
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

More on Differential Privacy

Course evaluation
The course evaluation is now available:

Please fill it.

https://bu.campuslabs.com/courseeval/

Recording
This is a reminder that we will record the class and
we will post the link on Piazza.

This is also a reminder to myself to start recording!

From the previous classes

(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is
(ε,δ)-differentially private iff
for all adjacent database D, D and for every S⊆R:

Pr[Q(D)∈ S] ≤ exp(ε)Pr[Q(D’)∈ S] + δ

(ε,δ)-indistinguishability

We can define a ε-skewed version of statistical
distance. We call this notion ε-distance.

Δε(µ1,µ2)=supE⊆A max(µ1(E)-eεµ2(E), µ2(E)-eεµ1(E),0)

We say that two distributions µ1, µ2 ∈D(A), are at
(ε,δ)-indistinguishable if:

Δε(µ1,µ2) ≤ δ

Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ m2 (extending the notion of adjacency
to memories):
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ

public

private private

C public

public

private private

C public

V

V

D2

D1 µ1

µ2

unit(m)

unit(m)

apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

Indistinguishability
parameter

Validity of apRHL judgments

We say that the quadruple ⊢ε,δ c1~c2:P⇒Q
is valid if and only if for every pair of
memories m1,m2 such that P(m1,m2) we
have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Qε,δ*(μ1,μ2).

R-ε-δ-Coupling
Given two distributions µ1∈D(A), and µ2∈D(B),
we have an R-ε-δ-coupling between them, for
R⊆AxB and 0≤ε and 0≤δ≤1, if there are two
joint distributions µL,µR∈D(AxB) such that:
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2,
2) the support of µL and µR is contained in R.

That is, if μL(a,b)>0,then (a,b)∈R,
and if μR(a,b)>0,then (a,b)∈R.

3) Δε(µL,µR)≤δ

Today: More on
apRHL

Releasing privately the
mean of Some Data

Mean(d : private data) : public real
 i:=0;
 s:=0;
 while (i<size(d))
 s:=s + d[i];
 i:=i+1;
 z:=$ lap eps s;
 z:= (s/i)+z;
 return z

I am using the easycrypt notation here where lap eps a
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.

apRHL
Laplace

x1:=$ Lap(ε,y1)
~
x2:=$ Lap(ε,y2)
:|y1-y2|≤1 ==> =

⊢ε,0

R

q(b∪{x}) q(b∪{y})

Global Sensitivity

GSq = max{ |q(D) − q(D′) | s.t. D ∼ D′ }

Laplace in EasyCrypt

apRHL
Generalized Laplace

x1:=$ Lap(ε,e1)
~
x2:=$ Lap(ε,e2)
: |k1+e1<1>-y2<2>|≤k2
 ==> x1<1>+k1=x<2>

⊢k2*ε,0

Releasing partial sums
DummySum(d : {0,1} list) : real list
 i:= 0;
 s:= 0;
 r:= [];
 while (i<size d)
 s:= s + d[i];
 z:=$ lap eps s;
 r:= r ++ [z];
 i:= i+1;
 return r

I am using the easycrypt notation here where Lap(eps,a)
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.

Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is (ε1,δ1)-DP

M2 is (ε2,δ2)-DP

…
Mn is (εk,δk)-DP

The overall process is (ε1+ε2+…+εk,δ1+δ2+…+δk)-DP

⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

apRHL
Composition

 seq 1 1 : (postcondition R) <[eps1 & del1]>.

This corresponds to EC command:

Releasing partial sums
DummySum(d : {0,1} list) : real list
 i:= 0;
 s:= 0;
 r:= [];
 while (i<size d)
 s:= s + d[i];
 z:=$ lap eps s;
 r:= r ++ [z];
 i:= i+1;
 return r

apRHL
awhile

while b1 do c1~while b2 do c2

:P/\ b1<1>=b2<2>/\ e<1> ≤ n
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1>

c1~c2:P/\b1<1>/\b2<2>/\k=e<1>

/\e<1>≤n
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk

Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and
M2:DB →R be a (ε2,δ2)-differentially private program. Suppose
that we partition D in a data-independent way into two datasets
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2))
is (max(ε1,ε2),max(δ1,δ2))-differentially private.

