CS 591: Formal Methods in Security and Privacy

More on Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Recording

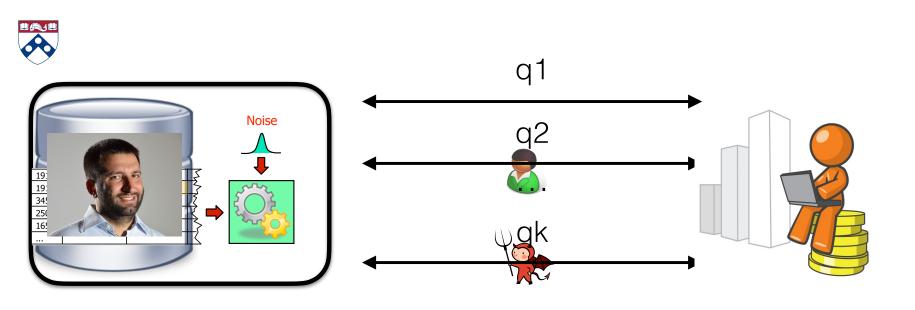
This is a reminder that we will record the class and we will post the link on Piazza.

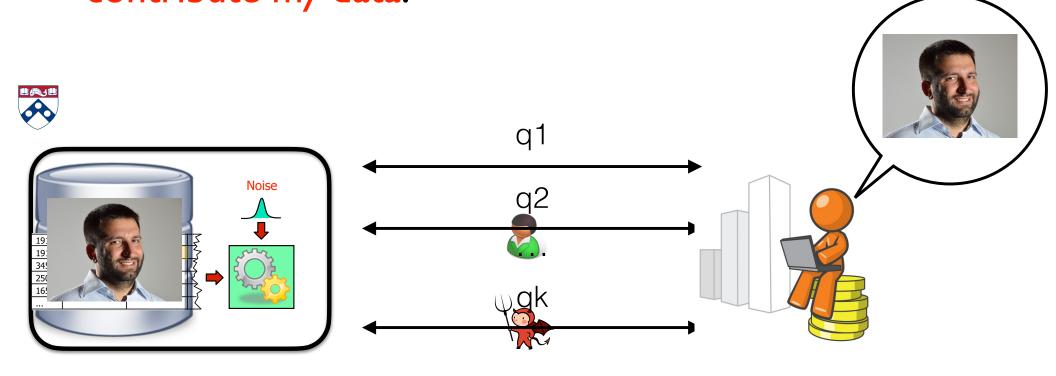
This is also a reminder to myself to start recording!

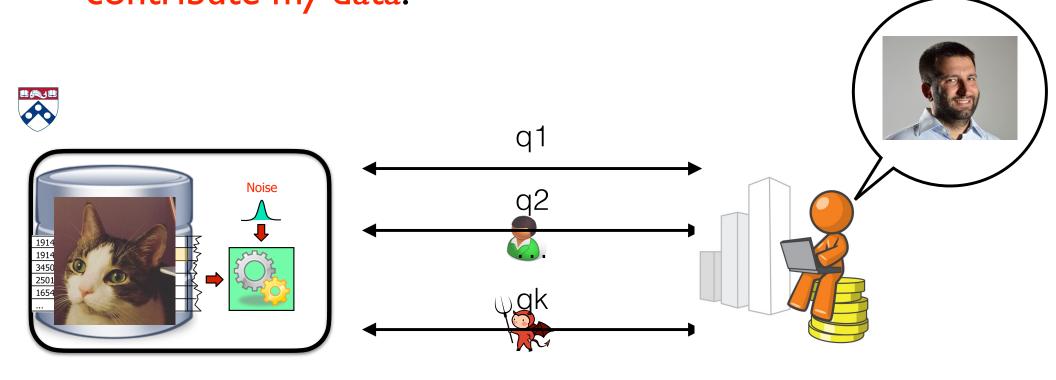
From the previous classes

Releasing the mean of Some Data

```
Mean(d : private data) : public real
  i:=0;
  s:=0;
  while (i<size(d))
    s:=s + d[i]
    i:=i+1;
  return (s/i)</pre>
```





Privacy Loss

In general we can think about the following quantity as the privacy loss incurred by observing r on the databases D and D'.

$$L_{D,D'}(r) = log \frac{Pr[Q(D)=r]}{Pr[Q(D')=r]}$$

(ε,δ)-Differential Privacy

Definition

Given $\varepsilon, \delta \geq 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ) -differentially private iff for all adjacent database D, D and for every $S \subseteq R$: $Pr[Q(D) \in S] \leq exp(\varepsilon)Pr[Q(D') \in S] + \delta$

(ϵ, δ) -indistinguishability

We can define a ε -skewed version of statistical distance. We call this notion ε -distance.

$$\Delta_{\epsilon}(\mu 1, \mu 2) = \sup_{E \subseteq A} \max(\mu_1(E) - e^{\epsilon}\mu_2(E), \mu_2(E) - e^{\epsilon}\mu_1(E), 0)$$

