?

Answer: Because it is what allows us to publicly release the result of a differentially private analysis!



$$\Pr[\mathcal{M}(D) = r] \le e^{\epsilon} \Pr[\mathcal{M}(D') = r]$$

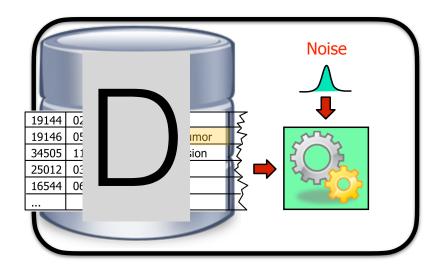


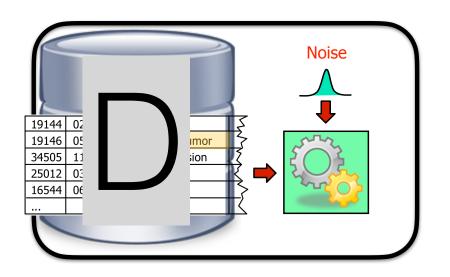
$$\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$$

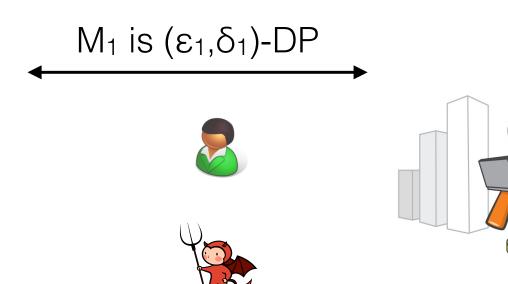
Question: Why is group privacy important?

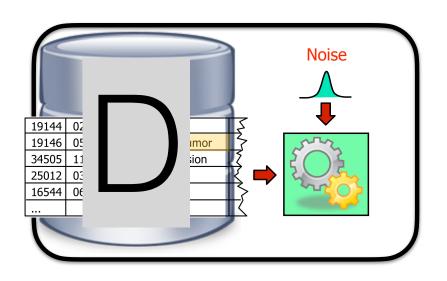
Question: Why is group privacy important?

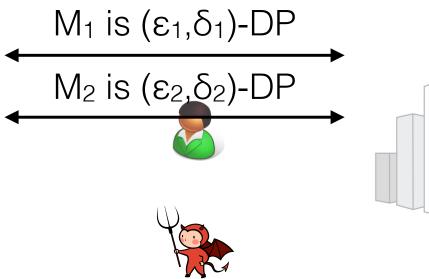
Answer: Because it allows to reason about privacy at different level of granularities!