Parallel Composition
In EC

Releasing partial sums
DummySum(d : {0,1} list) : real list
 i:=0;
 s:=0;
 r:=[];
 while (i<size d)
 z:=$ lap eps d[i];
 s:= s + z;
 r:= r ++ [s];
 i:= i+1;
 return r

Parallel Composition
In EC

Pointwise Differential Privacy
Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is (ε,δ)-
differentially private iff
for all adjacent database D, D and for every S⊆R:

Pr[Q(D)∈ S] ≤ exp(ε)Pr[Q(D’)∈ S] + δ

Pointwise Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is (ε,δ)-
differentially private iff
for all adjacent database D, D and for every r∈R, we
have δr such that:

Pr[Q(D)∈ S] ≤ exp(ε)Pr[Q(D’)∈ S] + δr
and ∑ δr ≤ δ

Above Threshold
aboveT (db :int list,n:int,t:int):int = {
 s<-0;
 i <- 0;
 r <- -1;
 nT <$ lap (eps/4%r) t;
 while (i < n) {
 s <$ lap (eps/2%r) (evalQ i db);
 if (nT < s /\ r = -1){
 r <- i;
 }
 i <- i + 1;
 }
 return r;
 }

Pointwise DP in Aprhl

c1~c2 :P ==> x<1> = x<2> ⊢ε,δ

c1~c2 :P ==> x<1>=r => x<2>=r ⊢ε,δr

forall r∈R

∑ δr ≤ δ

The corresponding tactic in EC is
pweq(r,r)

Review of the class

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditions

We also need to describe the rules which
combine program and specifications.

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Summary of the Semantics
of Commands

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

An example

: {true} ⇒ {y = 3}

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢

Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.

Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : P ⇒ Q

c : P ⇒ QIf a triple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

Noninterference
In symbols
m1 ~low m2 and {c}m1=m1’ and m2’{c}m2=m2’
implies m1’ ~low m2’

public public

private private

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Is this easy to check?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ =low

An example

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

An example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic While (PWhile)
c::= abort
 | skip
 | x:= e
 | x:=$ d
 | c;c
 | if e then c else c
 | while e do c

d1,d2,… probabilistic expressions

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Probabilistic Noninterference as a
Relational Property

c is probabilistically noninterferent if and only
if for every m1 ~low m2 :
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2

public

private private

C public

public

private private

C public

V

V

U

U µpr1

µpu2

µpr2

µpu1

Probabilistic Relational Hoare
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q*(μ1,μ2).

Relational lifting of a
predicate

We say that two subdistributions μ1⊆D(A)
and μ2⊆D(B) are in the relational lifting of
the relation R⊆AxB, denoted μ1 R* μ2 if
and only if there exist a subdistribution
μ⊆D(AxB) such that:
1) if μ(a,b)>0, then (a,b)∈Q.
2) and π1(μ) = μ1 π2(μ) = μ2

R-Coupling
Given two distributions µ1∈D(A), and
µ2∈D(B), an R-coupling between them, for
R⊆AxB, is a joint distribution µ∈D(AxB)
such that:
1) the marginal distributions of µ are µ1

and µ2, respectively,
2) the support of µ is contained in R. That

is, if μ(a,b)>0, then (a,b)∈R.

A sufficient condition for R-Coupling
Given two distributions µ1∈D(A), and µ2∈D(B), and a
relation R⊆AxB, if there is a mapping h:A→B such
that:

1) h is a bijective map between elements in
supp(µ1) and supp(µ2),

2) for every a∈supp(µ1), (a,h(a))∈R
3) Prx~µ1[x=a]=Prx~µ2[x=h(a)]

Then, there is an R-coupling between µ1 and µ2.
We write h⊲(µ1,µ2) in this case.

⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

h⊲({d1},{d2})
P=∀v,v∈supp({d1})
⇒ Q[v/x1<1>,h(v)/x2<2>]

Probabilistic Relational Hoare Logic
Random Assignment

Consequences of Coupling

⊢ c1 ∼ c2 : True ⇒ Q

Given the following pRHL judgment

We have that:

if , then Q ⇒ (R⟨1⟩ ⟺ S⟨2⟩) Pr[c1 : R] = Pr[c2 : S]

if , then Q ⇒ (R⟨1⟩ ⇒ S⟨2⟩) Pr[c1 : R] ≤ Pr[c2 : S]

A more realistic example
StreamCipher(m : private msg[n]) : public msg[n]
 pkey :=$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

Properties of PRG
We would like the PRG to increase the number of
random bits but also to guarantee the result to be
(almost) random.