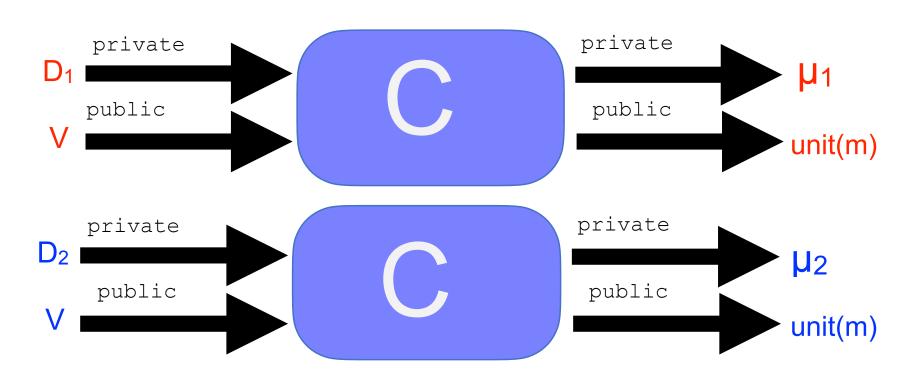
We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at (ϵ, δ) -indistinguishable if:

$$\Delta_{\varepsilon}(\mu 1, \mu 2) \leq \delta$$

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

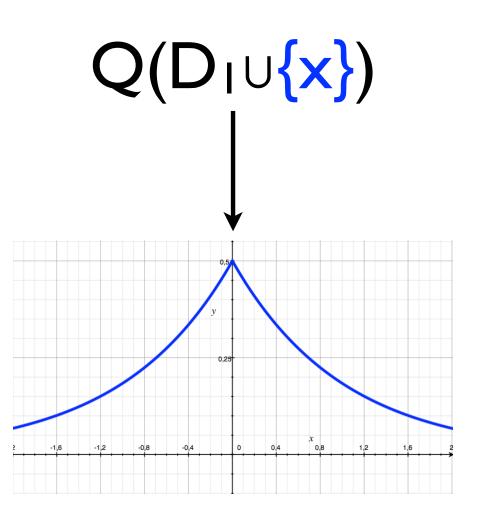
 $\{c\}_{m_1}=\mu_1 \text{ and } \{c\}_{m_2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$

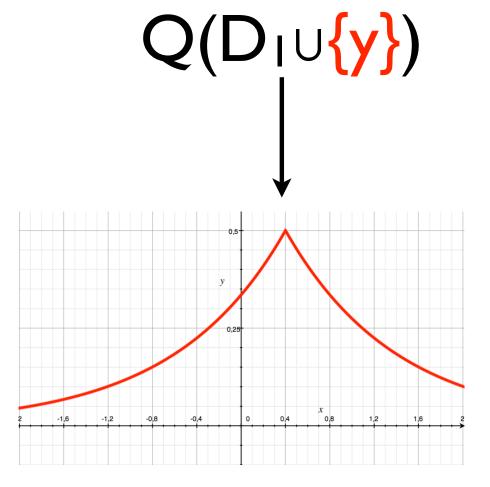


Releasing the mean of Some Data

```
Mean(d : private data) : public real
  i:=0;
  s:=0;
  while (i<size(d))
      s:=s + d[i]
      i:=i+1;
  return (s/i)</pre>
```

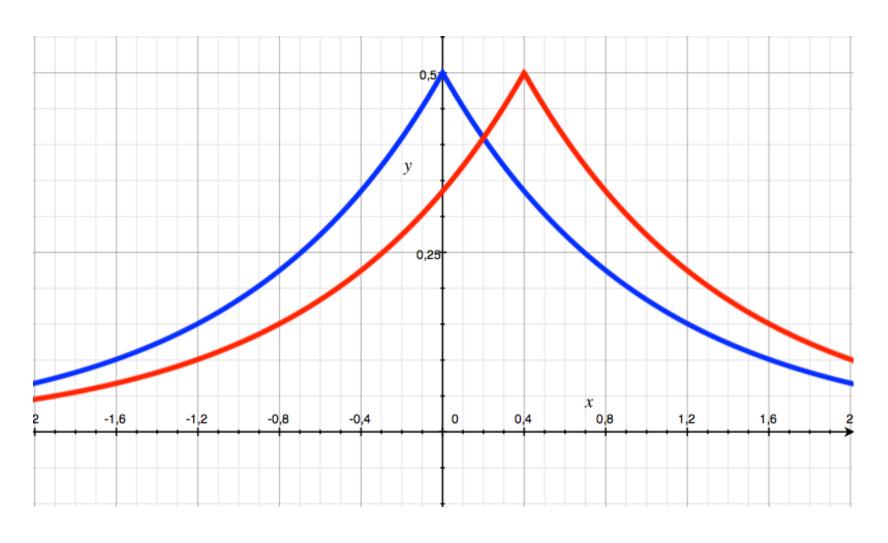
Adding Noise





Differential Privacy

 $d(Q(D_1 \cup \{x\}), Q(D_1 \cup \{y\})) \le \mathcal{E}$ with probability $1-\delta$



Adding Noise

Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon,0)$ -DP?