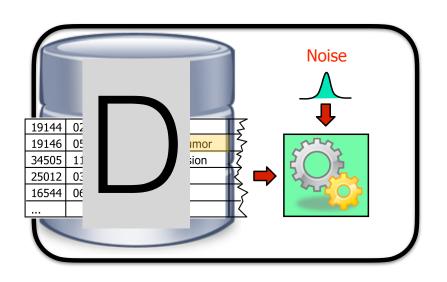


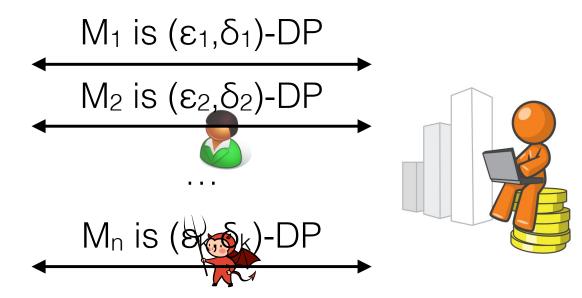


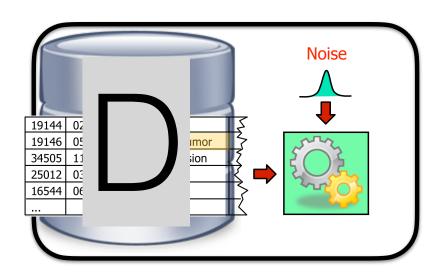


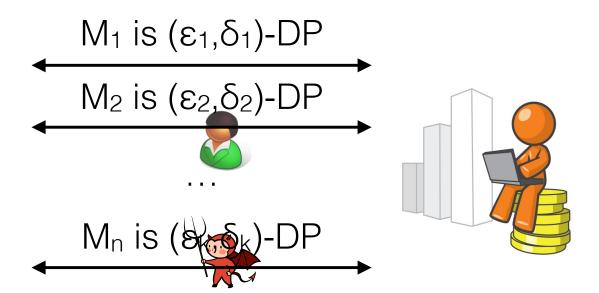












The overall process is $(\epsilon_1+\epsilon_2+...+\epsilon_k,\delta_1+\delta_2+...+\delta_k)$ -DP

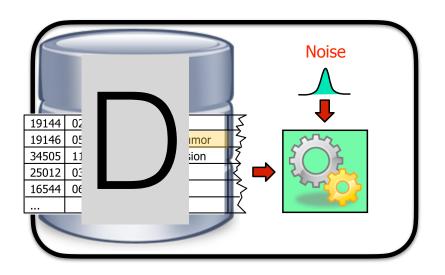
```
Let M_1:DB \to R_1 be a (\epsilon_1,\delta_1)-differentially private program and M_2:DB \to R_2 be a (\epsilon_2,\delta_1)-differentially private program. Then, their composition M_{1,2}:DB \to R_1 \times R_2 defined as M_{1,2}(D)=(M_1(D),M_2(D)) is (\epsilon_1+\epsilon_2,\delta_1+\delta_2)-differentially private.
```

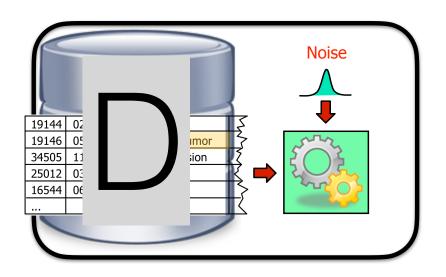
Question: Why composition is important?

Question: Why composition is important?

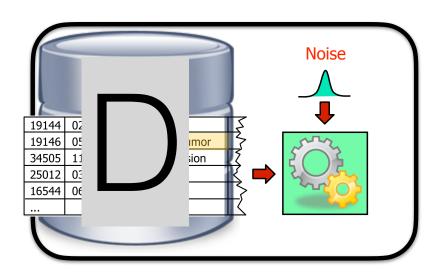
Answer: Because it allows to reason about privacy as a budget!