PRG: {0,1}k → {0,1}n for n>k

Δ(PRG(Uniform({0,1}k),Uniform({0,1}n) ≤ 2-n

We can express this as:

In fact this is a too strong requirement - usually we
require that every polynomial time adversary cannot
distinguish the two distributions in statistical distance

Approximate Probabilistic
Relational Hoare Logic

⊢δ c1 ∼ c2 : P ⇒ Q
Probabilistic

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

Indistinguishability
parameter

R-δ-Coupling
Given two distributions µ1∈D(A), and µ2∈D(B),
we have an R-δ-coupling between them, for
R⊆AxB and 0≤δ≤1, if there are two joint
distributions µL,µR∈D(AxB) such that:
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2,
2) the support of µL and µR is contained in R.

That is, if μL(a,b)>0,then (a,b)∈R,
and if μR(a,b)>0,then (a,b)∈R.

3) Δ(µL,µR)≤δ

Example of R-δ-Coupling

R(a,b)= {a≤b}
OO 0.2
O1 0.25
1O 0.25
11 0.3

OO 0
O1 0.40
1O 0
11 0.6

µ1 µ2

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

OO O1 1O 11
OO 0.20
O1 0.20
1O 0.3
11 0.3

µL µR

∆(µL,µR)=0.05

Approximate relational
lifting of a predicate

We say that two subdistributions μ1⊆D(A)
and μ2⊆D(B) are in the relational δ-lifting of
the relation R⊆AxB, denoted μ1 Rδ* μ2 if
and only if there exist an R-coupling
between them.

Validity of approximate
Probabilistic Hoare judgments
We say that the quadruple ⊢δ c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Qδ*(μ1,μ2).

Releasing the mean of
Some Data

Mean(d : private data) : public real
 i:=0;
 s:=0;
 while (i<size(d))
 s:=s + d[i]
 i:=i+1;
 return (s/i)

(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is
(ε,δ)-differentially private iff
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-indistinguishability

We can define a ε-skewed version of statistical
distance. We call this notion ε-distance.

Δε(µ1,µ2)=supE⊆A max(µ1(E)-eεµ2(E), µ2(E)-eεµ1(E),0)

We say that two distributions µ1, µ2 ∈D(A), are at
(ε,δ)-indistinguishable if:

Δε(µ1,µ2) ≤ δ

Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ m2 (extending the notion of adjacency
to memories):
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ

public

private private

C public

public

private private

C public

V

V

D2

D1 µ1

µ2

unit(m)

unit(m)

apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

Indistinguishability
parameter

Validity of apRHL judgments

We say that the quadruple ⊢ε,δ c1~c2:P⇒Q
is valid if and only if for every pair of
memories m1,m2 such that P(m1,m2) we
have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Qε,δ*(μ1,μ2).

R-ε-δ-Coupling
Given two distributions µ1∈D(A), and µ2∈D(B),
we have an R-ε-δ-coupling between them, for
R⊆AxB and 0≤ε and 0≤δ≤1, if there are two
joint distributions µL,µR∈D(AxB) such that:
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2,
2) the support of µL and µR is contained in R.

That is, if μL(a,b)>0,then (a,b)∈R,
and if μR(a,b)>0,then (a,b)∈R.

3) Δε(µL,µR)≤δ

Symmetric Encryption Schemes
• Our treatment of symmetric encryption schemes is

parameterized by three types:
type key. (* encryption keys, key_len bits *)

type text. (* plaintexts, text_len bits *)

type cipher. (* ciphertexts - scheme specific *)

• An encryption scheme is a stateless implementation of this
module interface:

module type ENC = {

 proc key_gen() : key (* key generation *)

 proc enc(k : key, x : text) : cipher (* encryption *)

 proc dec(k : key, c : cipher) : text (* decryption *)

}.