Adding Noise

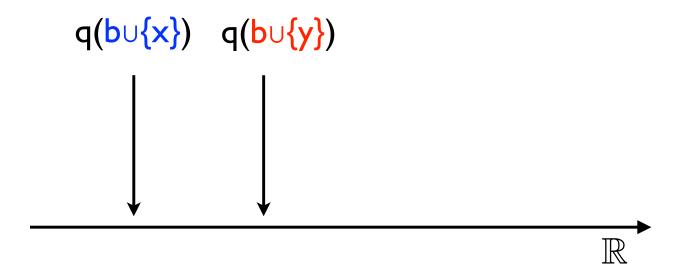
Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon,0)$ -DP?

Intuitive answer: it should depend on ϵ or the accuracy we want to achieve, and on the scale that a change of an individual can have on the output.

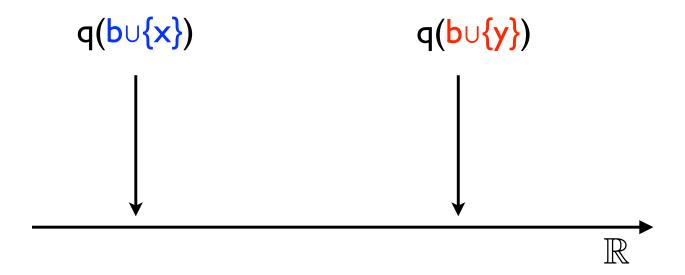
$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$

$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$

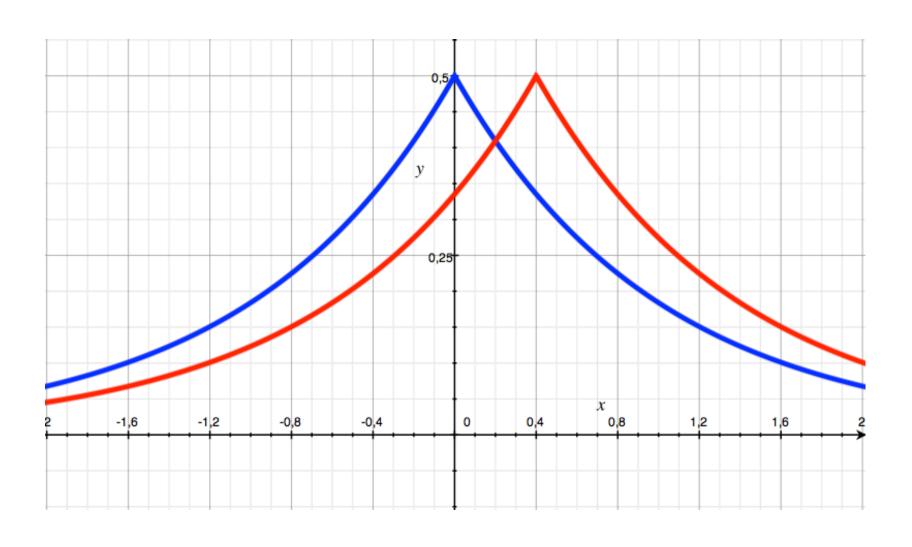
$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



Adding Noise



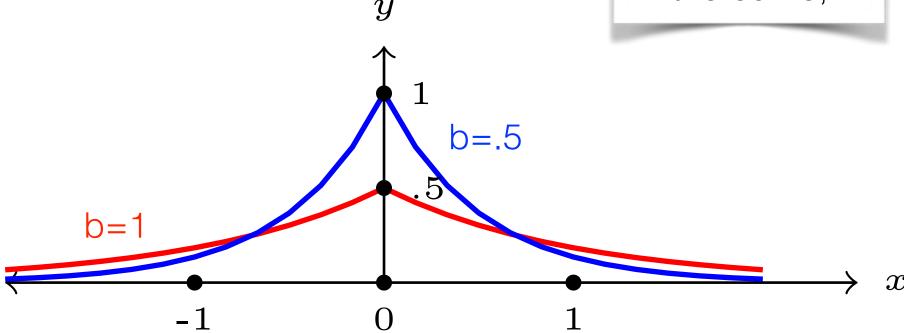
Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
  i:=0;
  s:=0;
  while (i<size(d))
      s:=s + d[i]
      i:=i+1;
  z:=$ Laplace(GS_mean/eps,0)
  z:= (s/i)+z
  return z</pre>
```

Laplace Distribution

$$\mathsf{Lap}(b,\mu)(X) = \frac{1}{2b} \exp\left(-\frac{|\mu - X|}{b}\right)$$

b regulates the skewness of the curve,



Today: More on Differential Privacy

```
Lap(d: priv data)(f: data -> real)
   (eps:real): pub real
   z:=$ Laplace(GS<sub>f</sub>/eps,0)
   z:= f(d)+z
   return z
```

