CS 591: Formal Methods in
Security and Privacy

More on Differential Privacy

Marco Gaboardi
gaboardi®@bu.edu

Alley Stoughton
stough@bu.edu

Course evaluation

The course evaluation is now available:

https://bu.campuslabs.com/courseeval/

Please fill it.

Recording

This is a reminder that we will record the class and
we will post the link on Piazza.

This is also a reminder to myself to start recording!

From the previous classes

(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database D, D and for every SCR:

PriQ(D)e S] < exp(€)Pr[Q(D’)e S] + ©

(€,0)-indistinguishability

We can define a s-skewed version of statistical
distance. We call this notion s-distance.

Ae(u1,u2)=supeca max(ui(E)-esu2(E), y2(E)-e*u1(E),0)

We say that two distributions 1, y2 €D(A), are at
(g,0)-indistinguishable If:

Ac(p1,u2) <0

Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz (extending the notion of adjacency
to memories):

{C}m1=M1 and {C}m2=[2 iImplies A:(1,h2) £ O

private private

D q C q U1
public public

Y, q q unit(m)
private private

D> q C q U2
public public

\Y q q unit(m)

apRHL

Indistinguishability Precondition
parameter (a logical formula)

| |

|_€,5C1NC2:P$Q

| |

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)

Validity of apRHL judgments

We say that the quadruple ¢5 c1~c2:P=0
Is valid if and only if for every pair of
memories m; ,m; such that P (m;,m,) we
have:

{C1}mi=M1 and {cC2}m2=> |mpI|es

Qe, 6™ (M1, H2).

R-£-0-Coupling

Given two distributions p1eD(A), and u2eD(B),
we have an R-¢-0-coupling between them, for
RCAXB and 0<e and 0<0=1, if there are two
joint distributions . preD(AXB) such that:

1) z1(uL)=p1 and z2(URr)=pM2,

2) the support of u. and pr is contained in R.
Thatis, if u.(a,b)>0,then (a,b)ER,
and If Uz(a,b)>0,then (a,b)ER.

3) Ae(pLpR)<O

Today: More on
apRHL

Releasing privately the
mean of Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1<size(d))
s:=s + d[1];

1:=1+1;
z:=S$ lap eps s;
z:= (s/1i)+z;

return z

| am using the easycrypt notation here where lap eps a
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.

Global Sensitivity

GS, = max{ |g(D) —q(D")| s.t. D ~ D’}

q(bu{x}) q(bu{y})

Laplace in EasyCrypt

module M = {
var x: int
proc f (): int = {
var r = 0;
r <¢ lap eps Xx;
return r;
}
}.
|
lemma leml : aequiv [[eps & @%r]
M.f ~ M. f
(" IM.x{1} - M.x{2}|<= 1)
==> res{2} = res{1} 1.
proof.
proc.
seq 1 1 :(°|M.x{1} - M.x{2}|<= 1 /\ r{1}=r{2} /\ r{1}=0).
toequiv.
auto.
(*
to prove this we can use the lap tactic which takes two
parameters k1 and k2 and generate two subgoals
1) k2 x local_eps <= global eps
2) |kl + (M.x{1} - M.x{2})| <= k2
x)
lap (0) 1.
ged.

apRHL

Generalized Laplace

x1:=$ Lap (g, e1)
|_k2*€,0 ~

xX,:=$ Lap (g, e2)

| k1+e1<1>=y,<2> | Sk

==> x1<1>

Releasing partial sums

DummySum(d : {0,1} list) : real list
1:= 0;
s:= 0;
r:= [1]7
while (1<size d)
s:= s + d[1];
z:=$ lap eps s;
r:=1r ++ [z];
1:= 1+1;
return r

| am using the easycrypt notation here where Lap (eps, a)
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.

Composition

My is (€1,61)-DP

< >

Mo IS (82,62)-DP

< >

Mn is (ek,0k)-DP

< >

[The overall process is (€1+&2+...+&k,01+02+...+6k)-DP J

apRHL

Composition

—e1,61C1~C2:P=R Fe2,62C1" ~C2" : R=5

—e1+€2,61+62C1,C1" ~Co; Co" 1 P=S

This corresponds to EC command:

seq 1 1 : (postcondition R) <[eps+1 & deli]>.

