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Recording

This is a reminder that we will record the class and
we will post the link on Piazza.

This is also a reminder to myself to start recording!



From the previous classes



Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1)




Privacy-preserving data analysis!?

® The analyst learn almost the same about me after the
analysis as what she would have learnt if | didn’t
contribute my data.
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Privacy Loss

In general we can think about the following quantity as

the privacy loss incurred by observing r on the
databases D and D’.

o, PrIQ(D)=r]
0 =% PrQ(D)="]




(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database D, D and for every SCR:

PriQ(D)e S] < exp(€)Pr[Q(D’)e S] + ©




(€,0)-indistinguishability

We can define a s-skewed version of statistical
distance. We call this notion s-distance.

Ae(u1,u2)=supeca max(ui(E)-esu2(E), y2(E)-e*u1(E),0)

We say that two distributions 1, y2 €D(A), are at
(g,0)-indistinguishable If:

Ac(p1,u2) <0



Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz (extending the notion of adjacency
to memories):

{C}m1=M1 and {C}m2=[2 iImplies A:(1,h2) £ O

private private

D q C q U1
public public

Y, q q unit(m)
private private

D> q C q U2
public public

\Y q q unit(m)



Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1)




Adding Noise




Differential Privacy

d(Q(D1u{x}),Q(Du{y}))< € with probability 1-0




Adding Noise




Adding Noise

-

-

Intuitive answer: it should depend on € or the accuracy we
want to achieve, and on the scale that a change of an
iIndividual can have on the output.

~




Global Sensitivity
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Releasing privately the
mean of Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1<size(d))
s:=s + df[1i]

1:=1+1;
z:=9% Laplace (GS mean/eps,0)
z:= (s/1)+z

return z




Laplace Distribution

1 — X
20 b skewness of
the curve,




Today: More on
Differential Privacy



Laplace Mechanism

Lap(d : priv data) (f: data -> real)

(eps:real) : pub real
z:=$ Laplace (GS¢/eps, 0)
z:= f£(d)+z

return z




Laplace Mechanism

Lap(d : priv data) (f: data -> real)

(eps:real) : pub real
z:=$ Laplace (GS¢/eps, 0)
z:= T (d)+z

return z

It turns out that we could also write it as:

Lap(d : priv data) (f: data -> real)
(eps:real) : pub real
z:=5 Lap (GS¢/eps, £(d))
return z




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is (€,0)-differentially private.

Proof: Intuitively
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Laplace Mechanism







Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz (extending the notion of adjacency
to memories):

{C}m1=M1 and {C}m2=[2 iImplies A:(1,h2) £ O

private private

D q C q U1
public public

Y, q q unit(m)
private private

D> q C q U2
public public

\Y q q unit(m)



apRHL

Indistinguishability Precondition
parameter (a logical formula)

| |

|_€,5C1NC2:P$Q

| |

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)



Validity of approximate Probabilistic
Relational Hoare judgments

We say that the quadruple 5 ci1~c,:P=Q Is
valid if and only if for every pair of memories
m; , m; such that P (m;,m>) we have:
{C1}mi=M1 and {cC2}m2=> |mpI|eS

Q6> (M1, M2).-



Validity of apRHL judgments

We say that the quadruple ¢5 c1~c2:P=0
Is valid if and only if for every pair of
memories m; ,m; such that P (m;,m,) we
have:

{C1}mi=M1 and {cC2}m2=> |mpI|es

Qe, 6™ (M1, H2).



R-0-Coupling

Given two distributions p1eD(A), and u2eD(B),
we have an R-0-coupling between them, for
RCAXB and 0<6=1, if there are two joint
distributions . pureD(AXB) such that:

1) z1(uL)=p1 and z2(URr)=pM2,

2) the support of u. and pr is contained in R.
Thatis, if u.(a,b)>0,then (a,b)ER,
and If Uz(a,b)>0,then (a,b)ER.

3) Ae(pLpr)<O



Probabilistic Relational Hoare Logic
Skip

—o0,08kip~skip:P=P



Probabilistic Relational Hoare Logic
Skip

x1:=$ Lap (g, v1)

|7€'OX22=$ Lap (g, vy2)
s | yi—ye |21 = =
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Composition

My is (€1,61)-DP

< >

Mo IS (82,62)-DP

< >

Mn is (ek,0k)-DP

< >

[ The overall process is (€1+&2+...+&k,01+02+...+6k)-DP J




Composition

P
Let M;:DB —R, be a (€,0/)-differentially private program and
M,:DB —R3 be a (€2,0)-differentially private program.Then, their
composition M| 2:DB—R xR, defined as

Mi2(D)=(Mi(D),M2(D))
is (€1+€2,01+07)-differentially private.