```
Lap(d : priv data)(f: data -> real)
   (eps:real) : pub real
   z:=$ Laplace(GS<sub>f</sub>/eps,0)
   z:= f(d)+z
   return z
```

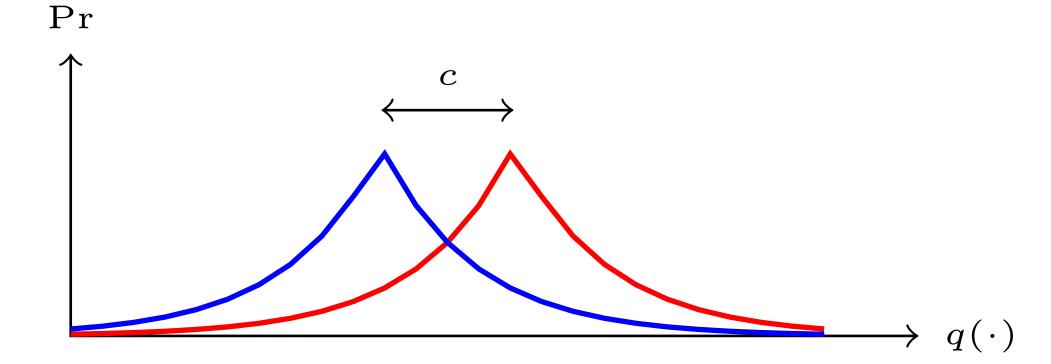
It turns out that we could also write it as:

```
Lap(d : priv data)(f: data -> real)
  (eps:real) : pub real
  z:=$ Lap(GS<sub>f</sub>/eps,f(d))
  return z
```

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon,0)$ -differentially private.

Proof: Intuitively



Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon,0)$ -differentially private.

Theorem (Privacy of the Laplace Mechanism)

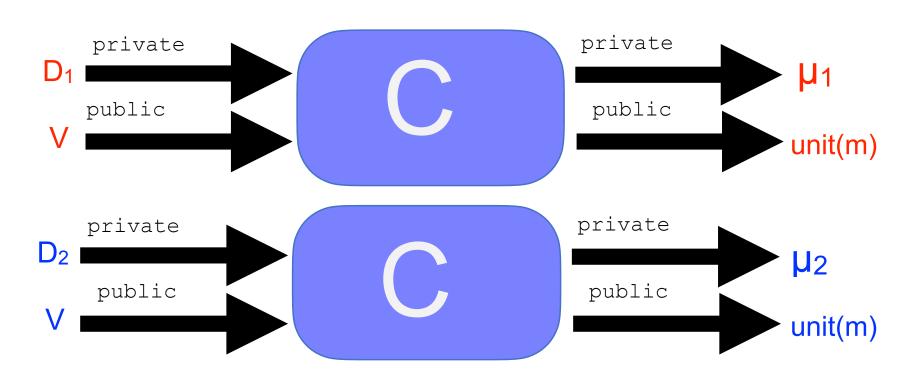
The Laplace mechanism is $(\varepsilon,0)$ -differentially private.

Question: How accurate is the answer that we get from the Laplace Mechanism?

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

 $\{c\}_{m_1}=\mu_1 \text{ and } \{c\}_{m_2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$



apRHL

Indistinguishability Precondition parameter (a logical formula) **Probabilistic Probabilistic** Postcondition

Program

Program

(a logical formula)

Validity of approximate Probabilistic Relational Hoare judgments

```
We say that the quadruple \vdash_{\delta} c_1 \sim c_2 : P \Rightarrow Q is valid if and only if for every pair of memories m_1, m_2 such that P(m_1, m_2) we have: \{c_1\}_{m1} = \mu_1 and \{c_2\}_{m2} = \mu_2 implies Q_{\delta}*(\mu_1, \mu_2).
```

Validity of apRHL judgments

We say that the quadruple $\vdash_{\epsilon,\delta} c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1 , m_2 such that $P(m_1, m_2)$ we have:

```
\{c_1\}_{m_1} = \mu_1 \text{ and } \{c_2\}_{m_2} = \mu_2 \text{ implies}

Q_{\epsilon,\delta}*(\mu_1,\mu_2).
```

R-δ-Coupling

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, we have an $R-\delta$ -coupling between them, for $R \subseteq AxB$ and $0 \le \delta \le 1$, if there are two joint distributions $\mu_{L}, \mu_{R} \in D(AxB)$ such that:

- 1) $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$,
- 2) the support of μ_L and μ_R is contained in R. That is, if $\mu_L(a,b)>0$, then $(a,b)\in R$, and if $\mu_R(a,b)>0$, then $(a,b)\in R$.
- 3) $\Delta_{\epsilon}(\mu_{L},\mu_{R}) \leq \delta$

Probabilistic Relational Hoare Logic Skip

⊢₀, ₀skip~skip:P⇒P

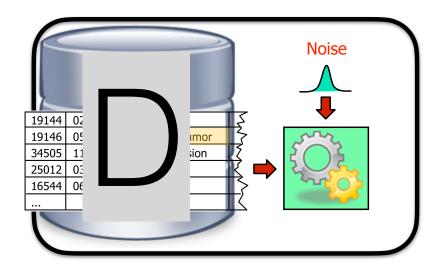
Probabilistic Relational Hoare Logic Skip

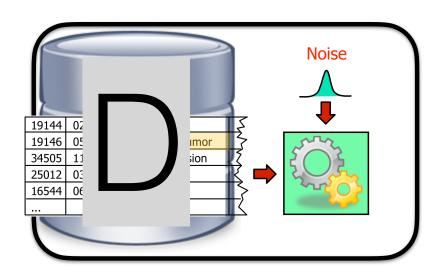
```
x_1 := \$ \text{ Lap}(\varepsilon, y_1)

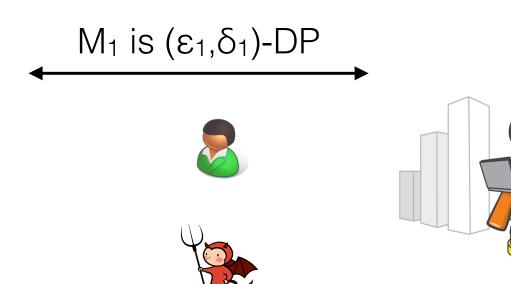
\sim

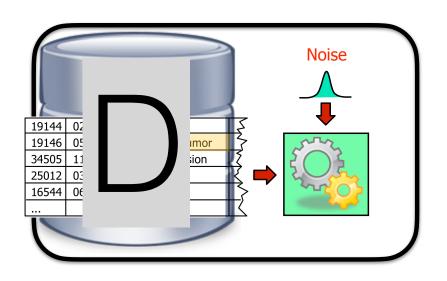
+\varepsilon, 0 x_2 := \$ \text{ Lap}(\varepsilon, y_2)

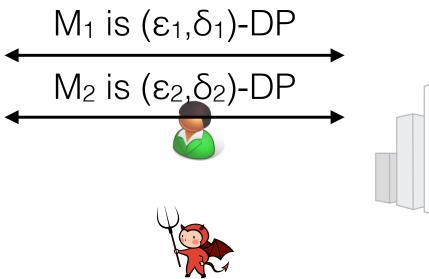
: |y_1 - y_2| \le 1 \Rightarrow =
```

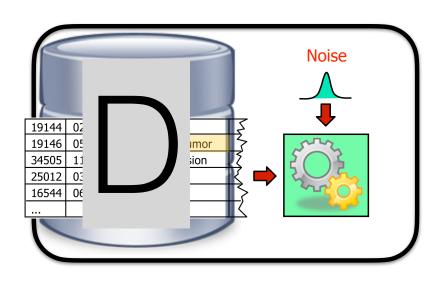



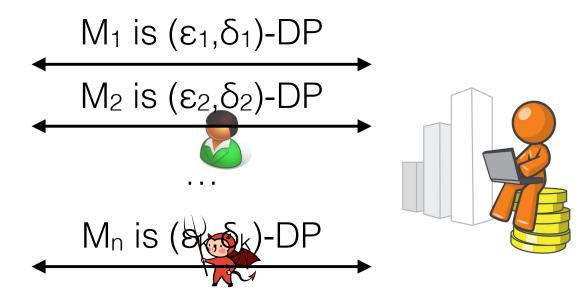


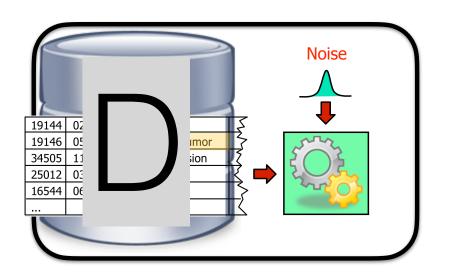


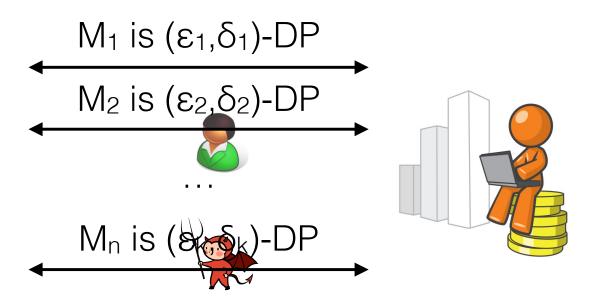












The overall process is $(\epsilon_1+\epsilon_2+...+\epsilon_k,\delta_1+\delta_2+...+\delta_k)$ -DP