Releasing partial sums

DummySum(d : {0,1} list) : real list
1:= 0;
s:= 0;
r:= [1]7
while (1<size d)
s:= s + d[1];
z:=$ lap eps s;
r:=1r ++ [z];
1:= 1+1;
return r

apRHL

awhile

P/\ e<1><0 => —bl<l>

e O cl~c2:P/\bl<1>/\b2<2>/\k=e<1l>

/\e<1><n
==> P /\ bl<l>=b2<2> /\k < e<1>

—=)€%,2,0xk while bl do cl~while b2 do c2

-P/\ bl<l>=b2<2>/\ e<l> < n
==> P /\ —-bl<l>/\ —b2<2>

Parallel Composition

-

Let M;:DB —R be a (€,0)-differentially private program and

M,:DB —R be a (€2,02)-differentially private program. Suppose

that we partition D in a data-independent way into two datasets

D, and D». Then, the composition M| 2:DB—R defined as
MP12(D)=(Mi(D1),M2(D2))

is (max(€,€2),max(01,02))-differentially private.

-

Parallel Composition
In EC

lemma lem2par : aequiv [[eps & del]
M1.f ~ M1.f
(*|M1.d{1}. 1 - M1.d{2}. 1|<= 1 /\ M1.d{1}.'2 = M1.d{2}.2)
==> res{2} = res{1}].
proof.
proc.
seq 3 3 :(“|z{1} - z{2}|<= 1/\ y{1} =y{2}).
wp. toequiv. skip. trivial.
seq 11 : (r{1}=r{2} /\ y{1} = y{2}) <[eps & del]>.
lap (0) 1 = //.
lap (0) o.
(x
we could have just avoid using laplace at all in the algorithm,
but the point of this example is to show how the same algorithm
can be analyzed in different ways. We will also see that this idea
is behind the idea of parallel composition
*)
ged.

Releasing partial sums

DummySum(d : {0,1} list) : real list
1:=0;
s:=0;

r:=[1;
while (1i<size d)

S:= S + Z
r:=r ++ [s]
1:= 1+1;

Parallel Composition
In EC

lemma noisy_sum n j : @<= j < n => aequiv [[eps & 0%r]
M3.noisy_sum ~ M3.noisy_sum
adjacent_e 1s{1} 1s{2} j /\ n=size 1s{1}
==> res{2} = res{1} 1.
proof.
move => H. proc.
seq 3 3: (adjacent_e 1s{1} ls{2} j /\ ={i, s, output} /\ i{1} =10
/\ s{1} = @ /\ n=size 1s{1}).
[| toequiv; auto.
(* notice the budget function we are using for epsilon x)
awhile [(fun x => if j=n-x -1 then eps else @0%r) & (fun _ => @%r)] n [n -i-1]
(adjacent_e 1s{1} 1s{2} j /\ ={i, output} /\ @ <= i{1} <= size 1s{1} /\ n=size ls{1} /\
(i{1}=] =
“|(nth @ 1s{1} i{1}) - (nth @ 1s{2} i{2}) | <=1 /\
eq_in_range ls{1} ls{2} (i{1}+1) (size 1s{1} - 1)) /\
0<= size 1s{1}); first 4 try (auto; progress;smt(ge@_eps)).
search predl. search iota_. rewrite /bigi.
rewrite —-big_mkcond. apply bigi_eps => //. rewrite sumr_const intmulr; smt().
move => K.
have H1: (j = n -k - 1)\/ (j <= n -k - 1). smt().
elim H1 => [?7]|7].
Wp. progress.
lap 0 1. smt().
progress. smt().
progress. smt().
smt(). smt().
smt(adjacent_sub_abs_bound).
smt(adjacent_ne_sub_eq_after).
smt(size_eq_adjacent).

wp.
lap 0 0. smt().
progress.
smt(size_eq_adjacent).
auto; progress. smt().
smt().

smt (adjacent_sub_abs_bound).

smt(adjacent_ne_sub_eq_after).

smt(size_eq_adjacent).

smt(size_eq_adjacent).

ged.