Budget= ϵ_{global}

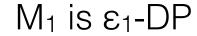


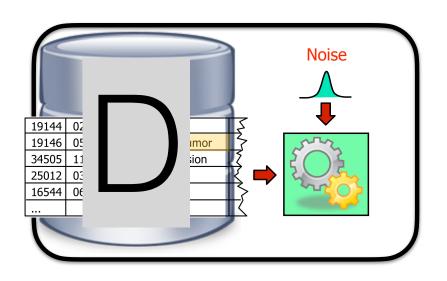


 $Budget = \epsilon_{global}$



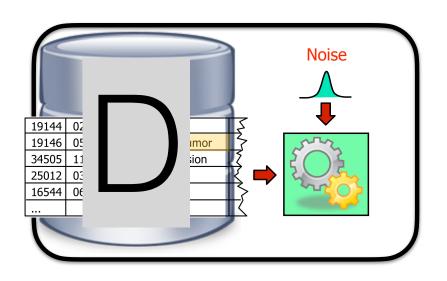
Budget= ϵ_{global} - ϵ_1



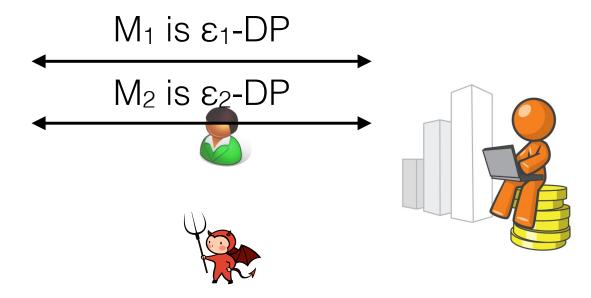


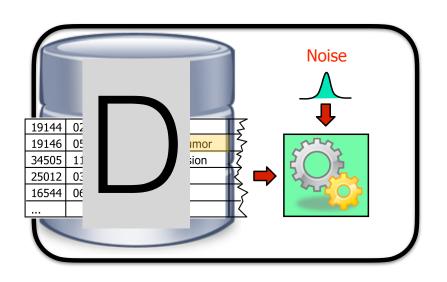
Budget= ϵ_{global} - ϵ_1



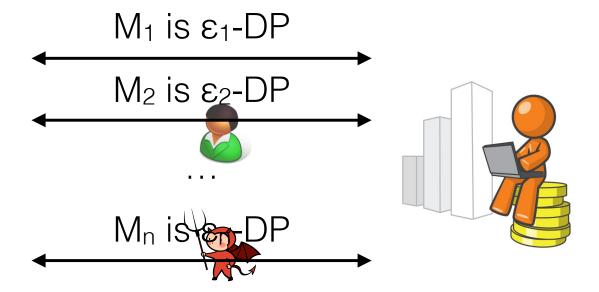


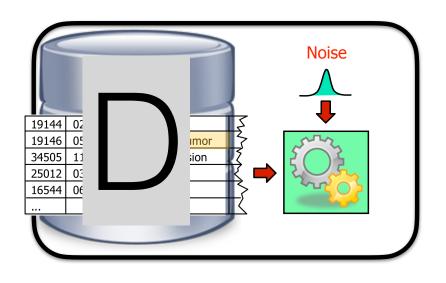
Budget= ϵ_{global} - ϵ_1 - ϵ_2



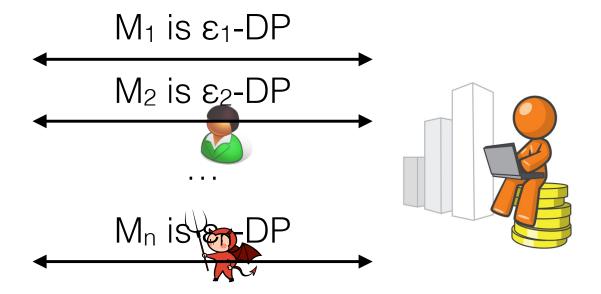


 $Budget = \epsilon_{global} - \epsilon_1 - \epsilon_2 \ \dots$





 $Budget = \epsilon_{global} - \epsilon_1 - \epsilon_2 \ \dots \ - \epsilon_n$



CDF

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3 - ϵ_4 - ϵ_5 - ϵ_6 - ϵ_7 - ϵ_8

 $X=\{0,1\}^3$ ordered wrt binary encoding.

$$q^*_{000}(D) = .3 + L(1/\epsilon_1)$$

$$q^*_{001}(D) = .4 + L(1/\epsilon_2)$$

$$q^*_{010}(D) = .6 + L(1/\epsilon_3)$$

$$q^*_{011}(D) = .6 + L(1/\epsilon_4)$$

$$q^*_{100}(D) = .6 + L(1/\epsilon_5)$$

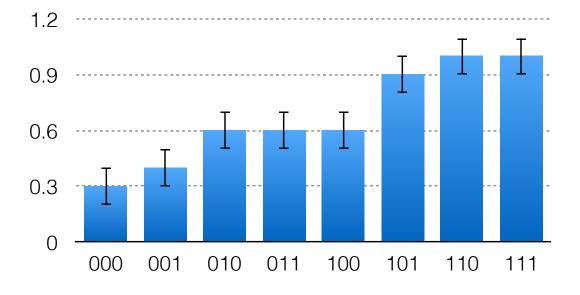
$$q^*_{101}(D) = .9 + L(1/\epsilon_6)$$

$$q^*_{110}(D) = 1 + L(1/\epsilon_7)$$

$$q^*_{111}(D) = 1 + L(1/\epsilon_8)$$

$D \in$	X 10	=
---------	-------------	---

	D1	D2	D3
l1	0	0	0
12	1	0	1
I 3	0	1	0
14	1	0	1
I 5	0	0	0
I 6	0	0	1
17	1	1	0
I 8	0	0	0
19	0	1	0
l10	1	0	1



