
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Hoare Logic

From the previous class

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditions

We also need to describe the rules which
combine program and specifications.

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Memories
We can formalize a memory as a map m from variables to values.

m=[x1 ⟼ v1,…,xn ⟼ vn]

We consider only maps that respect types.

We want to read the value associated to a particular variable:

We want to update the value associated to a particular variable:

m(x)

m[x←v]
This is defined as

m[x←v](y)=
v

m(y)
If x=y
Otherwise{

Semantics of Expressions
This is defined on the structure of expressions:

{x}m = m(x)

{f(e1,…,en)}m = {f}({e1}m,…,{en}m)

where {f} is the semantics associated with the basic operation
we are considering.

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

We will denote this relation as:

Cmd * Mem * (Mem | ⊥)

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

This is commonly typeset
as: JcKm = m0

{c}m=⊥Or

Summary of the Semantics
of Commands

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

Approximating While

whilen e do c
The lower iteration of a While statement:

Is defined as

whilen e do c=(whilen e do c);if e then abort

whilen e do c
Where

Is defined as
while0 e do c = skip

whilen+1 e do c = if e then (c;whilen e do c)

Information order
An idea that has been developed to solve this problem is the
idea of information order.

This corresponds to the idea of order different possible
denotations in term of the information they provide.

In our case we can use the following order on possible
outputs:

⊥

m1 m2 m3 mn… …

≥
≥ ≥ ≥

Example
x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

What is the semantics of the following program:

Today: Hoare Triples

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Some examples

x = z + 1 : {z > 0} ⇒ {x > 1}
Is it valid?

Some examples

x = z + 1 : {z > 0} ⇒ {x > 0}
Is it valid?

Some examples

x = z + 1 : {z < 0} ⇒ {x < 0}

Is it valid?

Some examples

x = z + 1 : {z = n} ⇒ {x = n + 1}

Is it valid?

Some examples

: {y > x} ⇒ {z < 0}

Is it valid?

while x>0
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {y > x} ⇒ {z < 0}

Is it valid?

while x>0
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {even y ∧ odd x} ⇒ {z < 2.5}

Is it valid?

 z=x*2+y
 x=x/2
 z=x*2-y

How do we determine the
validity of an Hoare triple?

Validity of Hoare triple

c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

How shall we formalize
this intuition?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Hoare Logic

Floyd-Hoare reasoning

Robert W Floyd Tony Hoare

Rules of Hoare Logic
Skip

⊢skip: P⇒P

Rules of Hoare Logic
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?

Correctness of an axiom

⊢c : P ⇒ Q

We say that an axiom is correct if we can prove
the validity of each triple which is an instance of
the conclusion.

Some examples

⊢ x = z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple?

Some examples

⊢ x = x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple?

Rules of Hoare Logic
Assignment

⊢x:=e : P[e/x]⇒P

Some examples

⊢ x = z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple?

Some examples

⊢ x = x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Some examples

⊢ x = z * 2; z := x * 2

How can we derive this?

: {(z * 2) * 2 = 8} ⇒ {z = 8}

Some examples

⊢ x = z * 2; z := x * 2

How can we derive this?

: {z = 2} ⇒ {z = 8}

Rules of Hoare Logic
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