Pointwise Differential Prlvacy

‘ Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is (g,0)-
differentially private iff

for all adjacent database D, D and for every SCR:

5 PriQ(D)e S] < exp(e)Pr[Q(D’)e S] + O

4)

Pointwise Definition
Given €,0 2 0, a probabilistic query Q: X»—R is (g,0)-
differentially private iff
for all adjacent database D, D and for every reR, we
have O such that:

Pr[Q(D)e S] < exp(¢)Pr[Q(D’)e S] + &r
\and >0r<0

-

Above Threshold

aboveT (db :int list,n:int,t:1int) :int = {

s<-0;
1 <= 0;
r <- -1;

nT <$ lap (eps/4%r) t;
while (1 < n) {
s <$ lap (eps/2%r) (evalQ i db);
if (nT < s /\ r = -1){
r <- 1i;

return r;

Pointwise DP in Aprhl

forall reR
e 5rC1~C2 P ==> x<1I>=1r => X<2>=r

> Or X O

e 5 C1~Co :P ==> x<1> = x<2>

The corresponding tactic in EC is

Review of the class

Formal Semantics

We need to assign a formal meaning to the different

components:

Precondition
Program

Postcondition

e

™~

formal semantics
of specification
conditions

formal semantics
of programs

formal semantics
of specification
conditions

We also need to describe the rules which
combine program and specifications.

Programming Language

c::= abort

skip

X:=e

C;C

1f e then ¢ else c
while e do c

X,YrZ,.. program variables
e1,€2,... E€xpressions

Ci,C2,.. commands

Summary of the Semantics
of Commands

{abortl}l,= 1L
{skip}m = m
{xi=e}n = m[x—{e}n]
{c;c’"}tn= {c"}n I {cCln=m’
{c;c’" = L If {c}tn = 4L
{1f e then ct else crln={Ctinlf {e}n=true

{1f e then ct else csln={celpnlf{e}p=false

{while e do C}n =SUPnenat{while, € do C}n

Hoare triple

Precondition
(a logical formula)

Precondition

\ 4
Program - P = Q
Postcondition C °

| |

Program Postcondition
(a logical formula)

Validity of Hoare triple

We say that the triple c : P=0Q Is valid
if and only if

for every memory m such that P (m)

and memory m’ such that {c},=m’

we have Q(m"').

Is this condition easy to check?

An example

X:=3;
vi=1;
while x > 1 do

y = y+1;
X 1= xX-1;

{true} = {y =3}

Soundness

If we canderive -c : P = (Q through
the rules of the logic, then the triple

c : P = O isvalid.

Relative Completeness
P=5 —cCc:5=R R=Q

—c: P=0

Ifatriple ¢ : P = O isvalid, and we
have an oracle to derive all the true statements
of the form P=S and of the form R=0Q , then

we canderive —-c : P = (O through

the rules of the logic.

Noninterference

In symbols
M1 ~ow M2 and {C}m1=m+1 and mz'{C}m2=my’
implies M1 ~ow M2

private private

—

public / oublic

—_— = —

Relational Property

In symbols, c is noninterferent if and only if
for every m1 ~jow mo :
1) {C}m1=J_ Iff {C}m2=J_
2) {c}m1=m+" and {C}m2=m2’ implies m1 ~jow M2

private private
[Jﬂ----"b (:::; I......*"»Ch

public public
\/I......."» ----*'b»vv

private private

U2|-------.'> <:::; ----"»(32
public public

\/----.'» ----.'»VM

Relational Hoare Logic - RHL

Precondition
(a logical formula)

Precondition l

Program ~ Program | o~ C 1 P = ()

Postcondition I I

Program Program Postcondition
(a logical formula)

Validity of Hoare quadruple

We say that the quadruple ci~c2:P=0Q Is
valid if and only if for every pair of memories
m; , mz such that P (m;,m>) we have:

1) {ci1}mi=L 1ff {c2}m=L1

2) {ci}mi=mi’and{c:}m2=m2 "’ Implies
O(my’,mz").

Is this easy to check?