Marginals

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3

$$D \in X^{10} =$$

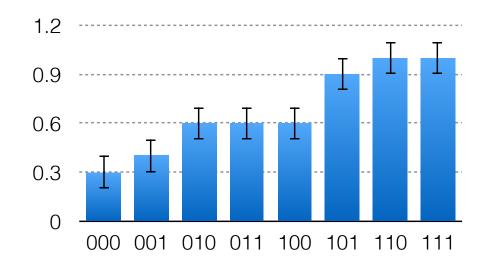
$$q^*_1(D) = .4 + L(1/(10^*\epsilon_1))$$

$$q_2(D) = .3 + L(1/(10 \epsilon_2))$$

$$q^*_3(D) = .4 + L(1/(10^*\epsilon_3))$$

	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3 - ϵ_4 - ϵ_5 - ϵ_6 - ϵ_7 - ϵ_8



Budget= ε_{global}	- ε ₁	- ε ₂	- E 3
--------------------------------	------------------	-------------------------	--------------

	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
I 5	0	0	0
I 6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privady

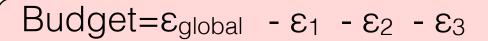
Budget: Budget= ϵ_{global} - $\sum \epsilon_{local}$

Sometimes is more convenient to think in terms of epsilon: $\epsilon_{global} = \sum \epsilon_{local}$

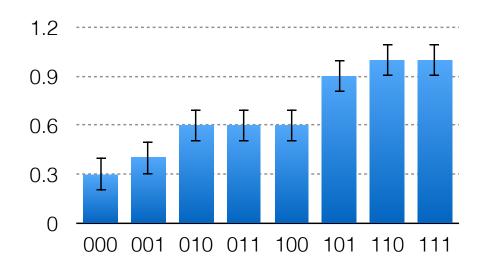
Also making them uniforms is sometimes more informative.

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3 - ϵ_4 - ϵ_5 - ϵ_6 - ϵ_7 - ϵ_8

$$\varepsilon_{\text{global}} = \varepsilon + \varepsilon = 8\varepsilon$$



$$\epsilon_{global} = \epsilon + \epsilon + \epsilon = 3\epsilon$$



	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
I 5	0	0	0
16	0	0	1
17	1	1	0
I 8	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

Releasing partial sums

```
DummySum (d : {0,1} list) : real list
  i := 0;
  s := 0;
  r:= [];
  t := 0;
  while (i<size d)
      s := s + d[i]
      z:=\$ Laplace (1/eps, 0)
      t := s + z;
      r := r ++ [t];
      i := i+1;
  return r
```

Releasing partial sums

```
DummySum (d : {0,1} list) : real list
  i:=0;
  s := 0;
  r:=[];
  t := 0;
  while (i<size d)
      z:=$ Laplace (1/eps, 0)
     t := d[i] + z
     s:=s+t
     r := r ++ [s];
     i := i+1;
  return r
```

Parallel Composition

```
Let M_1:DB \to R be a (\epsilon_1,\delta_1)-differentially private program and M_2:DB \to R be a (\epsilon_2,\delta_2)-differentially private program. Suppose that we partition D in a data-independent way into two datasets D<sub>1</sub> and D<sub>2</sub>. Then, the composition M_{1,2}:DB \to R defined as MP_{1,2}(D) = (M_1(D_1),M_2(D_2)) is (\max(\epsilon_1,\epsilon_2),\max(\delta_1,\delta_2))-differentially private.
```