```
Let M_1:DB \to R_1 be a (\epsilon_1,\delta_1)-differentially private program and M_2:DB \to R_2 be a (\epsilon_2,\delta_1)-differentially private program. Then, their composition M_{1,2}:DB \to R_1 \times R_2 defined as M_{1,2}(D)=(M_1(D),M_2(D)) is (\epsilon_1+\epsilon_2,\delta_1+\delta_2)-differentially private.
```

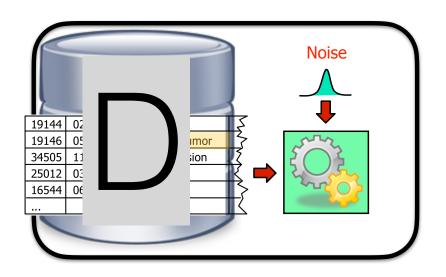
Question: Why composition is important?

Question: Why composition is important?

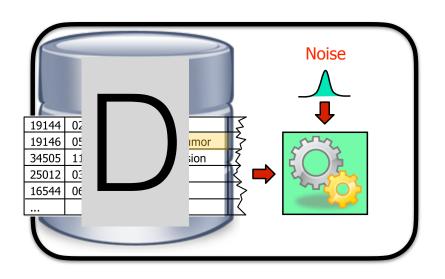
Answer: Because it allows to reason about privacy as a budget!

Budget= ϵ_{global}

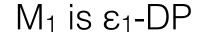


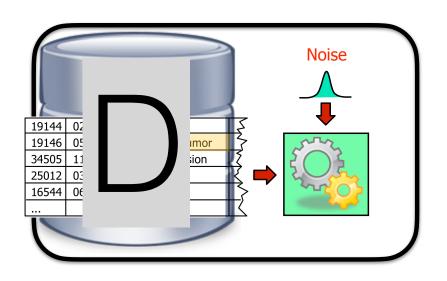


 $Budget = \epsilon_{global}$

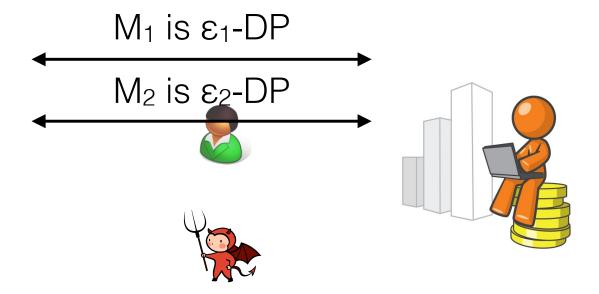


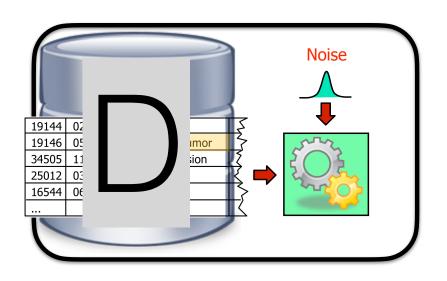
Budget= ϵ_{global} - ϵ_1



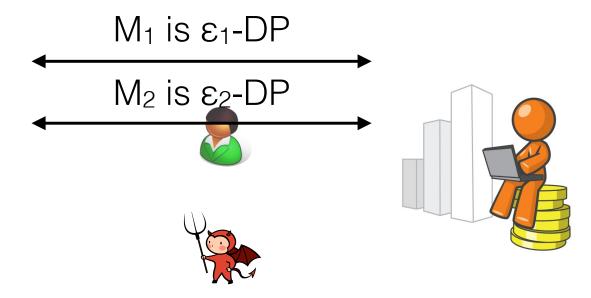


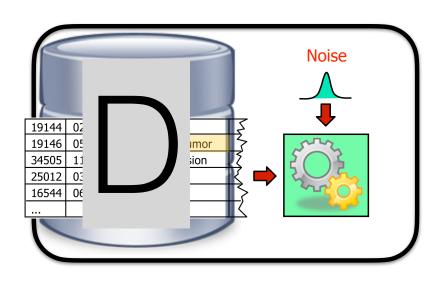
Budget= ϵ_{global} - ϵ_1



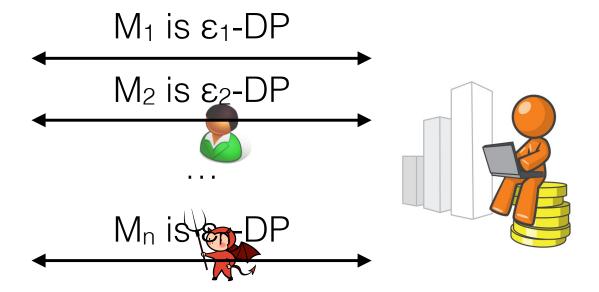


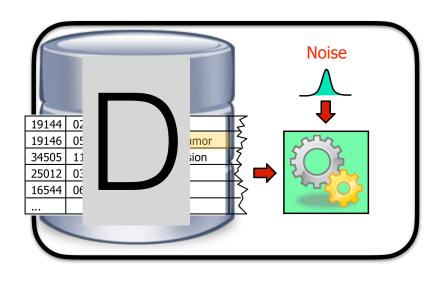
Budget= ϵ_{global} - ϵ_1 - ϵ_2



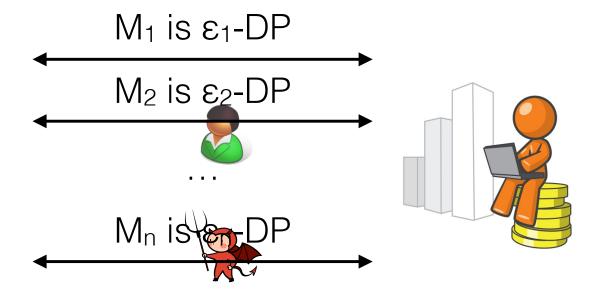


 $Budget = \epsilon_{global} - \epsilon_1 - \epsilon_2 \ \dots$





 $Budget = \epsilon_{global} - \epsilon_1 - \epsilon_2 \ \dots \ - \epsilon_n$



CDF