An example

sl:public
sZ2:private
r:private
1:public

proc Compare (sl:list[n] bool,s2:1ist[n] bool)
1:=0;
r:=0;
while 1<n do
1f not(sl[i]=s2[1i]) then
r:=1
1:=1+1

n>0 /\ =low = =low

Soundness and completeness
with respect to Hoare Logic

—rur, C1~C2: P=0
Iff
—u1, C1:C2: P=0

Under the assumption that we can partition the memory
adequately, and that we have termination.

An example

OneTimePad (m : private msg) : public msg
key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cilpher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic While (PWhile)

c::= abort

skip

X:= e

x:=S d

C;C

1f e then ¢ else c
while e do c

di,d2,.. probabilistic expressions

Semantics of Commands

This is defined on the structure of commands:

{abort}, = O
{skip}mn = unit (m)
{x:=e}yp = unit(m[x—{eltnl)
x:=S d}, =let a={d}, 1n unit (m[x«<al)
{c;c’tp=let m"={c}lpn 1in {c’ }n
{if e then ct else cCrlp =1{Ctlnlf {e}n=true
{if e then ct else csln =1{Ctlnlf {e}p=false

{while e do C}n =SUPnenat Un
Mn =
let m"={ (whiler e do c¢) }tyn 1n {1f e then abort},

Probabilistic Noninterference as a
Relational Property

c is probabilistically noninterferent if and only
if for every m1 ~jow mo :
{C}m1=P1 @nd {C}mz=M2 Implies P1 ~ow Y2

U private private
(: :: Mpr1
public public
V Mpu1
private private
U Mpr2
public public
V Mpu2

Probabilistic Relational Hoare
Quad FU ples Precondition

(a logical formula)

Precondition l

Program ~ Program | 0~ Ch L P = ()

Postcondition A I I

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)

Validity of Probabilistic
Hoare quadruple

We say that the quadruple ci~c,:P=0Q Is
valid if and only if for every pair of memories
m; , my such that P (m;,m,) we have:
{C1}mi=M1 and {cC2}m2=M> |mpI|eS

Q* (M1, M2).

Relational lifting of a

predicate
We say that two subdistributions . CD(A)

and U.<€D(B) are in the relational lifting of
the relation RCAXB, denoted U R* [if

and only if there exist a subdistribution
LS D(AxB) such that:

1) if ui(a,b)>0, then (a,b)EQ.
2) m(p) = py and my(u) =

R-Coupling
Given two distributions pu1eD(A), and
u2eD(B), an R-coupling between them, for
RCAXB, is a joint distribution peD(AxB)
such that:
1) the marginal distributions of u are
and [z, respectively,
2) the support of u is contained in R. That
s, ifu(a,b)>0, then (a,b)ER.

A sufficient condition for R-Coupling

Given two distributions pu1eD(A), and p2eD(B), and a
relation RCAXB, if there is a mapping h:A—B such

that:
1) his a bijective map between elements in

supp(H1) and supp(H2),
2) for every aesupp(p1), (a,h(a))eER

3) Prx-u1[x=a]=Prx-p2[x=h(a)]

Then, there is an R-coupling between 1 and p2.
We write h<(p1,d2) in this case.

Probabilistic Relational Hoare Logic
Random Assignment

h=({d:i}, {d2})

P=Vv, vEsupp ({d1})
= Q[v/x1<1>,h (V) /x:<2>]

x1 :=S di ~ X2 :=S dy ¢ P = O

Consequences of Coupling
Given the following pRHL judgment

Fci~c,: True = Q
We have that:

if 0 = (R(1) < S§(2)), then Pr[c; : R] = Pr[c, : §]

if O = (R(1) = S(2)), then Pr[c; : R] < Pr[c, : S]

A more realistic example

StreamCipher (m : private msg[n]) : public msg[n]
pkey :=5 PRG(Uniform ({0,1}%));
cipher := msg xor pkey;

return cipher

Properties of PRG

We would like the PRG to increase the number of

random bits but also to guarantee the result to be
(almost) random.