70

IND-CPA Game
• The IND-CPA Game is parameterized by an encryption scheme

and an encryption adversary:
module INDCPA (Enc : ENC, Adv : ADV) = {
 module EO = EncO(Enc) (* make EO from Enc *)
 module A = Adv(EO) (* connect Adv to EO *)
 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO.init(); (* initialize EO *)
 (x1, x2) <@ A.choose(); (* let A choose x1/x2 *)
 b <$ {0,1}; (* choose boolean b *)
 c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
 b' <@ A.guess(c); (* let A guess b from c *)
 return b = b'; (* see if A won *)
 }
}.

71

Sequence of Games Approach
• Our proof of IND-CPA security uses the sequence of games

approach, which is used to connect a “real” game R with an
“ideal” game I via a sequence of intermediate games.

• Each of these games is parameterized by the adversary, and
each game has a main procedure returning a boolean.

• We want to establish an upper bound for
`| Pr[R.main() @ &m : res] - Pr[I.main() : res] |

72

R IG1 G2 G3

Sequence of Games Approach
• Suppose we can prove
`| Pr[R.main() @ &m : res] - Pr[G1.main() : res] | <= b1

`| Pr[G1.main() @ &m : res] - Pr[G2.main() : res] | <= b2

`| Pr[G2.main() @ &m : res] - Pr[G3.main() : res] | <= b3

`| Pr[G3.main() @ &m : res] - Pr[I.main() : res] | <= b4

for some b1, b2, b3 and b4. Then we can conclude
`| Pr[R.main() @ &m : res] - Pr[I.main() @ &m : res] | <=

 b1 + b2 + b3 + b4

73

R IG1 G2 G3

Step 1: Replacing PRF with TRF
• In our first step, we switch to using a true random function

instead of a pseudorandom function in our encryption scheme.
• We have an exact model of how the TRF works.

• When doing this, we inline the encryption scheme into a new kind
of encryption oracle, EO_RF, which is parameterized by a
random function.

• We also instrument EO_RF to detect two kinds of
“clashes” (repetitions) in the generation of the inputs to the
random function.

• This is in preparation for Steps 2 and 3.

74

Step 2: Oblivious Update in genc
• In Step 2, we make use of up to bad reasoning, to transition to a

game in which the encryption oracle, EO_O, uses a true random
function and “obliviously” (“O” for “oblivious”) updates the true
random function’s map — i.e., overwrites what may already be
stored in the map.

75

Step 3: Independent Choice in genc
• In Step 3, we again make use of up to bad reasoning, this time

transitioning to a game in which the encryption oracle, EO_I,
chooses the text value to be exclusive or-ed with the plaintext in a
way that is “independent” (“I” for “independent”) from the true
random function’s map, i.e., without updating that map.

• We no longer need to detect “pre” clashes (clashes in genc with
a u chosen in a call to enc_pre).

76

Step 4: One-time Pad Argument
• In Step 4, we can switch to an encryption oracle EO_N in which

the right side of the ciphertext produced by EO_N.genc makes
no (“N” for “no”) reference to the plaintext.

• We no longer need any instrumentation for detecting clashes.

77

Step 5: Proving G4’s Probability
• When proving
local lemma G4_prob &m :
 Pr[G4.main() @ &m : res] = 1%r / 2%r.

we can reorder
 b <$ {0,1};
 c <@ EO_N.genc(text0);
 b' <@ A.guess(c);
 return b = b';

to
 c <@ EO_N.genc(text0);
 b' <@ A.guess(c);
 b <$ {0,1};
 return b = b';

• We use that Adv’s procedures are lossless.

78

IND-CPA Security Result
lemma INDCPA (Adv <: ADV{EncO, PRF, TRF, Adv2RFA}) &m :
 (forall (EO <: EO{Adv}),
 islossless EO.enc_pre => islossless Adv(EO).choose) =>
 (forall (EO <: EO{Adv}),
 islossless EO.enc_post => islossless Adv(EO).guess) =>
 `|Pr[INDCPA(Enc, Adv).main() @ &m : res] -
 1%r / 2%r| <=
 `|Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res] -
 Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| +
 (limit_pre%r + limit_post%r) / (2 ^ text_len)%r.

• Q: If we remove the restriction on Adv ({EncO, PRF, TRF,
Adv2RFA}), what would happen?

• A: Various tactic applications would fail; e.g., calls to the Adv’s
procedures, as they could invalidate assumptions.

79

Any Question?