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3 - ϵ_4 - ϵ_5 - ϵ_6 - ϵ_7 - ϵ_8

 $X=\{0,1\}^3$ ordered wrt binary encoding.

$$q^*_{000}(D) = .3 + L(1/\epsilon_1)$$

$$q^*_{001}(D) = .4 + L(1/\epsilon_2)$$

$$q^*_{010}(D) = .6 + L(1/\epsilon_3)$$

$$q^*_{011}(D) = .6 + L(1/\epsilon_4)$$

$$q^*_{100}(D) = .6 + L(1/\epsilon_5)$$

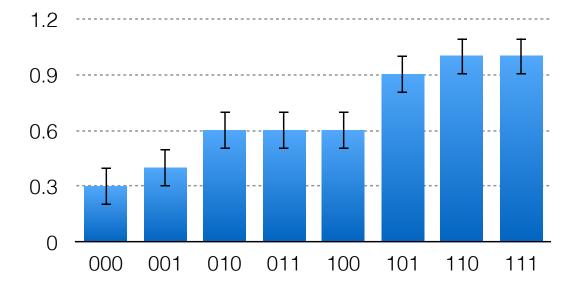
$$q^*_{101}(D) = .9 + L(1/\epsilon_6)$$

$$q^*_{110}(D) = 1 + L(1/\epsilon_7)$$

$$q^*_{111}(D) = 1 + L(1/\epsilon_8)$$

$D \in$	X 10	=
---------	-------------	---

	D1	D2	D3
l1	0	0	0
12	1	0	1
I 3	0	1	0
14	1	0	1
I 5	0	0	0
I 6	0	0	1
17	1	1	0
I 8	0	0	0
19	0	1	0
l10	1	0	1



Marginals

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3

$$D \in X^{10} =$$

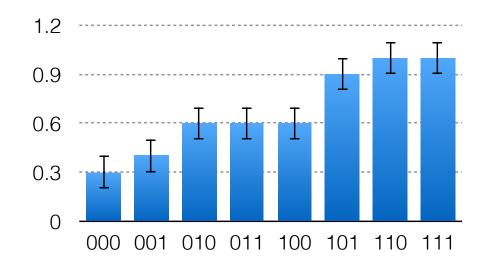
$$q^*_1(D) = .4 + L(1/(10^*\epsilon_1))$$

$$q_2(D) = .3 + L(1/(10 \epsilon_2))$$

$$q^*_3(D) = .4 + L(1/(10^*\epsilon_3))$$

	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3 - ϵ_4 - ϵ_5 - ϵ_6 - ϵ_7 - ϵ_8



Budget= ε_{global}	- ε ₁	- ε ₂	- E 3
--------------------------------	------------------	-------------------------	--------------

	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
I 5	0	0	0
I 6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

Releasing partial sums