We can express this as:

PRG: {0,1}k — {0,1}" for n>k

A(PRG(Uniform({0,1}k),Uniform({0,1}n) < 2

In fact this is a too strong requirement - usually we
require that every polynomial time adversary cannot
distinguish the two distributions in statistical distance

Approximate Probabilistic
Relational Hoare Logic

Indistinguishability Precondition
parameter (a logical formula)

|
I_élCINCZP:Q

] |

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)

R-0-Coupling

Given two distributions p1eD(A), and u2eD(B),
we have an R-0-coupling between them, for
RCAXB and 0<6=1, if there are two joint
distributions . pureD(AXB) such that:

1) m1(uL)=p1 and z2(URr)=p2,

2) the support of u. and pr is contained in R.
That is, if yr.(a,b)>0,then (a,b)E€R,
and if yr(a,b)>0,then (a,b)ER.

3) A(uL,pr)<O

Example of R-0-Coupling
12

M1
00 0.2 000
oo R(a,b)= {asb} oo
11 0.3 11 0.6
I, 00 01 10 11 HrR OO 01 10 11
00 0.20 00 0.20
O1 0.25 O1 0.20
10 0.25 10 0.3
11 0.30 11 0.3

A(urn, ur) =0.05

Approximate relational

lifting of a predicate

We say that two subdistributions u:CD(A)
and u,cD(B) are in the relational d-lifting of
the relation RCAxB, denoted U1 Rs* 2 If

and only if there exist an R-coupling
between them.

Validity of approximate
Probabilistic Hoare judgments

We say that the quadruple 5 ci1~c,:P=Q Is
valid if and only if for every pair of memories
m; , m; such that P (m;,m>) we have:
{C1}mi=M1 and {cC2}m2=> |mpI|eS

Q6> (M1, M2).-

Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1)

(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database by, b and for every SCR:

PriQ(bi)e S] < exp(€)Pr[Q(b2)e S] + O

(€,0)-indistinguishability

We can define a s-skewed version of statistical
distance. We call this notion s-distance.

Ae(u1,u2)=supeca max(ui(E)-esu2(E), y2(E)-e*u1(E),0)

We say that two distributions 1, y2 €D(A), are at
(g,0)-indistinguishable If:

Ac(p1,u2) <0

Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz (extending the notion of adjacency
to memories):

{C}m1=M1 and {C}m2=[2 iImplies A:(1,h2) £ O

private private

D q C q U1
public public

Y, q q unit(m)
private private

D> q C q U2
public public

\Y q q unit(m)

apRHL

Indistinguishability Precondition
parameter (a logical formula)

| |

|_€,5C1NC2:P$Q

| |

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)

Validity of apRHL judgments

We say that the quadruple ¢5 c1~c2:P=0
Is valid if and only if for every pair of
memories m; ,m; such that P (m;,m,) we
have:

{C1}mi=M1 and {cC2}m2=> |mpI|es

Qe, 6™ (M1, H2).

R-£-0-Coupling

Given two distributions p1eD(A), and u2eD(B),
we have an R-¢-0-coupling between them, for
RCAXB and 0<e and 0<0=1, if there are two
joint distributions . preD(AXB) such that:

1) z1(uL)=p1 and z2(URr)=pM2,

2) the support of u. and pr is contained in R.
Thatis, if u.(a,b)>0,then (a,b)ER,
and If Uz(a,b)>0,then (a,b)ER.

3) Ae(pLpR)<O

Symmetric Encryption Schemes

e QOur treatment of symmetric encryption schemes is
parameterized by three types:

type key. (x encryption keys, key_len bits x)

type text. (% plaintexts, text_len bits x)

type cipher. (x ciphertexts - scheme specific)

 An encryption scheme is a stateless implementation of this
module interface:

module type ENC = {
proc key_gen() : key (x key generation)
proc enc(k : key, x : text) : cipher (x encryption x)

proc dec(k : key, c : cipher) : text (% decryption x)

70

IND-CPA Game

 The IND-CPA Game is parameterized by an encryption scheme

and an encryption adversary:

module INDCPA (Enc : ENC, Adv : ADV) = {

module EO = EncO(Enc) (x

module A = Adv(EO) (%

proc main() : bool = {
var b, b' : bool; var x1, x2 :
EQ.init(); (s
(x1, x2) <@ A.choose(); (%
b <$ {0,1}; (%
C <@ EO.genc(b ? x1 : x2); (x*
b' <@ A.quess(c); (*
return b = b'; (*

71

make EO from Enc %)
connect Adv to EOQO x)

text; var c : cipher;
initialize EO x*)

let A choose x1/x2 x)
choose boolean b x)
encrypt x1 or x2 x)

let A guess b from c x)
see if A won)

Sequence of Games Approach

Our proof of IND-CPA security uses the sequence of games
approach, which is used to connect a “real” game R with an
‘ideal” game I via a sequence of intermediate games.