Composition




Composition

Answer: Because it allows to reason about privacy as a
budget!
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C D F Budget=¢€giobal - €1 -€2 -€3-€4
-&5 -& -E7 -€8

X={0,1}3 ordered 1 [:)1 [;2 [;3

wrt binary encoding. T

14 1 0 1

9*000(D) = .3+L(1/e1) DeXo= 15 1o 10 |0

d*001(D) = .4+L(1/e2) T

J*o010(D) = .6+L(1/e3) e | o | 1 | o

O 011(D) = .6+L(1/e4) 10 1 0 1
q*1oo(3) = .6+_(1/85)
g*101(D) = .9+L(1/e6)
g*110(D) = 1+L(1/e7)
q*111(D) = 1+L(1/es)

oo 001 010 011 100 101 110 111



Marginals

[ Budget=¢egiobar - €1 -€2 - €3 ]

D1 D2 D3

11 0 0 0

12 1 0 1

13 0 1 0

DeX0= 5 o o o

16 0 0 1

|7 1 1 0

q*1(D) = .4+L(1/(10%1)) R O

q*2(D) = .3+L(1/(10€2)) o | o |
margin | .4+Y1 | .3+Y2 || 4+Y3

g*3(D) = .4+L(1/(10*e3)) I




Budget=ggiobal - €1 - €2 -€3-€4
-&5 -&E6 -E7 - €8

000 001 010 011 100 101 110 111

D1 D2 D3

11 0 0 0

12 1 0 1

13 0 1 0

14 1 0 1

[Budget=8g|oba| -€1 -€2 - €3 ] e Hr
|7 1 1 0

18 0 0 0

19 0 1 0

10 1 0 1

margin | .4+Y: | .3+Y2 | 4+Y3



Releasing partial sums

DummySum(d : {0,1} list) : real list
1:= 0;
s:= 0;
r:= [];

while (1<size d)
s:= s + d[i]
z:=$ Lap (eps, s)
r:=1r ++ [z];
1:= 1+1;

return r

| am using the easycrypt notation here where Lap (eps, a)
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.



Probabilistic Relational Hoare Logic
Composition

—e1,61C1~C2:P=R Fe2,62C1" ~C2" : R=5

—e1+e2,61+62C1, C1" ~Co; C2" 1 P=S



Releasing partial sums

DummySum(d : {0,1} list) : real list
1:=0;
s:=0;

r:=[];
while (1i<size d)
z:=$ Lap (eps,d[i])

S:i= s + z
r:=r ++ [s];
1:= 1+1;

return r




Parallel Composition

-

Let M;:DB —R be a (€,0)-differentially private program and

M,:DB —R be a (€2,02)-differentially private program. Suppose

that we partition D in a data-independent way into two datasets

D, and D». Then, the composition M| 2:DB—R defined as
MP12(D)=(Mi(D1),M2(D2))

is (max(€,€2),max(01,02))-differentially private.

-




Properties of
Differential Privacy
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e Group privacy
e Composition



Some important properties

e Resilience to post-processing
e Group privacy
e Composition

We will look at them in the context of (€,0)-differential privacy.
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Resilience to Post-processing

foM is e-DP

S > N
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Resilience to Post-processing

Answer: Because it is what allows us to publicly
release the result of a differentially private analysis!




Group Privacy

M is e-DP




Group Privacy

M is ke-DP

Pr[M(D) € S] < exp(ke) Pr[M(D’) € 5]



Group Privacy




Group Privacy

Answer: Because it allows to reason about privacy at
different level of granularities!




Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privagy
Budget: Budget=¢egiobal - 2 €iocal

a )
Sometimes is more convenient to think in terms of

epsilon: €giobai= 2 Elocal
\_ )




r )
Budget=ggiobal - €1 - €2 -€3-€4
-&5 -&E6 -E7 - €8

~ J

§ ) 000 001 010 011 100 101 110 111

Eglobal= E+E+E+E+E+E+E+E=8E

) 7 D1 D2 D3
I 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1

£ Budget:&: lobal - &1 -E» -E3 b 15 0 0 0

~ 2leeE Y, 16 0 0 1

f a 17 1 1 0
18 0 0 0

Eglobal= €+E+€=3€ o 0 1 5
~ Y 110 1 0 1

margin | .4+Y: | .3+Y2 | 4+Y3