```
DummySum (d : {0,1} list) : real list
  i := 0;
  s := 0;
  r:= [];
  while (i<size d)
      s:= s + d[i]
      z := $ Lap (eps, s)
      r := r ++ [z];
     i := i+1;
  return r
```

I am using the easycrypt notation here where Lap(eps,a) corresponds to adding to the value a noise from the Laplace distribution with b=1/eps and mean mu=0.

Probabilistic Relational Hoare Logic Composition

```
\vdash_{\epsilon_1,\delta_1} c_1 \sim c_2 : P \Rightarrow R \vdash_{\epsilon_2,\delta_2} c_1' \sim c_2' : R \Rightarrow S
```

```
\vdash_{\epsilon_1+\epsilon_2,\delta_1+\delta_2}C_1; C_1' \sim C_2; C_2' : P \Rightarrow S
```

Releasing partial sums

```
DummySum(d: {0,1} list) : real list
  i:=0;
  s := 0;
  r:=[];
  while (i<size d)
     z:=$ Lap(eps,d[i])
     s := s + z
     r := r ++ [s];
     i := i+1;
  return r
```

Parallel Composition

```
Let M_1:DB \to R be a (\epsilon_1,\delta_1)-differentially private program and M_2:DB \to R be a (\epsilon_2,\delta_2)-differentially private program. Suppose that we partition D in a data-independent way into two datasets D<sub>1</sub> and D<sub>2</sub>. Then, the composition M_{1,2}:DB \to R defined as MP_{1,2}(D) = (M_1(D_1),M_2(D_2)) is (\max(\epsilon_1,\epsilon_2),\max(\delta_1,\delta_2))-differentially private.
```

Properties of Differential Privacy

Some important properties

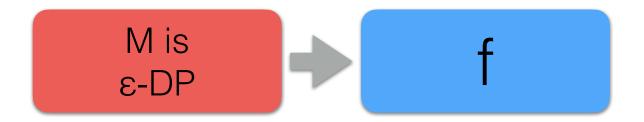
- Resilience to post-processing
- Group privacy
- Composition

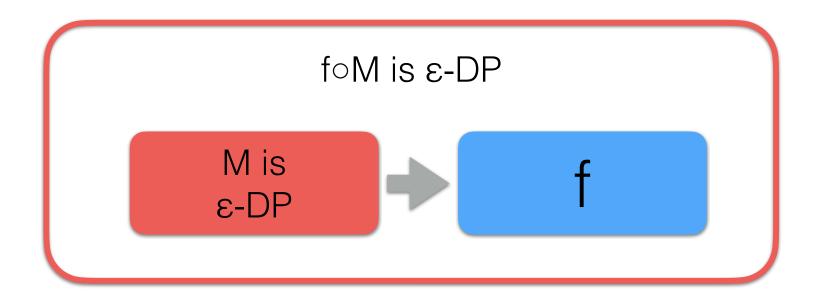
Some important properties

- Resilience to post-processing
- Group privacy
- Composition

We will look at them in the context of $(\varepsilon,0)$ -differential privacy.

M is ε-DP

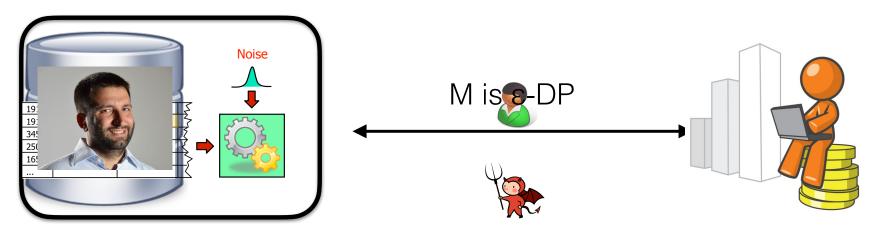




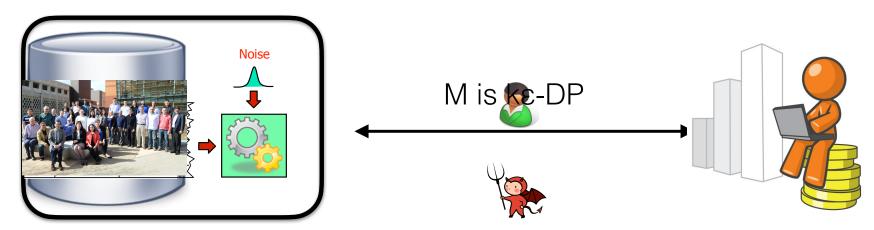
Question: Why is resilience to post-processing important?

Question: Why is resilience to post-processing important?

Answer: Because it is what allows us to publicly release the result of a differentially private analysis!



$$\Pr[\mathcal{M}(D) = r] \le e^{\epsilon} \Pr[\mathcal{M}(D') = r]$$



$$\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$$

Question: Why is group privacy important?

Question: Why is group privacy important?

Answer: Because it allows to reason about privacy at different level of granularities!

Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privady

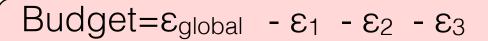
Budget: Budget= ϵ_{global} - $\sum \epsilon_{local}$

Sometimes is more convenient to think in terms of epsilon: $\epsilon_{global} = \sum \epsilon_{local}$

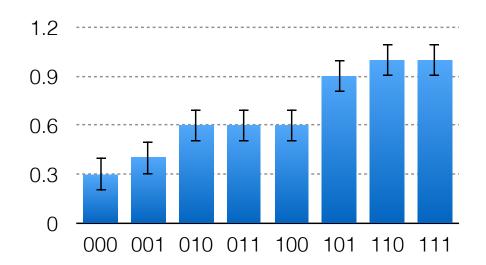
Also making them uniforms is sometimes more informative.

Budget=
$$\epsilon_{global}$$
 - ϵ_1 - ϵ_2 - ϵ_3 - ϵ_4 - ϵ_5 - ϵ_6 - ϵ_7 - ϵ_8

$$\varepsilon_{\text{global}} = \varepsilon + \varepsilon = 8\varepsilon$$



$$\epsilon_{global} = \epsilon + \epsilon + \epsilon = 3\epsilon$$



	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
I 5	0	0	0
16	0	0	1
17	1	1	0
I 8	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