Each of these games is parameterized by the adversary, and
each game has a main procedure returning a boolean.

We want to establish an upper bound for

"] Prl[R.main() @ &m : res] - Pr[I.main() : res] |

72

Sequence of Games Approach

e SUPPOSE We can prove
| Pr[R.main() @ &m : res] — Pr[Gi.main() : res] | <= bs
“| PrlGi.main() @ & : res] - Pr[Gz.main() : res] | <= b2
| PrlGz.main() @ &m : res] - Pr[Gs.main() : res] | <= bs
| PrlGs.main() @ & : res] - Pr[I.main() : res] | <= ba

for some b1, bz, b3 and bs. Then we can conclude

"] PriR.main() @ & : res] - Pr[I.main() @ &m : res] | <=

b1 + b, + bs + ba

A
v
A
v
A
v
A
v

/3

Step 1: Replacing PRF with TRF

* In our first step, we switch to using a true random function
instead of a pseudorandom function in our encryption scheme.

« We have an exact model of how the TRF works.

 When doing this, we inline the encryption scheme into a new kinad
of encryption oracle, EO_RF, which is parameterized by a
random function.

 We also instrument EO_RF to detect two kinds of
“clashes” (repetitions) in the generation of the inputs to the
random function.

 This is in preparation for Steps 2 and 3.

74

Step 2: Oblivious Update in genc

* In Step 2, we make use of up to bad reasoning, to transition to a
game in which the encryption oracle, EO_0, uses a true random
function and “obliviously” (“O” for “oblivious”) updates the true
random function’s map — i.e., overwrites what may already be

stored in the map.

75

Step 3: Independent Choice in genc

* In Step 3, we again make use of up to bad reasoning, this time
transitioning to a game in which the encryption oracle, EO_I,
chooses the text value to be exclusive or-ed with the plaintext in a
way that is “independent” (“I” for “independent”) from the true
random function’s map, i.e., without updating that map.

* We no longer need to detect “pre” clashes (clashes in genc with
a u chosenin acallto enc_pre).

/6

Step 4: One-time Pad Argument

* In Step 4, we can switch to an encryption oracle EO_N in which
the right side of the ciphertext produced by EO_N.genc makes
no (“N” for “no”) reference to the plaintext.

* We no longer need any instrumentation for detecting clashes.

rr

Step 5: Proving G4’s Probability

* When proving

local lemma G4_prob &m :
PriG4.main() @ &m : res] = 1%r / 2%r.

we can reorder

b <$ {0,1};

c <@ EO_N.genc(text0);
b' <@ A.guess(c);
return b = b';

o

C <@ EO_N.genc(text0);
b' <@ A.quess(c);

b <$ {0,1};

return b = b';

* We use that AdVv’s procedures are lossless.

/8

IND-CPA Security Result

lemma INDCPA (Adv <: ADV{EncO, PRF, TRF, Adv2RFA}) &m :
(forall (EO <: EO{Adv}),
islossless EO.enc_pre => islossless Adv(EO).choose) =>
(forall (EO <: EO{Adv}),
islossless EO.enc_post => islossless Adv(EO).guess) =>
" |Pr[INDCPA(Enc, Adv).main() @ &m : res] -
%r / 2%r| <=
" |PrGRF(PRF, Adv2RFA(Adv)).main() @ &m : res] -
Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| +
(limit_presr + limit_post%r) / (2 ~ text_len)%r.

* Q: If we remove the restriction on Adv ({Enc0, PRF, TRF,
Adv2RFA}), what would happen?

« A: Various tactic applications would fail; e.g., calls to the Adv’s
procedures, as they could invalidate assumptions.

79

Any Question!

